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Abstract

In neural text editing, prevalent sequence-to-
sequence based approaches directly map the
unedited text either to the edited text or the
editing operations, in which the performance
is degraded by the limited source text encod-
ing and long, varying decoding steps. To ad-
dress this problem, we propose a new infer-
ence method, Recurrence, that iteratively per-
forms editing actions, significantly narrowing
the problem space. In each iteration, encoding
the partially edited text, Recurrence decodes
the latent representation, generates an action
of short, fixed-length, and applies the action to
complete a single edit. For a comprehensive
comparison, we introduce three types of text
editing tasks: Arithmetic Operators Restora-
tion (AOR), Arithmetic Equation Simplifica-
tion (AES), Arithmetic Equation Correction
(AEC). Extensive experiments on these tasks
with varying difficulties demonstrate that Re-
currence achieves improvements over conven-
tional inference methods.

1 Introduction

For text editing, the sequence-to-sequence
(seq2seq) framework has been applied to text
simplification (Narayan and Gardent, 2014; Dong
et al., 2019), punctuation restoration (Tilk and
Alumäe, 2016; Kim, 2019), grammatical error
correction (Ge et al., 2018; Lichtarge et al., 2018;
Zhao et al., 2019), machine translation post-editing
(Libovický et al., 2016; Bérard et al., 2017), and
etc. We observe that current inference methods
can be roughly grouped into two categories:
End-to-end (End2end) (Nisioi et al., 2017; See
et al., 2017; Tan et al., 2017; Junczys-Dowmunt
et al., 2018) and Tagging (Filippova et al., 2015;
Che et al., 2016; Libovický et al., 2016; Wang
et al., 2017; Alva-Manchego et al., 2017; Kim,
2019). For models from both categories, the
encoders extract and encode information from
the source text sequence. Yet, the goal of the

Figure 1: High-level illustration of End2end, Tagging,
and Recurrence in text editing.

decoders is different for End2end and Tagging.
Upon receiving the encoder’s hidden states that
comprise the source text information, the decoder
of End2end directly decodes the hidden states
and generates the completely edited target text
sequence. But, the decoder of Tagging produces a
sequence of editing operations, such as deletion
and insertion, that is later applied to the source
text to yield the edited text via a realization step
(Malmi et al., 2019). The mechanisms of End2end
and Tagging are illustrated in Figure 1.

However, both End2end and Tagging are prob-
lematic because as decoding progresses, the diver-
gence between the partially edited text and the orig-
inal text grows, rendering the encoder hidden states
less and less helpful for decoding the edited text or
editing operations toward the end of the editing pro-
cess; and as the number of decoding steps increases
with edited text length, decoding the completely
edited text or the full editing operation sequence
becomes more and more demanding.

To tackle the aforementioned issues, we propose
a recurrent inference method, Recurrence, for text-
editing with the encoder-decoder framework. Re-
currence consists of two components as illustrated
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in Figure 1: (i) an encoder-decoder model, namely
the programmer; (ii) an interpreter. For a given
source sequence, the programmer determines an
editing action that consists of an editing operation
with the tokens it needs and the position in the
source sequence to apply the operation. After the
interpreter executes the editing action, the partially
edited text is again fed to the programmer to de-
termine the next appropriate editing action. This
process repeats until the programmer decides that
no further editing is needed.

Intuitively, Recurrence is advantageous because
(i) as a novel recurrent inference process, it is not
constrained by model structures and generally ap-
plicable; (ii) the programmer only produces one
single editing step, easing the learning difficulty;
(iii) the encoder hidden states are updated for each
decoding step, providing faithful latent represen-
tations; (iv) the decoder outputs an editing ac-
tion of fixed sequence length, alleviating the prob-
lem caused by long decoding steps. Empirically,
through three text editing tasks, namely Arithmetic
Operators Restoration (AOR), Arithmetic Equation
Simplification (AES) and Arithmetic Equation Cor-
rection (AEC), we show that Recurrence is data-
efficient and more resilient to the text sequence
length and the vocabulary size.

Our contributions are the followings: (1) we
demonstrate that many text editing tasks can be
solved by multiple inference steps recurrently; (2)
we propose a novel recurrent inference method,
Recurrence, for text editing that tears an editing
task down into iterations of editing actions; (3) we
design three easily reproducible, proof-of-concept
text editing tasks, AOR, AES and AEC; (4) we
exhibit that Recurrence outperforms End2end and
Tagging in all three text editing tasks and is (i) less
sensitive to longer sequences; (ii) less sensitive to
larger vocab sizes; (iii) less data-hungry to achieve
superior or competitive performances.

The code for three inference methods, text edit-
ing tasks, data generation, and experiments in
this work is available at: https://github.com/

ShiningLab/Recurrent-Text-Editing.

2 Related Work

Text Editing is an Natural Language Processing
(NLP) task in that systems change texts by insert-
ing, deleting and rephrasing the words to meet cer-
tain needs. According to the length relationship
between input and output texts, we summarize text

editing tasks into three types: short-to-long, long-
to-short, and mixed.
End-to-end is one of the early methods to perform
text editing by casting the job as seq2seq (Sutskever
et al., 2014) text generation. Without complicated
preparation and subsequent processing, End2end
has been proven to accomplish text editing well,
in all three types (Tilk and Alumäe, 2016; Nisioi
et al., 2017; See et al., 2017; Tan et al., 2017;
Junczys-Dowmunt et al., 2018; Zhao et al., 2019).
Yet, conventional seq2seq-based approaches are
well-known for their drawbacks, including depen-
dency on large amounts of data, unexplainable
processes, and uncontrollable outcomes (Wiseman
et al., 2018). When texts do not need a complete
modification, there are more appropriate methods
than learning a direct mapping from unedited texts
to edited texts.
Tagging solves text editing in two steps instead. It
firstly employs a seq2seq framework to produce
tag sequences, and secondly, edits input texts ac-
cording to the tag sequences (the “realization” step)
(Malmi et al., 2019). Tagging assigns the tag KEEP
for words that do not need to be changed so that it
does not need to learn a copy mechanism. Some
have reported that Tagging is better than End2end
in short-to-long (Che et al., 2016; Kim, 2019), long-
to-short (Filippova et al., 2015; Alva-Manchego
et al., 2017; Wang et al., 2017), and mixed editing
(Libovický et al., 2016; Bérard et al., 2017; Malmi
et al., 2019). One notable member of the Tagging
family is Neural Programmer-Interpreter (NPI), a
recurrent and compositional neural network (Reed
and de Freitas, 2016). NPI is adopted in text edit-
ing to predict tags, such as KEEP, DELETE, and
INSERT, and execute operations during decoding
simultaneously. NPI-based methods have achieved
state-of-the-art results in long-to-short (Dong et al.,
2019; Gu et al., 2019), and mixed editing (Vu and
Haffari, 2018). Nevertheless, like other Tagging
methods, NPI’s encoder hidden states are not up-
dated during editing. Its decoder considers opera-
tions and executions from previous time steps to
predict the current operation while putting mas-
sive pressure on the decoder (Hochreiter, 1998;
Bahdanau et al., 2015; Cho et al., 2014). Also, Tag-
ging in general suffers from a performance decline
caused by a large vocabulary that combines tags
and words or too many decoding steps to assign
tags. To resolve the aforementioned problems with
Tagging, in Recurrence, we update the encoder

https://github.com/ShiningLab/Recurrent-Text-Editing
https://github.com/ShiningLab/Recurrent-Text-Editing
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Figure 2: Illustrate Recurrence inference for text editing; the example shows an number ordering task where the
number sequence [0, 2, 1, 4, 3, 5] is edited to [0, 1, 2, 3, 4, 5] via action a(1), [<swap>, pos 1], which instructs the
interpreter to swap number 1 and 2, and action a(2), [<swap>, pos 3], which instructs the interpreter to swap num-
ber 3 and 4, imitating the bubble sort algorithm; finally, the interpreter halts inference and outputs the completely
edited sequence y(c) after receiving the termination action a(3) = [<done>,<done>].

hidden states iteratively and free the interpreter
from the decoder to complete text editing in several
program-interpret iterations (recurrent inference).
NPI belongs to neural program induction (Devlin
et al., 2017), but Recurrence is part of neural pro-
gram synthesis (Ellis et al., 2019). Consequently,
Recurrence always follows the latest hidden repre-
sentation of its input text rather than a static context
matrix and only needs to decode an editing action
of a fixed length in each iteration.
Multi-Step Learning is a manner to solve a prob-
lem in several steps. Recent work in text editing
prefers multi-step learning, especially for long-to-
short (Narayan and Gardent, 2014; Zhang and La-
pata, 2017), and mixed editing (Ge et al., 2018;
Lichtarge et al., 2018). For example, Tagging can
also be regarded as a two-steps learning. How-
ever, these studies usually edit texts incrementally
through a multi-round seq2seq inference. To the
best of our knowledge, our Recurrence is the first
inference method that divides a text editing task
into multiple independent sub-tasks and completes
them recurrently.

3 Recurrent Inference

3.1 Method Overview
Recurrence breaks the text editing task down into
iterations of editing actions and each editing ac-
tion is determined on the hidden representation of
the partially edited sequence. Conceptually, it is
preforming a predefined underlying iterative algo-
rithm that is designed to achieve some text editing
goals. There are two components in Recurrence:
programmer and interpreter. Given a source se-
quence x = x1, · · · , x|x|, the programmer deter-
mines a single editing action, a(1), to be applied on

x. Then, the interpreter executes the action a(1) on
x and produces the partially edited sequence with
one edit, y(1). Then, y(1) is fed to the programmer
to determine the next action a(2). This process con-
tinues until the programmer determines the text is
fully edited and outputs a termination action to stop
further editing. The inference also ends if the num-
ber of iterations reaches a predefined limit. Finally,
the interpreter outputs the completely edited se-
quence y(complete). This recurrent editing process is
illustrated with an example in the number ordering
task in Figure 2.

The hypothesis is that it is easier to let a model
learn a single editing step than the whole mapping
between original and edited sequences. Also, be-
ing able to observe the latest text status leads to a
more accurate input representation. Furthermore,
Recurrence is explainable in the sense that not only
we can understand the intention of each editing
step done by the model, but we can also actively
participate in designing the editing procedure.

3.2 Programmer
Broadly speaking, the programmer determines the
action for a given input in accordance with the un-
derlying algorithm that the programmer is trained
to mimic. In the programmer, the encoder extracts
relevant information from an input text sequence
x and then the decoder decides a single step of ac-
tion that should be applied to x. The programmer
can be any model that is able to produce editing
actions based on textual information. In our experi-
ments, the programmer is a seq2seq model with an
encoder-decoder architecture.
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Input
Output
Input
Output
Input
Output

AOR (N = 10, L = 6)
6 10 9 5 2 3
− 6 / 10 + 9 / 5 ∗ 2 == 3
2 2 4 8 2 4
2 ∗ 2− 4 + 8 / 2 == 4
2 2 4 8 2 4
− 2 + 2 / 4 ∗ 8 + 2 == 4

AES (N = 10, L = 4)
− 3 + 10 / 2 == 2
− 3 + 10 / 2 == 2
(− 2 + 4 ) / 7 ∗ 7 == 2
2 / 7 ∗ 7 == 2
2 / 7 ∗ ( 11− 4 ) == ( 4− 2 )
2 / 7 ∗ 7 == 2

AEC (N = 10, L = 5)
4− 3 / 6 ∗ 4 == 2
4− 3 / 6 ∗ 4 == 2
6 7 ∗+ / 7 + / 7 == 2
− 7 ∗ 5 / 7 + 7 == 2
− 6 5 + 11− 2
− 6 + 5 + 11− 8 == 2

Table 1: Examples from AOR, AES, and AEC with N and L.

3.3 Editing Actions
An editing action contains (i) the type of editing
operation, (ii) the position the editing occurs, and
(iii) a text symbol.

Formally, the set of editing actions is defined
by A := {a = (e, p, s)|∀e ∈ E , p ∈ P, s ∈ S)},
where E is the set of all operations, P is the set of
all positions, and S is the set of symbols. The defi-
nition of E , P and S is determined by the specific
text editing task and the underlying text editing al-
gorithm. For example, each p ∈ P would contain a
single position or multiple positions (i.e., a tuple of
position indices) depending on the operation. Also,
if an editing task contains only a single type of
operation, then the operation can be omitted. Some
operations, such as deletion, do not need a symbol
input, so, the symbol component can also be omit-
ted. It is required that DONE ∈ E ,P,S to indicate
termination.

Editing actions allow the design of the editing
order. Given a(1), · · · ,a(n), the position sequence
p(1) ∈ a(1), · · · , p(n) ∈ a(n) determines the edit-
ing order. This could be beneficial since empirical
results have shown that ordering matters for text
generation (Ford et al., 2018). For the sake of sim-
plicity, in our experiments, we choose to arrange
positions across actions in an increasing order, edit-
ing a sequence from left to right.

Due to liberty given by the definition of the ac-
tion, we believe Recurrence can be applied to a
much border field of applications. In the scope of
this paper, we only concern about text editing.

3.4 Interpreter
The interpreter is a parameter-free function that
executes the editing action produced by the pro-
grammer. Specifically, the interpreter first checks
if the action is the termination action. If so, the
interpreter will halt inference and directly output
its input sequence as the completely edited text,
y(complete). Otherwise, the interpreter carries out

the received action to its input sequence and pro-
duces a partially edited sequence. Then, the Re-
currence continues by feeding the partially edited
sequence into the programmer to determine the
next editing action.

It is possible for the programmer to output ille-
gal actions that do not follow the predefined action
template (e.g., actions with missing a position com-
ponent), especially when the programmer is not
fully trained. Therefore, the interpreter checks if
an action is valid and skips invalid actions by re-
turning the input sequence.

3.5 Offline Training
Training text editing models requires pairs of
source sequence x and target sequence y, but differ-
ent inference methods employ different generation
algorithms to produce appropriate target sequences
to form suitable training pairs. For the conven-
tional inference methods, End2end map unedited
text sequences to target text sequences directly, and
Tagging map unedited text sequences to target tag
sequences before realizing the target text sequences.
Hence, for the training data, the source sequences
are the original, while the target sequences are
edited text sequences for End2end and editing op-
eration sequences for Tagging. In our experiments,
we name the training modes used by the conven-
tional methods offline training.

3.6 Online Training
To train the programmer, we compute all interme-
diate actions a(1), · · · ,a(n) that are required to edit
input x to target y(complete). Applying these editing
actions, we obtain the partially edited sequences
y(1) = x,y(2), · · · ,y(n) = y(complete). After
that, the training list of pairs for the programmer
is (y(1),a(1)), (y(2),a(2)), · · · , (y(n),a(n)), where
a(n) is the termination action. We uniformly sam-
ple one source-target pair from this list as the train-
ing data instance. Due to the fact that selected
training pairs for each source sequence x varies
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during training, we name this training mode online
training. For the thoroughness of experiments, we
examine three inference methods with both train-
ing modes. In the training phase, intermediate
training instances are exposed to End2endOnline and
TaggingOnline. Only the immediate editing action
(y(1),a(1)) are fed to RecurrenceOffline.

4 Tasks

An increasing number of studies takes synthetic
benchmark tasks to examine ideas before extending
to open-domain natural language data (Zaremba
and Sutskever, 2014; Lake and Baroni, 2018; Nan-
gia and Bowman, 2018; Lample and Charton,
2020). Following the fruitful results of previous
work, we aim to evaluate three inference methods
in the domain of arithmetic problems (Hosseini
et al., 2014; Roy and Roth, 2015; Ling et al., 2017)
that can be treated as the test-beds for text editing.
We introduce three tasks, namely AOR, AES, and
AEC, corresponding to the three types of text edit-
ing tasks: short-to-long, long-to-short, and mixed.
Being able to control the aspects of the datasets al-
lows us to compare the characteristics of the three
inference methods more thoroughly and analyze
the appropriate situations to apply each method.

4.1 Arithmetic Equation
Our arithmetic equation consists of integer num-
bers N ∈ Z≥2, an equal sign (“==”), and opera-
tors1 O = {“ + ”, “ − ”, “ ∗ ”, “/”}. For conve-
nience, we restrict the right-hand side of the equa-
tion to a number. The equation holds if the value of
the left-hand side equals the number on the right-
hand side. Operators O are placed between two
numbers, where the subtraction operator “− ” can
also be put to the left of any single number. We
consider equations as sequences of mathematical
symbols (Saxton et al., 2019) instead of tree struc-
tures (Lample and Charton, 2020). We describe an
arithmetic equation dataset from three aspects: (1)
N = |N | defines the number of unique integers;
(2) L ∈ Z∗ defines the number of integers in an
equation; (3) D ∈ Z∗ defines the number of unique
equations.

Note that since we only consider binary oper-
ations, the sequence length of a valid arithmetic
expression is always 2L or 2L−1, depending on if
there is a subtraction operator before the first num-

1We use these symbols to apply the Python built-in func-
tion eval().

ber. Intuitively, it is reasonable to assume that the
greater N and L become, the harder the task gets.
Whereas, the larger D, the easier the task becomes.

4.2 Arithmetic Operators Restoration
The goal of AOR is to convert a sequence of in-
teger numbers into a valid arithmetic equation.
For a given source sequence of integer numbers,
x ∈ NL, a model for AOR inserts appropriate oper-
ators fromO in between the first L−1 integers in x
and inserts an equal sign (“==”) before the Lth ele-
ment in x so that the resulting arithmetic expression
sequence (target sequence) is valid. Each integer
sequence potentially corresponds to different valid
arithmetic equations. Thus, AOR is one-to-many
learning. To obtain integer sequences for AOR, we
first generate valid arithmetic equations and then
remove all the operators and equal signs (see Table
1).

4.3 Arithmetic Equation Simplification
Here, we involve two more mathematical symbols
(“(”, “)”). In an equation, parentheses help to group
parts of an expression and indicate the order of
precedence. In this task, we aim to simplify equa-
tions by calculating the parts in parentheses and
removing parentheses from equations. Equation
that has no parentheses is already in the simplest
form, so there is no need to change. We gener-
ate complicated versions of a simplified equation
by randomly replacing some integers (including
the one on the right-hand side) with their equiv-
alent bracketed expressions. Since these variants
share the same simplified form, AES is many-to-
one learning (see Table 1).

4.4 Arithmetic Equation Correction
AEC is a more comprehensive text editing task in
that a model needs to detect and correct possible
mistakes. To generate mistakes, we inverse a valid
equation by deleting, substituting, or inserting ran-
dom tokens at random positions. We do not touch
the right-hand side integer to guarantee that the
corrected left-hand side (include “==”) equals the
same value to assert equality. We fix the maximum
number of errors to three, regardless the values of
N , L, and D. No change is made if there is no error.
We generate many wrong equations based on one
correct equation. Meanwhile, a wrong equation can
be modified into multiple correct equations. Hence,
AEC is many-to-many learning (see Table 1).
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Source
TargetEnd2end
TargetTagging

TargetRecurrence

AOR (N = 10, L = 5)
8 2 8 4 2
− 8 ∗ 2 / 8 + 4 == 2
<insert −><keep><insert *><keep>
<insert /><keep><insert +><keep>
<insert ==><keep>
<pos 0> −

AES (N = 100, L = 5)
− 33 + 25 + 75− 60 == ( 30− 23 )
− 33 + 25 + 75− 60 == 7
<keep><keep><keep><keep><keep>
<keep><keep><keep><keep><sub 7>
<delete><delete><delete><delete>
<pos 9><pos 13> 7

AEC (N = 10, L = 5)
7 ∗ 8 / 4 8 2 − == 6
7 ∗ 8 / 4− 8 == 6
<keep><keep><keep><keep>
<keep><delete><sub −><sub 8>
<keep><keep>
<delete><pos 5><pos 5>

Table 2: Example target sequences given the same source sequence in AOR, AES, and AEC.

5 Experiments

We test Recurrence in comparison with End2end
and Tagging across AOR, AES, and AEC. We de-
scribe the results conditioned on specific N , L, and
D. Later, we analyze the impact of each of them in
Section 6.
Data. In all tasks, the dataset is divided into three
subsets: 70% for training, 15% for validation, and
15% for testing. For AES (many-to-one learning)
and AEC (many-to-many learning), we feed the
training set to a data generator in every epoch to
expose all the variants of targets as input sequences
(see Section 4). For the sake of fairness, we exam-
ine three methods in both online and offline training
modes. To train End2endonline and Taggingonline, in
each epoch, we keep the targets, but uniformly pick
a partially edited y(i) to alternate the original input
x as the source sequence. The target equations can
be used to train End2end directly. By contrast, fur-
ther pre-processing is necessary for Tagging and
Recurrence. Training targets for Tagging are tag
sequences, while those for Recurrence are editing
actions.
Models. After testing Transformer (Vaswani et al.,
2017) and a range of modern RNNs (Mikolov et al.,
2010; Sutskever et al., 2014; LeCun et al., 2015),
we focus on the overall best-performed architec-
ture — bidirectional LSTM (Schuster and Paliwal,
1997; Hochreiter and Schmidhuber, 1997) with an
attention mechanism (Luong et al., 2015). Through-
out all the experiments, three inference methods
share the same model structure with dmodel = 512,
dembedding = 512, nlayers = 1, rlearning = 10−5,
rteacher forcing = 0.5, and rdropout = 0.5 (Srivastava
et al., 2014). Parameters are uniformly initialized

from [−
√

1
d ,
√

1
d ]. To prevent uncontrolled inter-

ference, we train all models from scratch instead
of pre-training. We use Adam optimizer (Kingma
and Ba, 2015) with an L2 gradient clipping of 5.0
(Pascanu et al., 2013).
Evaluation. We evaluate methods by three metrics:
token accuracy, sequence accuracy, and equation

accuracy. Token accuracy marks the correct pre-
dictions at the token-level divided by the target
sequence length and then averaged by the test size.
Sequence accuracy stands for the correct predic-
tions at the sequence-level divided by the test size.
Equation accuracy is the number of true predicted
equations divided by the test size; it emphasizes
on whether an equation holds rather than whether
an equation is the same as the target. We evaluate
the performance via equation accuracy for AOR
(one-to-many), sequence accuracy for AES (many-
to-one), and both equation accuracy and sequence
accuracy for AEC (many-to-many). Sequence ac-
curacy is accompanied by token accuracy for addi-
tional reference.
Training. We train on a single GeForce RTX Titan
with a batch size of 256. The last batch is dropped
if it does not contain 256 samples. To ensure con-
vergence, we adopt early stopping (Prechelt, 1998)
with a patience of 512 epochs.

5.1 Arithmetic Operators Restoration
Data. Experiments are performed on a dataset with
N = 10, L = 5, and D = 10K. For Tagging,
the tags are KEEP and INSERTTOKENAOR , where
TOKENAOR = O

⋃
{“ == ”}.

For Recurrence, the set of editing actions is de-
fined as AAOR := {a = (e, p, s) | ∀e ∈ E , p ∈
P, s ∈ S)}, where E is an empty set since there
is only one operation, insertion, and thus omit-
ted; P := {p | p ∈ {0, · · · , |x|}}; and S =
TOKENAOR. For a given action a = (p, s), the
interpreter inserts s before xp (see Table 2).
Results. As shown in Table 3, RecurrenceOnline
outperforms End2endOnline by 29.20% and
TaggingOnline by 7.13%, achieving an equation
accuracy of 58.53%. Hence, RecurrenceOnline
has the best performance. Note that online
training is critical for Recurrence to achieve good
performance as RecurrenceOnline outperforms
RecurrenceOffline by 27.40%, whilst online training
only helps to improve the performance of Tagging
by 0.87% and End2end by 2.86%.
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Method Training
End2end Offline

Online
Tagging Offline

Online
Recurrence Offline

Online

AOR (N = 10, L = 5, D = 10K)
#Epoch Equ Acc.%

3352 26.47
2640 29.33
1149 50.53
2245 51.40
1281 31.13
1898 58.53∗

AES (N = 100, L = 5, D = 10K)
#Epoch Token Acc.% Seq Acc.%

5063 75.49 3.27
7795 84.60 25.20
5223 90.10 43.80
4520 87.00 36.67
7603 94.92 62.07
7088 98.63∗ 87.73∗

AEC (N = 10, L = 5, D = 10K)
#Epoch Token Acc.% Seq Acc.% Equ Acc.%
72144 87.78 54.67 55.13

112482 88.08∗ 57.27 57.73
135729 82.29 44.20 44.40
112968 84.46 46.93 47.33
203067 81.85 55.87 56.20
152982 83.64 57.47∗ 58.27∗

Table 3: Evaluation results of three inference methods on AOR, AES, and AEC with specific N , L, and D.

5.2 Arithmetic Equation Simplification

Figure 3: Testing sequence accuracy per epoch in
AES with N = 10, L = 5, and D = 10K;
all methods achieved near-perfect performances, but
RecurrenceOnline converges the fastest.

Data. We first experiment with N = 10, L = 5,
and D = 10K, but all methods can reach a near-
perfect sequence accuracy (see Figure 3). There-
fore, we adjust N from 10 to 100 to make the
task more challenging. A target sequence to
train Tagging is a sequence of tags consisting
of KEEP, DELETE, and SUBSTITUTETOKENAES ,
where TOKENAES ∈ N . For Recurrence, target
editing actions are AAES := {a = (e, p, s) | ∀e ∈
E , p ∈ P, s ∈ S)}, where the default operation
is substitution, so E is an empty set and omitted;
P := {p = [p1, p2] | pi ∈ {0, · · · , |x|}, ∀i =
1, 2}; S = TOKENAES. This editing action in-
structs the interpreter to replace the part between
xp1 and xp2 with TOKENAES (see Table 2).
Results. Our RecurrenceOnline obtains a sequence
accuracy of 87.73%, outperforming End2ndOnline
by 62.53% and TaggingOffline by 43.93%. We also
find that the performance of Recurrence is impaired
significantly without online training. Besides, on-
line training saves 515 epochs and achieves a better

outcome. Both facts demonstrate the necessity of
intermediate steps for training Recurrence.

5.3 Arithmetic Equation Correction
Data. We use a dataset with N = 10, L = 5,
and D = 10K. A tag sequence is made of tags in-
cluding KEEP, DELETE, SUBSTITUTETOKENAEC ,
and INSERTTOKENAEC , where TOKENAEC ∈
N

⋃
O
⋃
{“ == ”}. For Recurrence, we de-

fine target editing actions as AAEC := {a =
(e, p, s) | ∀e ∈ E , p ∈ P, s ∈ S)}, where E :=
{e | e ∈ {DELETE,SUBSTITUTE,INSERT}};
P := {p | p ∈ {0, · · · , |x|}}; S := TOKENAEC.
To freeze the sequence length of a, we repeat p
at a3 to replace s when e = DELETE. During
interpreting, e = DELETE directs to remove xp;
e = SUBSTITUTE guides to replace xp with s;
e = INSERT means to insert s before xp (see
Table 2).
Results. RecurrenceOnline attains higher scores
over the other two methods, resulting in a sequence
accuracy of 57.47% and an equation accuracy of
58.27%. The performance edge of Recurrence is
not obvious due to the task setting. In section
6, we adjust the task to distinguish the perfor-
mance of each method more easily. When applying
online training, we observe improvements in all
three methods. Particularly, RecurrenceOnline takes
around 50K epochs less than RecurrenceOffline and
attains a better performance.

6 Analysis

As shown in section 5, Recurrence outperforms
End2end and Tagging in all three tasks in our ex-
periment settings. In this section, we explore the
limits of Recurrence by running experiments with
varying values of N , L and D, so as to determine
in what scenario Recurrence performs well (see
Figure 4).
The Impact of N . We conduct experiments with
L = 5, D = 50K, and N increasing from 10
to 50 with an interval of 10 for AOR; L = 5,
D = 10K, and N increasing from 100 to 300 with



1765

Figure 4: Evaluation results of three inference methods on AOR, AES, and AEC under the control of (a) N , (b) L,
and (c) D, respectively.

an interval of 50 for AES; and L = 5, D = 10K,
and N increasing from 10 to 50 with an inter-
val of 10 for AEC. For AOR, RecurrenceOnline
and Tagging show similar resilience, however,
TaggingOffline performs better when N ≥ 20. For
AES, RecurrenceOnline performs much better than
Tagging and End2end (by at least 20%) when
N ≤ 150. Note that End2end performs bad when
N ≥ 100 with End2endOffline learns hardly any-
thing. We also observe that End2endOffline can
achieve a near-perfect performance when N = 10.
These results indicate that the End2endOffline’s per-
formance declines rapidly as N increases and re-

quires a much larger D-to-N ratio to perform well.
Finally, for AEC, RecurrenceOnline displays the
most resilience and performs the best.
The Impact of L. We conduct experiments with
N = 10, D = 50K, and L increasing from
5 to 9 with an interval of 1 for AOR; N =
10, D = 50K, and L increasing from 3 to
7 with an interval of 1 for AES; and settings
identical to AOR for AEC. For AOR and AES,
both RecurrenceOnline and Tagging show similar
trend, however, RecurrenceOnline performs the best.
For AEC, while RecurrenceOnline still outperforms
Tagging, End2endOffline performs the best for L ≥
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7 and shows more resilience. We think when
N = 10, the AEC task is too easy for End2end
with 50K training data. Thus, we increase N from
10 to 100 and find that End2end cannot gain any
performance within 512 epochs (i.e., accuracy is
0%). We want to stress that when the amount of
data cannot counter the increase of L, which is the
case for AOR and AES, End2end’s performance
declines faster than Recurrence and Tagging.
The Impact of D. We conduct experiments with
N = 10, L = 5, and D increasing from 10K to
50K with an interval of 10K for AOR; N = 100,
L = 5, and D increasing from 10K to 50K with
an interval of 10K for AES; and settings identical
to AOR for AEC. All models benefit from the in-
creasing of D as expected. However, it is clear
that RecurrenceOnline is the best performing model
when D is small. The only exception is that for
AEC, End2end has similar performance trend as
Recurrence. As discussed before, this is likely be-
cause End2end performs well with small N .
The Impact of Online Training. When compar-
ing the performance between online and offline
training, the online training, as expected, generally
has better performances than offline training for
End2end and Tagging with only a few exceptions.
Note that online training is not part of the standard
training procedure for End2end and Tagging, how-
ever, we use online training with End2end and Tag-
ging for the sake of a fair comparison. Therefore,
for End2end and Tagging, the online training acts
like a data augmentation technique, providing more
data points for training. Surprisingly, offline train-
ing also allows Recurrence to gain some editing
ability, at times better than End2end and Tagging.
We believe for text editing tasks with very localized
editing actions, such as AES, showing the imme-
diate editing actions are enough for the model to
generalize proper editing actions. In other words,
when the editing actions are less sequentially de-
pendent, even offline training enables Recurrence
to achieve performance better than End2end and
Tagging. This supports our intuition that letting
the programmer produce one single editing step
reduces the learning difficulty.
The Impact of Ordering. In early experiments,
We find that the programmer cannot converge if the
data guide it to edit a sequence in a random order
(a mixture of both left-to-right and right-to-left).
Hence, we think ordering matters for not only text
generation (Ford et al., 2018) but also Recurrence

in text editing. One of our assumptions is that
random ordering may assign various actions to the
same text state, and thus causes confusion in the list
of actions used to edit the input text x to the output
text y. When there are conflicting sample pairs
in the training data set, the model cannot easily
converge. We leave this problem for future work.

To summarize our findings, under settings with
moderate or large N and L, End2end performs
much worse than Tagging and Recurrence with
limited data. Tagging performs slightly better than
Recurrence when N gets larger with fixed D and
L in AOR (short-to-long). However, Tagging per-
forms worse than Recurrence in all other cases.
Therefore, we conclude that Recurrence is more
data-efficient and overall better performs than
End2end and Tagging in most situations, especially
in AES (long-to-short).

7 Conclusions and Future Work

We propose a recurrent inference method, Recur-
rence, that edits a given text sequence iteratively
such that in each iteration the programmer deter-
mines a single step of editing action and the inter-
preter executes the action. Our method outperforms
the other two inference methods, End2end and Tag-
ging, in three arithmetic equation editing tasks we
introduced. For future work, we plan to apply Re-
currence to open-domain natural language data and
investigate on how to relax its need for intermedi-
ate editing steps as extra supervision signals. We
also wish to experiment with applying pointer at-
tention (Vinyals et al., 2015) to replace the position
component in actions.
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