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Abstract

Classifying and resolving coreferences of ob-
jects (e.g., product names) and attributes (e.g.,
product aspects) in opinionated reviews is cru-
cial for improving the opinion mining perfor-
mance. However, the task is challenging as
one often needs to consider domain-specific
knowledge (e.g., iPad is a tablet and has as-
pect resolution) to identify coreferences in
opinionated reviews. Also, compiling a hand-
crafted and curated domain-specific knowl-
edge base for each domain is very time con-
suming and arduous. This paper proposes an
approach to automatically mine and leverage
domain-specific knowledge for classifying ob-
jects and attribute coreferences. The approach
extracts domain-specific knowledge from un-
labeled review data and trains a knowledge-
aware neural coreference classification model
to leverage (useful) domain knowledge to-
gether with general commonsense knowledge
for the task. Experimental evaluation on real-
world datasets involving five domains (product
types) shows the effectiveness of the approach.

1 Introduction

Coreference resolution (CR) aims to determine
whether two mentions (linguistic referring expres-
sions) corefer or not, i.e., they refer to the same
entity in the discourse model (Jurafsky, 2000; Ding
and Liu, 2010; Atkinson et al., 2015; Lee et al.,
2017, 2018; Joshi et al., 2019; Zhang et al., 2019b).
The set of coreferring expressions forms a corefer-
ence chain or a cluster. Let’s have an example:

[S1] I bought a green Moonbeam for
myself. [S2] I like its voice because it
is loud and long.

Here all colored and/or underlined phrases are
mentions. Considering S1 (sentence-1) and S2
(sentence-2), the three mentions “I”, “myself ” in

S1 and “I” in S2 all refer to the same person and
form a cluster. Similarly, “its” in S2 refers to the
object “a green Moonbeam” in S1 and the cluster
is {“its” (S2), “a green Moonbeam” (S1) }. The
mentions “its voice” and “it” in S2 refer to the same
attribute of the object “a green Moonbeam” in S1
and form cluster {“its voice” (S2), “it” (S2)}.

CR is beneficial for improving many down-
stream NLP tasks such as question answer-
ing (Dasigi et al., 2019), dialog systems (Quan
et al., 2019), entity linking (Kundu et al.), and
opinion mining (Nicolov et al., 2008). Particularly,
in opinion mining tasks (Liu, 2012; Wang et al.,
2016; Zhang et al., 2018; Ma et al., 2020), Nicolov
et al. (2008) reported performance improves by
10% when CR is used. The study by Ding and
Liu (2010) also supports this finding. Considering
the aforementioned example, without resolving “it”
in S2, it is difficult to infer the opinion about the
attribute “voice” (i.e., the voice, which “it” refers
to, is “loud and long”). Although CR plays such
a crucial role in opinion mining, only limited re-
search has been done for CR on opinionated re-
views. CR in opinionated reviews (e.g., Amazon
product reviews) mainly concerns about resolving
coreferences involving objects and their attributes.
The objects in reviews are usually the names of
products or services while attributes are aspects of
those objects (Liu, 2012).

Resolving coreferences in text broadly involves
performing three tasks (although they are often
performed jointly or via end-to-end learning): (1)
identifying the list of mentions in the text (known
as mention detection); (2) given a pair of candi-
date mentions in text, making a binary classifica-
tion decision: coreferring or not (referred to as
coreference classification), and (3) grouping core-
ferring mentions (referring to the same discourse
entity) to form a coreference chain (known as clus-
tering). In reviews, mention detection is equiv-
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alent to extracting entities and aspects in reviews
which has been widely studied in opinion mining
or sentiment analysis (Hu and Liu, 2004; Qiu et al.,
2011; Xu et al., 2019; Luo et al., 2019; Wang et al.,
2018; Dragoni et al., 2019; Asghar et al., 2019).
Also, once the coreferring mentions are detected
via classification, clustering them could be straight-
forward1. Thus, following (Ding and Liu, 2010),
we only focus on solving the coreference classi-
fication task in this work, which we refer to as
the object and attribute coreference classification
(OAC2) task onwards. We formulate the OAC2
problem as follows.

Problem Statement. Given a review text u
(context), an anaphor2 p and a mention m which
refers to either an object or an attribute (including
their position information), our goal is to predict
whether the anaphor p refers to mention m, de-
noted by a binary class y ∈ {0, 1}. Note. an
anaphor here can be a pronoun (e.g., “it”) or defi-
nite noun phrase (e.g., “the clock”) or ordinal (e.g.,
“the green one”).

In general, to classify coreferences, one needs
intensive knowledge support. For example, to de-
termine that “it” refers to “its voice” in S2, we need
to know that “voice” can be described as “loud and
long” and “it” can not refer to “a green Moonbeam”
in S1, since “Moonbeam” is a clock which cannot
be described as “long”.

Product reviews contain a great many such
domain-specific concepts like brands (e.g., “Apple”
in the laptop domain), product name (e.g., “T490”
in the computer domain), and aspects (e.g.“hand”
in the alarm clock domain) that often do not ex-
ist in general knowledge bases (KBs) like Word-
Net (Miller, 1998), ConceptNet (Speer and Havasi,
2013), etc. Moreover, even if a concept exists in a
general KB, its semantics may be different than that
in a given product domain. For example, “Moon-
beam” in a general KB is understood as “the light
of the moon” or the name of a song, rather than a
clock (in the alarm clock domain). To encode such
domain-specific concepts, we need to mine and
feed domain knowledge (e.g., “clock” for “Moon-
beam”, “laptop” for “T490”) to a coreference classi-
fication model. Existing CR methods (Zhang et al.,

1Given a text (context), if pairs (m, p), (m, q) are classified
as co-referring mentions, then m, p, q belong to same cluster.

2The term anaphor used in this work does not have to be
the same as defined in other related studies, as here it can also
appear before m though rarely. We still name it as anaphor
for simplicity, mainly following (Ding and Liu, 2010).

2019b) do not leverage such domain knowledge
and thus, often fail to resolve such co-references
that require explicit reasoning over domain facts.

In this paper, we propose to automatically mine
such domain-specific knowledge from unlabeled
reviews and leverage the useful pieces of the ex-
tracted domain knowledge together with the (gen-
eral/comensense) knowledge from general KBs to
solve the OAC2 task3. Note the extracted domain
knowledge and the general knowledge from the
existing general KBs are both considered as can-
didate knowledge. To leverage such knowledge,
we design a novel knowledge-aware neural coref-
erence classification model that selects the useful
(candidate) knowledge with attention mechanism.
We discuss our approach in details in Section 3.

The main contributions of this work can be sum-
marized:

1. We propose a knowledge-driven approach to
solving OAC2 in opinionated reviews. Unlike
existing approaches that mostly dealt with gen-
eral CR corpus and pronoun resolution, we
show the importance of leveraging domain-
specific knowledge for OAC2.

2. We propose a method to automatically mine
domain-specific knowledge and design a
novel knowledge-aware coreference classi-
fication model that leverages both domain-
specific and general knowledge.

3. We collect a new review dataset4 with five
domains or product types (including both un-
labeled and labeled data) for evaluation. Ex-
perimental results show the effectiveness of
our approach.

2 Related Work

Coreference resolution has been a long-studied
problem in NLP. Early approaches were mainly
rule-based (Hobbs, 1978) and feature-based (Ding
and Liu, 2010; Atkinson et al., 2015) where re-
searchers focused on leveraging lexical, grammati-
cal properties and semantic information. Recently,
end-to-end solutions with deep neural models (Lee

3The unlabeled data are from the same source as the anno-
tated data (i.e., the same domain, but without labels), which
can ensure the reliability of the domain knowledge as well
as the coverage of mention words. With the domain-specific
knowledge mined, the meaning of a mention in a certain do-
main can be better understood (by a model) with the support
of its relevant mentions (extracted from the self-mined KB).

4https://github.com/jeffchen2018/
review_coref

https://github.com/jeffchen2018/review_coref
https://github.com/jeffchen2018/review_coref
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et al., 2017, 2018; Joshi et al., 2019) have domi-
nated the coreference resolution research. But they
did not use external knowledge.

Conisdering CR approaches that use external
knowledge, Aralikatte et al. (2019) solved CR task
by incorporate knowledge or information in rein-
forcement learning models. Emami et al. (2018)
solved the binary choice coreference-resolution
task by leveraging information retrieval results
from search engines. Zhang et al. (2019a,b) solved
pronoun coreference resolutions by leveraging con-
textual, linguistic features, and external knowledge
where knowledge attention was utilized. However,
these works did not deal with opinionated reviews
and also did not mine or use domain-driven knowl-
edge.

In regard to CR in opinion mining, Ding and Liu
(2010) formally introduced the OAC2 task for opin-
ionated reviews, which is perhaps the only prior
study on this problem. However, it only focused on
classifying coreferences in comparative sentences
(not on all review sentences). We compare our
approach with (Ding and Liu, 2010) in Section 4.

Many existing general-purpose CR datasets are
not suitable for our task, which include MUC-
6 and MUC-7 (Hirschman and Chinchor, 1998),
ACE (Doddington et al., 2004), OntoNotes (Prad-
han et al., 2012), and WikiCoref (Ghaddar and
Langlais, 2016). Bailey et al. (2015) proposed an
alternative Turing test, comprising a binary choice
CR task that requires significant commonsense
knowledge. Yu et al. (2019) proposed visual pro-
noun coreference resolution in dialogues that re-
quire the model to incorporate image information.
These datasets are also not suitable for us as they
are not opinionated reviews. We do not focus on
solving pronoun resolution here because, for opin-
ion text such as reviews, discussions and blogs, per-
sonal pronouns mostly refer to one person (Ding
and Liu, 2010). Also, we aim to leverage domain-
specific knowledge on (unlabeled) domain-specific
reviews to help the CR task which has not been
studied by any of these existing CR works.

3 Proposed Approach

Model Overview. Our approach consists of the
following three main steps: (1) knowledge aqui-
sition, where given the (input) pair of mention m
(e.g., “a green Moonbeam”) and anaphor p (e.g.,
“it”) and the context t (i.e., the review text), we
acquire candidate knowledge involving m, denoted

Table 1: Summary of notations (non-exhaustive list)

d a domain

t a review text or context

m a mention

p an anaphor

Km (domain+general) knowledge involving m
for domain d

Kd
m domain knowledge involving m for d

Sm syntax-related phrases of m

Sp syntax-related phrases of p

Td labeled reviews in d

T d unlabeled reviews in d

as Km. Km consists of both domain knowledge
(mined from unlabeled reviews) as well as general
knowledge (compiled from existing general KBs)
(discussed in Section 3.1). Next, in (2) syntax-
based span representation, we extract syntax-
related phrases for mention m and anaphor p.
Syntax-related phrases are basically noun phrases,
verbs or adjectives that have a dependency rela-
tion5 with m (or p). For example, “bought” is
a syntax-related phrase of the mention “a green
Moonbeam” and “like” and “voice” are two syntax-
related phrases for the anaphor “it” in the example
review text in Section 1. Once the syntax-related
phrases are extracted and the candidate knowledge
is prepared form and p, we learn vector representa-
tions of the phrases and the knowledge (discussed
in Section 3.2), which are used in step-3. Finally,
in (3) knowledge-driven OAC2 model, we select
and leverage useful candidate domain knowledge
together with general knowledge to solve the OAC2
task. Figure 1 shows our model architecture. Ta-
ble 1 summarizes a (non-exhaustive) list of nota-
tions, used repeatedly in subsequent sections.

3.1 Knowledge Acquisition

Domain Knowledge Mining. Given the men-
tion m, we first split the mention into words. Here,
we only keep the words that satisfy one of the fol-
lowing two conditions6: (1) a word is a noun (de-
termined by its POS tag); (2) a word is part of a
named entity (by NER). For example, “a westclox
clock” will result in words “westclox” and “clock”.
We use the mention words as the keys to search a
domain knowledge base (KB) to retrieve domain

5We use spacy.io for dependency parsing, POS tagging
and Named Entity Recognition (NER) in our implementation.

6When only using two features of words, we already
achieve good results. More features are left for future work.

spacy.io
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Figure 1: The architecture of our knowledge-driven OAC2 model.

knowledge for the mention m.
To construct the domain KB, we use unlabeled

review data in the particular domain. Specifically,
all unlabeled sentences that contain mention words
are extracted. Next, we collect domain knowledge
for m as Kd

m, where Kd
m = {kdm,1, k

d
m,2, ...}. The

elements in Kd
m are phrases of nouns, adjectives,

and verbs co-occurring with m in the unlabeled
review sentences.

Domain Knowledge Filtering. Some domain
knowledge (i.e., co-occurring phrases) can be too
general to help reason over the mention. For ex-
ample, given mention “Moonbeam”, the verb “like”
can be related to any objects or attributes and thus,
is not a very useful knowledge for describing the
mention. To filter such unimportant phrases from
Kd

m, we use tf -idf (Aizawa, 2003) scoring.
Given mention m and a phrase k ∈ Kd

m, we
compute tf -idf score of k, denoted as tf -idfk as
given below:

tfk =
Ck

maxk′∈Kd
m
Ck′

(1)

idfk = log
|T d|

|{t′ ∈ T d : k ∈ t′}|
(2)

tf -idfk = tfk · idfk (3)

where Ck denotes the co-occurrence count of
phrase k with m in unlabeled domain reviews T d

and |·| denotes set count. We retain phrase k in
kdm, if tf -idfk ≥ ρ, where ρ is a (empirically set)
threshold value.

General Knowledge Aquisition. General
Knowledge bases like ConceptNet, WordNet, etc.

store facts as triples of the form (e1, r, e2), denot-
ing entity e1 is related to entity e2 by a relation r.
e.g., (“clock”, “UsedFor”, “set an alarm”).

To acquire and use general knowledge for men-
tion m, we first split m into words (in the same
way as we do during domain knowledge construc-
tion) and use these words as keywords to retrieve
triples such that one of the entities (in a given triple)
contains a word of m. Finally, we collect the set
of entities (from the retrieved triples) as general
knowledge for m, by selecting the other entity (i.e.,
instead of the entity involving a mention word)
from each of those retrieved triples.

3.2 Syntax-based Span Representation

Once the domain-specific and general knowledge
for mention m is acquired, we extract all syntax-
related phrases for m and anaphor p from review
text t (see “Model Overview” in Section 3). We
denote the syntax-related phrases of m and p as
Sm and Sp respectively.

We represent mention, anaphor, the syntax-
related phrases, and also the phrases of knowledge
from domain-specific and general KBs as spans
(a continuous sequence of words), and learn a vec-
tor representation for each span (we call it a span
vector) based on the embeddings of words that
compose the span. The span vectors are then used
by our knowledge-driven OAC2 model (discussed
in Section 3.3) for solving the OAC2 task. Below,
we discuss the span vector representation learning
for a given span (corresponding to a syntax-related
phrase or a phrase in KB).

We use BERT (Devlin et al., 2019) to learn the
vector representation for each span. To encode
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the words in a span, we use BERT’s WordPiece
tokenizer. Given a span x, let {xi}N1

i=1 be the output
token embeddings of x from BERT, where N1 is
the total number of word-piece tokens for span x.

BERT is a neural model consisting of stacked
attention layers. To incorporate the syntax-based
information, we want the head of a span and words
that have a modifier relation to the head to have
higher attention weights. To achieve the goal, we
adopt syntax-based attention (He et al., 2018). The
weight of a word in a span depends on the depen-
dency parsing result of the span. Note, the depen-
dency parsing of a span is different from what is
described in Section 3.1. The dependency parsing
in Section 3.1 extracts the relation between chunks
of words while here we extract relations between
single words.

An example has been shown in top left corner
of Figure 1. The head of “a green Moonbeam”
is “Moonbeam” that we want to have the highest
attention weight when computing the embedding
of the span. The distance of (“a”, “Moonbeam”)
and (“green”, “Moonbeam”) considering the depen-
dency path are both 1.

To learn the span vector vx for span x, we first
compute the attention weights bi’s for each xi, as:

fi = FFN1([xi, xhead, xi � xhead]) (4)

ai =

{
1
2li
· exp(fi), if li ≤ L

0, otherwise
(5)

bi =
ai∑N1
j=1 aj

(6)

where FFN1 is a feed-forward layer that projects
the input into a score fi, � is element-wise mul-
tiplication, [, ] is concatenation, xhead is the head
of the span, li is the distance to the head along the
dependency path, L is the attention window size.

Next, we learn the attention-based representation
of the span x, denoted as x̂ as:

x̂ =

N1∑
i=1

bi · xi (7)

Finally, we concatenate the start and end word
embeddings of the span xstart and xend, attention-
based representation x̂ and a length feature φ(x)
following (Lee et al., 2017) to learn span vector vx:

vx = FFN2([xstart, xend, x̂, φ(x)]). (8)

where FFN2 is a feed-forward layer.

3.3 Knowledge-driven OAC2 Model

The knowledge-driven OAC2 model leverages the
syntax-related phrases together with the domain
knowledge and general knowledge to solve the
OAC2 task. The model first computes three rel-
evance scores: (a) a contextual relevance score FC

betweenm and p, (b) a knowledge-based relevance
score FK between m and p, and (c) a relevance
score FSK between knowledge and syntax-related
phrases (see Figure 1) and then, these scores are
summed up to compute the final prediction score
F̂ , as shown below:

F̂ = sigmoid(FC + FK + FSK) (9)

(a) Contextual Relevance Score (FC). FC is
computed based on the context t, mention m and
anaphor p. We use BERT to encode t. Let the
output BERT embeddings of words in t be {ti}N2

i=1,
where N2 is length of t. Also, let the span vector
representations of m and p are vm and vp respec-
tively. Then, for each v ∈ {vm, vp}, we compute
cross attention between t and v as follows:

gi = FFN3([ti, v, ti � v]) (10)

wv
i =

egi∑N2
j=1 e

gj
· ti (11)

where FFN3 is a feed-forward layer.
We learn the interaction of {ti}N2

i=1 with vm and
vp to get attention-based vector representations
{wm

i }
N2
i=1 and {wp

i }
N2
i=1 for m and p respectively.

Next, we concatenate these vectors and their point-
wise multiplication for each context word, sum up
the concatenated representations and feed it to a
feed-forward layer to compute FC ∈ R1×1:

FC = FFN4(

N2∑
i=1

[wm
i , w

p
i , w

m
i � w

p
i ]) (12)

where FFN4 is a feed-forward layer.

(b) Knowledge-based Relevance Score (FK).
The OAC2 model leverages the external knowledge
to compute a relevance score FK between m and
p. Let vm and vp be the span vectors for m and
p and {vKi }

N3
i=1 be the span vectors for phrases in

Km (see Sec 3.1 and Table 1), where N3 is size
of Km. Then, we compute FK using vm, vp and
{vKi }

N3
i=1 as discussed below.

To leverage external knowledge information, we
first learn cross attention between the mention and
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the knowledge as:

hi = FFN5([v
K
i , vm, v

K
i � vm]) (13)

ci =
ehi∑N3
j=1 e

hj
(14)

where FFN5 is a feed-forward layer.
Next, we learn an attention-based representation

v̂m of mention m as:

v̂m =

N3∑
i=1

ci · vKi (15)

We now concatenate vm, vp, the attention-based
representation v̂m and learn interaction between
them to compute FK ∈ R1×1 as:

FK = FFN6([vm, vp, v̂m, vp � v̂m, vp � v̂m])

(16)

where FFN6 is a feed-forward layer.

(c) Syntax-related Phrase Relevance Score
(FSK). FSK measures the relevance between the
knowledge (i.e., phrases) in Km and the syntax-
related phrases in Sm (Sp) corresponding to m (p).

Let vKi be the span vector for ith phrase in Km

and vmi (vpi ) be the span vector for ith phrase in
Sm (Sp). Then, we concatenate these span vec-

tors row-wise to form matrices MK = vKi ‖
N3

i=1

∈ RN3×d, MSm = vmi ‖
N4

i=1
∈ RN4×d and MSp

= vpi ‖
N5

i=1
∈ RN5×d respectively, where ‖Q

i=1
de-

notes concatenation of Q elements, d is dimension
of span vector, N4 (N5) is size of Sm (Sp).

Next, we learn interaction between these matri-
ces using scaled dot attention (Vaswani et al., 2017)
as:

M̃Sm = softmax(
MSmM

T
K√

d
)MK (17)

M̃Sp = softmax(
MSpM

T
K√

d
)MK (18)

Finally, the syntax-related phrase relevance score
FSK ∈ R1×1 is computed as:

FSK = FFN8(FFN7(M̃SmM̃
T
Sp)) (19)

where FFN7 and FFN8 are two feed-forward
network layers.

Loss Function. As shown in Equation 9, given
three scores FC , FK , and FSG, we sum them up

Table 2: Dataset Statistics. #R means the number of anno-
tated reviews and #E indicates total entities that refer to objects
or attributes. P and N stand for positive and negative examples
and the values under them are the numbers of those examples.

Domain #R #E Train Dev Test
P N P N P N

alarm 100 924 647 1533 96 243 89 187
camera 100 871 632 1709 69 160 83 174
cellphone 100 938 679 1693 62 148 73 189
computer 100 1035 703 1847 86 227 112 273
laptop 100 893 641 1618 88 244 77 209

and then feed the sum into a sigmoid function to
get the final prediction F̂ . The proposed model is
trained in an end-to-end manner by minimizing the
following cross-entropy loss L:

L = − 1

N

N∑
i

[yi · log(F̂i)+ (1− yi) · log(1− F̂i)]

(20)
where, N is the number of training examples and
yi is the ground truth label of ith training example.

4 Experiments

We evaluate our proposed approach using five
datasets associated with five different domains: (1)
alarm clock, (2) camera, (3) cellphone, (4) com-
puter, and (5) laptop and perform both quantitative
and qualitative analysis in terms of predictive per-
formance and domain-specific knowledge usage
ability of the proposed model.

4.1 Evaluation Setup

Labelled Data Collection. We use the product
review dataset7 from Chen and Liu (2014), where
each product (domain) has 1,000 unlabeled reviews.
For each domain, we randomly sample 100 reviews,
extract a list of (mention, anaphor) pairs from each
of those reviews and label them manually with
ground truths. That is, given a review text and a
candidate (mention, anaphor) pair, we assign a bi-
nary label to denote whether they co-refer or not.
In other words, we view each labeled example as
a triple (u,m, p), consisting of the context u, a
mention m and an anaphor p. Considering the
review example (in Section 1), the triple (“I bought
. . . loud and long”, “a green Moonbeam”, “its”)
is a positive example, since ”a green Moonbeam”
and ”its” refers to the same entity (i.e., they are

7https://www.cs.uic.edu/˜zchen/
downloads/ICML2014-Chen-Dataset.zip

https://www.cs.uic.edu/~zchen/downloads/ICML2014-Chen-Dataset.zip
https://www.cs.uic.edu/~zchen/downloads/ICML2014-Chen-Dataset.zip
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in the same coreference cluster). Negative exam-
ples are naturally constructed by selecting m and
p from two different clusters under the same con-
text like (“I bought . . . loud and long”, “a green
Moonbeam”, “its voice”).

Next, we randomly split the set of all labeled
examples (for a given domain) into 80% for train-
ing, 10% as development, and rest 10% as test data.
The remaining 900 unlabeled reviews form the un-
labeled domain corpus is used for domain-specific
knowledge extraction (as discussed in Section 3.1).
All sentences in reviews and (mention, anaphor)
pairs were annotated by two annotators indepen-
dently who strictly followed the MUC-7 annotation
standard (Hirschman and Chinchor, 1998). The Co-
hen’s kappa coefficient between two annotators is
0.906. When disagreement happens, two annota-
tors adjudicate to make a final decision. Table 2
provides the statistics of labeled dataset used for
training, development and test for each of the five
domains.

Knowledge Resources. We used three types of
knowledge resources as listed below. The first two
are general KBs, while the third one is our mined
domain-specific KB.

1. Commonsense knowledge graph (OMCS).
We use the open mind common sense (OMCS) KB
as general knowledge (Speer and Havasi, 2013).
OMCS contains 600K crowd-sourced common-
sense triplets such as (clock, UsedFor, keeping
time). We follow (Zhang et al., 2019b) to select
highly-confident triplets and build the OMCS KG
consisting of total 62,730 triplets.

2. Senticnet (Cambria et al., 2016). Senticnet
is another commonsense knowledge base that con-
tains 50k concepts associated with affective prop-
erties including sentiment information. To make
the knowledge base fit for deep neural models, we
concatenate SenticNet embeddings with BERT em-
beddings to extend the embedding information.

3. Domain-specific KB. This is mined from the
unlabeled review dataset as discussed in Sec 3.1.

Hyper-parameter Settings. Following the pre-
vious work of (Joshi et al., 2019; Lee et al., 2018),
we use (Base) BERT8 embeddings of context and
knowledge representation (as discussed in Section
3). The number of training epochs is empirically
set as 20. We train five models on five datasets sepa-

8https://storage.googleapis.com/bert_
models/2020_02_20/uncased_L-12_H-768_
A-12.zip

rately, because the domain knowledge learned from
a certain domain may conflict with that from others.
Without loss of generality and model extensibility,
we use the same set of hyper-parameter settings
for all models built on each of the five different
domains. We select the best model setting based
on its performance on the development set, by av-
eraging five F1-scores on the five datasets. The
best model uses maximum length of a sequence
as 256, dropout as 0.1, learning rate as 3e−5 with
linear decay as 1e−4 for parameter learning, and
ρ = 5.0 (threshold for tf-idf ) in domain-specific
knowledge extraction (Section 3.1). The tuning of
the other baseline models is the same as we do for
our model.

Baselines. We compare following state-of-the art
models from existing works on CR task:

(1) Review CR (Ding and Liu, 2010): A review-
specific CR model that incorporates opinion mining
based features and linguistic features.

(2) Review CR+BERT: For a fairer comparison,
we further combine BERT with features from (Ding
and Liu, 2010) as additional features. Specifically,
we combine the context-based BERT to compute
FC(m, p) (see Section 3.3 (a)).

(3) C2f-Coref (Lee et al., 2018): A state-of-the-
art end-to-end model that leverages contextual in-
formation and pre-trained Glove embeddings.

(4) C2f-Coref+BERT (Joshi et al., 2019): This
model integrates BERT into C2f-Coref. We use its
independent setting which uses non-overlapping
segments of a paragraph, as it is the best performing
model in Joshi et al. (2019).

(5) Knowledge+BERT (Zhang et al., 2019b):
This is a state-of-the-art knowledge-base model,
which leverages different types of general knowl-
edge and contextual information by incorporating
an attention module over knowledge. General
knowledge includes the aforementioned OMCS,
linguistic feature and selectional preference knowl-
edge extracted from Wikipedia. To have a fair com-
parison, we replace the entire LSTM-base encoder
with BERT-base transformer.

To accommodate the aforementioned baseline
models into our settings, which takes context,
anaphor, and mention as input and perform binary
classification, we change the input and output of
the baseline models, i.e., the models compute a
score between mention and anaphor and feeds the
score to a sigmoid function to get a score within
[0, 1]. Note, this setting is consistently used for all

https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-12_H-768_A-12.zip
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Table 3: Performance (+ve F1 scores) of all models on all
test datasets. Here, “cam”, “com”, “lap” are the abbreviation
for “camera”, “computer”, “laptop” respectively.

Model alarm cam phone com lap average
Review CR 58.2 60.5 57.7 59.6 58.9 58.98
Review CR

67.2 69.3 67.0 68.4 66.7 67.72
+BERT
C2f-Coref 68.8 70.1 67.2 69.5 67.4 68.60
C2f-Coref

70.2 71.6 68.6 71.3 68.2 69.98
+BERT
Knowledge

72.0 73.4 71.8 72.6 70.0 71.96
+BERT
Our model 73.6 74.5 72.4 73.8 71.3 73.12

candidate models (including our proposed model).
Evaluation Metrics. As we aim to solve the
OAC2 problem, a focused coreference classifica-
tion task, we use the standard evaluation metrics
F1-score (F1), following the same setting of the
prior study (Ding and Liu, 2010). In particular, we
report positive (+ve) F1-score [F1(+)]. The average
+ve F1-score is computed over five domains.

4.2 Results and Analysis

Comparison with baselines. Table 3 reports
F1 scores of all models for each of five domains
and average F1 over all domains. We observe the
following: (1) Overall, our model performs the best
considering all five domains, outperforming the no-
knowledge baseline model C2f-Coref+BERT by
3.14%. On the cellphone domain, our model out-
performs it by 3.8%. (2) Knowledge+BERT turns
out to be the strongest baseline, outperforming the
other three baselines, which also shows the im-
portance of leveraging external knowledge for the
OAC2 task. However, our model achieves superior
performance over Knowledge+BERT which indi-
cates leveraging domain-specific knowledge indeed
helps. (3) C2f-Coref+BERT achieves better scores
than C2f-Coref and Review CR. This demonstrates
that both representation (using pre-trained BERT)
and neural architectures are important for feature
fusions in this task.

Ablation study. To gain further insight, we ab-
late various components of our model with the re-
sults reported in Table 4. For simplicity, we only
show the average F1-scores on the five domain
datasets. The results indicate how each knowledge
resource or module contributes, from which we
have the following observations.

1. From comparison Knowledge resources in Ta-
ble 4, we see that domain knowledge con-

Table 4: Performance of our model with different types of
knowledge or module removed (-). ∆ F1(+) is the perfor-
mance difference between our model and model with module
remove.

Comparison Model Avg. F1(+) ∆ F1(+)
Our model 73.12 0.00

Knowledge -OMCS knowledge 72.28 0.84
source -Domain knowledge 72.22 0.90

-Senticnet 72.82 0.30
-all knowledge 70.56 2.56

Score -context Fc 71.14 1.98
-knowledge FK 71.80 1.48
-phrase FSG 72.58 0.56

attention -syntax-based attention 72.50 0.62
+dot attention 72.96 0.16

tributes the most. General OMCS knowledge
also contributes 0.84 to the model on average,
so general knowledge is still needed. Sentic-
net contributes the least as it is more about
sentiment rather than the relatedness between
mentions. If we remove all knowledge sources
(-all knowledge), performance drop becomes
the highest which shows the importance of
leveraging external knowledge in OAC2.

2. Considering comparisons of various types of
scores in Table 4, we see that the disabling the
use of context score FC has the highest drop in
performance, showing the importance of con-
textual information for this task. Disabling the
use of knowledge scores FG and FSG also im-
pact the predictive performance of the model,
by causing a drop in performance.

3. From the comparison of attention mechanism
for span representation in Table 4, we see that,
before summing up the embedding of each
word of the span, the attention layer is nec-
essary. Note, we use the selected attention
instead of popular dot attention in (Vaswani
et al., 2017) during span representation. The
influence of the syntax-based attention layer
is slightly better than the dot attention layer.
Therefore, we use the selected attention for
better interpretability.

Qualitative Evaluation. We first give a real
example to show the effectiveness of our model
by comparing it with two baseline models C2f-
coref+BERT and Knowledge+BERT. Table 5
shows a sample in the alarm domain. Here the
major difficulty is to identify “Moonbeam” as a
“clock”. Knowledge+BERT fails due to its lack
of domain-specific knowledge. C2f-coref+BERT



1624

Table 5: A test example from alarm domain with class proba-
bility distributions by three models during prediction.

Context ...after I bought (a green Moonbeam
for myself ... potential buyer also
should know that , as with (the other
Westclox clock), (the clock) also
have (a gold band) ...

(Mention, Anaphor) (a darkgreen Moonbeam, the clock)
Domain knowledge drop, hang, clock, put, alarm, clear,

beautiful, expensive, worthwhile ...
Our model (0: 0.47, 1: 0.53)
Knowledge+BERT (0: 0.87, 1: 0.13)
C2f-coref+BERT (0: 0.79, 1: 0.21)

Table 6: An example showing the domain knowledge extrac-
tion quality of our model from laptop domain.

Mention (Domain) windows (laptop)
Extracted knowledge
(before filtering)

keep, like, product, battery, fast,
microsoft, system, upgrade, xp,
laptop..

Candidate knowledge
(after filtering by tf -idf )

microsoft, system, upgrade, xp,
laptop..

fails as well because it simply tries to infer from
contextual information only, where there is no
domain knowledge support. In contrast, with
our domain-specific knowledge base incorporated,
“Moonbeam” can be matched to the knowledge like
“clock”, “alarm”, and “hang” which are marked
with green color. So our model successfully ad-
dresses this case. In other words, in our model, not
only the mention “a green Moonbeam” but also
syntax-related phrase “a gold band” of “the clock”
will be jointly considered in reasoning. We can see
the modeling superiority of our knowledge-aware
solution. Table 6 shows the effectiveness of our
extraction module introduced in Section 3.1, es-
pecially the usage of tf -idf to filter out useless
knowledge.

5 Conclusion

This paper proposed a knowledge-driven approach
for object and attribute coreference classification
in opinion mining. The approach can automati-
cally extract domain-specific knowledge from unla-
beled data and leverage it together with the general
knowledge for solving the problem. We also cre-
ated a set of annotated opinionated review data (in-
cluding 5 domains) for object and attribute corefer-
ence evaluation. Experimental results show that our
approach achieves state-of-the-art performance.
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