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Abstract

Knowing whether a published research result
can be replicated is important. Carrying out di-
rect replication of published research incurs a
high cost. There are efforts tried to use ma-
chine learning aided methods to predict sci-
entific claims’ replicability. However, exist-
ing machine learning aided approaches use
only hand-extracted statistics features such as
p-value, sample size, etc. without utilizing re-
search papers’ text information and train only
on a very small size of annotated data without
making the most use of a large number of un-
labeled articles. Therefore, it is desirable to
develop effective machine learning aided au-
tomatic methods which can automatically ex-
tract text information as features so that we
can benefit from Natural Language Processing
techniques. Besides, we aim for an approach
that benefits from both labeled and the large
number of unlabeled data. In this paper, we
propose two weakly supervised learning ap-
proaches that use automatically extracted text
information of research papers to improve the
prediction accuracy of research replication us-
ing both labeled and unlabeled datasets. Our
experiments over real-world datasets show that
our approaches obtain much better prediction
performance compared to the supervised mod-
els utilizing only statistic features and a small
size of labeled dataset. Further, we are able to
achieve an accuracy of 75.76% for predicting
the replicability of research.

1 Introduction

Non-reproducible scientific results will mislead the
progress of science and undermine the trustworthi-
ness of the research community. In recent years, we
saw the emergence of systematic large-scale repli-
cation projects which are based on the concerns of
research credibility in the social and behavioral sci-
ences (Camerer et al., 2016, 2018; Ebersole et al.,
2016; Klein et al., 2014b, 2018; Collaboration et al.,

2015). Researchers conducted preregistered repli-
cations of hundreds of classic and contemporary
published findings in the social and behavioral sci-
ences. Unfortunately, the reported replication rates
only range from 39% to 62%. Therefore it is im-
portant to develop a confidence scoring system for
the following question:

To what extend can a research result be
reproduced?

The answer to the above question will help fa-
cilitate the policymakers as well as the general
public to better understand and digest a published
claim. As a response, for example, Defense Ad-
vanced Research Projects Agency (DARPA) has
announced a systematic confidence checking of
published claims (Russell, 2019).

Alongside the above encouraging movement, the
downside is that the average replication expense
of each research project (which often consists a
number of research studies) can go up to $500,000
(Freedman et al., 2015)1, which is hardly afford-
able to replicate each research finding, with an
exponentially increasing number of publications.

Recently, efforts have been noted to use machine
learning as a much cheaper and more efficient alter-
native to provide an informative replication predic-
tion (Dreber et al., 2019; Yang, 2018; Altmejd et al.,
2019). It has been reported that with simple ma-
chine learning models, a predicted accuracy of 71%
can be achieved. Although we should not trust or
rely on a machine-made prediction entirely, such
automatic predictions offer cheap, scalable, and
useful information for performing targeted spot-
checking and for raising a red flag towards a partic-

1“Irreproducibility also has downstream impacts in the
drug development pipeline. Academic research studies with
potential clinical applications are typically replicated within
the pharmaceutical industry before clinical studies are begun,
with each study replication requiring between 3 and 24 months
and between US$500,000 to US$2,000,000 investment”
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ular scientific claim.
Nonetheless, existing machine learning works on

replication prediction face a couple of outstanding
challenges:

• Substantial human efforts are required to ex-
tract features from the published articles, such
as p-values of the claims, effect size, author in-
formation, etc. to train a supervised machine
learning model;

• The small amount of expensive annotated
training data will limit the use of more sophis-
ticated but more accurate learning techniques
(e.g., deep neural networks based natural lan-
guage processing tools).

We aim for a method that is fully automatic in
feature generation, and that can leverage the exis-
tence of the large corpus of unlabeled (checked)
articles for boosting up the performance in predict-
ing replications.

To tackle the first challenge, we will resort to nat-
ural language processing (NLP) tools to process the
research articles to obtain meaningful text features.
Text information of research papers is important
and intuitive resource for training machine learning
models. The rich amount of structural text infor-
mation looks promising to us to help improve the
predictive performance of replication. Further, a
good understanding of text information from differ-
ent components of an article (e.g., abstract, intro-
duction, methods, experimental results, etc.) will
also be helpful for highlighting suspicious sections
of the articles for a more targeted check.

However, the training of the state-of-the-art NLP
models aligns with our second challenge that it
often relies on a massive volume of annotated train-
ing data. Due to the severely limited ground truth
annotation we have, we desire a method that lever-
ages large amounts of unlabeled research articles.
These unlabeled examples, although possibly noisy,
can provide informative features.

To make the most use of the unlabeled data, we
explore the possibility of using a weakly super-
vised approach to perform replication prediction.
The particular type of weakly supervised learning
method that we will focus on utilizes techniques
from the literature on learning from noisy labels
(Liu et al., 2012; Natarajan et al., 2013; Scott, 2015;
Van Rooyen et al., 2015; Liu and Guo, 2020). Our
high-level idea is to bootstrap the small set of la-
beled data to train a set of weak predictors which

will help us generate “artificial” and noisy labels
for the unlabeled articles. Then we will apply tools
from learning with noisy labels to improve the train-
ing with these artificially supervised examples.

We focus on two approaches to address the above
problem of learning with artificial labels. The first
approach uses efficient variational inference meth-
ods (Liu et al., 2012) to estimate the error rates of
the noisy labels. The above knowledge of error
rates allows us to perform loss correction (Natara-
jan et al., 2013) to improve the performance with
the help of an unlabeled dataset. The second ap-
proach is inspired by a recent work (Liu and Guo,
2020) that proposed a family of peer loss functions
which can perform learning with noisy labels with-
out knowing noise rates and without conducting
intermediate error rates’ estimation step.

We utilized both labeled and unlabeled datasets
to carry out the study of replication prediction. The
labeled dataset containing 399 research articles are
obtained from summarizing eight research replica-
tion projects (details will be given later). As for
the unlabeled dataset, a python crawler is imple-
mented to obtain the pdf files of 2,170 research
papers from the websites of corresponding journals.
We preprocess the files to extract text information.
Then BERT (Devlin et al., 2018) is used for tok-
enization and for obtaining word embeddings to
serve as the input features for training.

The experimental results demonstrate that i) us-
ing text information as features can improve the
performance than utilizing only pre- and hand-
extracted statistics features. The combination of
models trained on text features and statistics fea-
tures separately can obtain better performance than
separate models; and ii) our weakly supervised
methods that take advantage of unlabeled data can
significantly improve the prediction performance.
The best of our proposed methods can achieve a pre-
diction accuracy of 75.76%, as well as a 72.50%
precision, a 88.24% recall, and a 78.95% F1
score.

We summarize our contributions as follows:
(1) We propose two weakly supervised learn-
ing approaches based on text information of re-
search papers to improve the prediction accu-
racy of research replication using both labeled
and unlabeled datasets. (2) We present ex-
perimental results to validate the usefulness of
our proposed weakly supervised learning mod-
els. (3) We contribute to the community by



1466

publishing our codes and data. Please refer to
https://github.com/pkuluotianyi/PeerRRP for the
most updated codes and datasets.

2 Related Work

Replication crisis has spurred systematic large-
scale direct replication projects in the social and
behavioral sciences (Camerer et al., 2016, 2018;
Ebersole et al., 2016; Klein et al., 2014b, 2018;
Collaboration et al., 2015). Data is collected by
individual volunteers, volunteer teams, or Ama-
zon Mechanical Turk (AMT). However, direct re-
search replication is expensive and time-consuming
(Freedman et al., 2015). Machine learning serves
as a much more efficient method to conduct replica-
tion prediction. Altmejd et al. (2019) applied ML
methods on the data from four large-scale repli-
cation projects in experimental psychology and
economics and studied which variables drive pre-
dictable replication. But they used only statistics
features such as p-value, sample size, etc. and train
only on a small labeled dataset.

We hold the hypothesis that text features contain
rich information to potentially improve the perfor-
mance of replication prediction. In NLP, many
research works have been proposed for text pro-
cessing to make use of text features (Jurafsky and
Martin, 2014; Biemann and Mehler, 2014; Boroş
et al., 2018; Devlin et al., 2018).

Weakly supervised learning approaches have
been proposed to utilize both labeled and unlabeled
data (Zhou, 2018; Oliver et al., 2018; Miyato et al.,
2018). Our weakly supervised learning approaches
tie close to learning with the inaccurate supervision
(Cesa-Bianchi et al., 2011; Bylander, 1994; Scott
et al., 2013; Scott, 2015; Van Rooyen et al., 2015).
Particularly relevant to us, a surrogate loss function
is proposed in (Natarajan et al., 2013) to achieve an
unbiased estimation of the true training loss using
only noisy labels. Liu and Guo (2020) introduced
a new family of loss functions, peer loss functions,
to empirical risk minimization (ERM), for a broad
class of learning with noisy labels problems, with-
out requiring estimating the error rates of the noisy
labels.

3 Datasets

Annotated Data In our study, we obtained 399
annotated articles containing labels indicating
whether the involved research claim can be repro-
duced or not. If it can be replicated, we use the

label ‘1’ to denote it. Otherwise, the label ‘0’ is
used to represent it. There exist different defini-
tions and criteria for a claim to be replicable. Here
for the collected dataset, a claim extracted from the
article is replicable if an independent effort can pro-
duce a statistically significant effect in the original
direction as originally claimed.

The question of how we treat an article/claim
as replicable is an active research question itself
(Simonsohn, 2015). To include as many annotated
data points as possible, we adopt the most basic
binary model that defines replication success as
a “statistically significant (p-value <= 0.05) ef-
fect in the same direction as in the original study.”
(Altmejd et al., 2019)

The annotated dataset comes from eight re-
search replication projects which are the Registered
Replication Report (RRR) (Simons et al., 2014),
Many Labs 1 (Klein et al., 2014a), Many Labs 2
(Klein et al., 2018), Many Labs 3 (Ebersole et al.,
2016), Social Sciences Replication Project (SSRP)
(Camerer et al., 2018), PsychFileDrawer (Pashler
et al., 2019), Experimental Economics Replication
Project (Camerer et al., 2016), and Reproducibility
Project: Psychology (RPP) (Collaboration, 2012).

Year 2011 2012 2013 2014 Total
# of pub 240 267 243 231 981

Table 1: Distribution of published economic related pa-
pers’ number by year in the unlabeled dataset

Among 399 annotated samples, 201 samples are
labeled as ‘1’ (replicable). The remaining 198 sam-
ples are annotated as ‘0’ (non-replicable). From
the distribution of class labels, we observe that this
annotated dataset is balanced.

Unsupervised Data In addition, we deployed a
crawler to obtain an unlabeled dataset to pair with
the above annotated one. Because the published
research papers in the labeled dataset are mainly
from American Economic Review and Psychologi-
cal Science and all the other papers in the annotated
dataset are economic and psychology-related, we
use the crawler to get all 2,170 published research
papers from the websites of American Economic
Review (Jan 2011 - Dec 2014) and Psychological
Science (Jan 2006 - Dec 2012) to form our unla-
beled dataset. The number of papers crawled in the
American Economic Review website is 981 and
there are 1,189 papers from the Psychological Sci-
ence website. The distribution of papers’ number

https://github.com/pkuluotianyi/PeerRRP
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Year 2006 2007 2008 2009 2010 2011 2012 Total
# of pub 185 200 196 238 293 243 224 1189

Table 2: Distribution of published psychological related papers’ number by year in the unlabeled dataset

by year about American Economic review and Psy-
chological Science are shown in Table 1 and Table
2 respectively.

Our setting is severely imbalanced: we have a
very small amount of labeled data and a much large
amount of unlabeled ones.

Datasets # of docs Avg len Max len Min len
Train 300 8948 68998 1446
Test 99 8343 33354 3599

Unlabeled 2170 6647 28994 1260

Table 3: Number, average length, maximum length,
and minimum length of documents in different datasets

We list the average length (# of words contained),
minimum length, and maximum length information
of different datasets in Table 3.

4 Weakly Supervised Research
Replication Prediction

We introduce the pipeline of our weakly supervised
research prediction framework.

Feature Extraction Our method relies on au-
tomatically extracted text features. Specifically,
PDFMiner (Shinyama, 2014) is used to extract the
text information in the raw pdf files of the articles.
Tf-idf features are used in bag-of-words models.
BERT (Devlin et al., 2018) is used for tokeniza-
tion and obtaining word embeddings as the input
features of the sequential models. More specifi-
cally, we use “bert-base-uncased” pretrained model
from Transformers (Wolf et al., 2019) which has
12-layer, 768-hidden, 12-heads, 110M parameters
and trained on lower-cased English text.

Artificial and Noisy Label Generation Our
problem is formulated as a binary classification
to predict whether a research paper can be repli-
cated or not. We utilize five basic classifiers trained
on the labeled dataset to obtain artificial labels for
the unlabeled articles. They are five commonly
used binary classification algorithms including Lo-
gistic Regression (LR) (Peng et al., 2002), Ran-
dom Forest (RF) (Ho, 1995), Support Vector Ma-
chine (SVM) (Chang and Lin, 2011), Multilayer
Perceptron (MLP) (Goodfellow et al., 2016), and

Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997).

Suppose that we have an annotated training
dataset L := {(xi, yi)}Li=1, an unlabeled dataset
U := {xi}Ui=1 , and a test dataset T :=
{(xi, yi)}Ti=1, where xi ∈ X ⊆ Rd is a d-
dimensional vector. We have K baseline classifiers
F := {f1, f2, ..., fK : X → {0, 1}} that map each
feature vector to a binary classification outcome.
We letN = L+U , i.e., the total number of training
dataset is N .

Given the whole training data D = L ∪ U
and multiple classifiers {fj}Kj=1, we firstly train
five basic classifiers and get their predictions in
D := {(xi, ȳji )}Ni=1, j = 1, ...,K. Then we can
use aggregation rules, e.g., majority voting rule, to
obtain the noisy labels for the whole training data
Ynoise := {ȳnoisei }Ni=1.

Training with Artificially Generated Noisy La-
bels Then we can utilize two different ways to
conduct the learning with noisy labels Ynoise. De-
tails will be given in the next Section.

5 Method

In this section we present two weakly supervised
methods. The first approach is based on the error
correction proxy loss function (Natarajan et al.,
2013) and the variational inference approaches
(mean field) (Liu et al., 2012) to estimate the er-
ror rates. The two techniques jointly provide us
a bias-corrected training process to improve the
model’s robustness against noises in labels. We
name this solution as Variational Inference aided
Weakly Supervised Learning.

The second approach is built on the peer loss
approach (Liu and Guo, 2020). This approach is
particularly suitable for our application when the
label noises are unclear. In this paper, we will apply
peer loss function in the weakly supervised learn-
ing scenario for the research replication prediction
problem. We name this solution as Peer Loss aided
Weakly Supervised Learning.

5.1 Variational Inference aided Weakly
Supervised Learning
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Algorithm 1 Variational Inference aided Weakly
Supervised Learning

Require:
Input:
D = {(x1, y1), ..., (xN , yN )}: training data
L = {(x1, y1), ..., (xL, yL)}: labeled data
U = {x1, ..., xU}: unlabeled data
T = {(x1, y1), ..., (xT , yT )}: test data
F = {f1, ..., fK}: classifiers

Ensure:
1: Train K classifiers (F ) on the labeled training

data L.
2: for j = 1 to K do
3: for i = 1 to N do
4: Compute ȳji using j-th basic classifier.
5: end for
6: end for
7: Aggregate above labels into {ȳnoisei }Ni=1 and

estimate the error rates according to mean field
method described in (Liu et al., 2012).

8: Train the LSTM model using the proxy loss
function mentioned in Section 5.1 with the es-
timated error rates in line#7 as the inputs.

9: for t = 1 to T do
10: Output prediction.
11: end for

We start with using the five basic classifiers (LR,
RF, SVM, MLP, and LSTM) trained on the anno-
tated dataset of small size to generate the noisy la-
bels for the whole training data respectively. These
noisy labels will then be aggregated using a varia-
tional procedure (Liu et al., 2012), which we repro-
duce below:

Denote by µi as the probability of different
class labels for the i-th train sample, ωj as the
weight or ability of the j-th classifier, α and β are
the hyperparameters, δij = 1[ȳji = ȳnoisei ], and
g is a function to calculate the error rates using
{ȳemi }Ni=1, ω̄j . µi and ωj are firstly estimated using
the Expectation-Maximization (EM) algorithms.
We then obtain EM predictions ȳemi based on the
above estimated µi and ωj . ȳemi at the final step
will serve as our noisy label ȳnoisei . The final step
is to estimate error rates

σ0 := P (ȳnoisei = 1|yi = 0)

and
σ1 := P (ȳnoisei = 0|yi = 1)

by using ȳemi as the proxy for the ground truth label.
The procedure is summarized in Algorithm 2. More

detailed explanation are described in (Liu et al.,
2012).

Algorithm 2 Aggregation and Error Rates
1: Update µi :

µi(zi) =
∏
j∈K

ω̄
δij
j (1− ω̄j)1−δij

2: Update ω̄j : ω̄j =
∑

i∈N µi(ȳ
j
i )+α

N+α+β
3: EM Predictions : ȳemi = argmaxz µi(zi)
4: Error rates :

σ0 =
|i : ȳemi = 0, ȳnoisei = 1|

|i : ȳemi = 0|

σ1 =
|i : ȳemi = 1, ȳnoisei = 0|

|i : ȳemi = 1|

Finally, we use an LSTM neural network model
with proxy loss function as shown in (Natarajan
et al., 2013) to conduct the training. The definition
of proxy loss function is as follows:

N∑
i=1

(1− σ1−ypi )`(ypi , ȳ
noise
i )− σypi `(1− y

p
i , ȳ

noise
i )

1− σ1 − σ0
,

where in above `(ypi , ȳ
noise
i ) is a standard cross

entropy loss function where ypi is the i-th sam-
ple’s real-value prediction of final LSTM model
and ȳnoisei is the corresponding noisy label.

The procedure is summarized in Algorithm 1.

5.2 Peer Loss aided Weakly Supervised
Learning

Variational inference (VI) aided weakly supervised
learning method requires estimating the error rates.
This additional step of estimation may introduce
estimation errors that can affect the final model’s
performance. Liu and Guo (2020) provided an
alternative, peer loss, to deal with noisy labels that
does not require an additional estimation step for
the noise rates. We propose peer loss (PL) aided
weakly supervised learning method.

Similar to the VI approach, we firstly train five
basic classifiers on the annotated dataset of small
size to provide the noisy supervisions for the whole
training data Ynoise := {ȳnoisei }Ni=1, as mentioned
in Section 4 via a simple majority vote.

For each training sample (xi, ȳ
noise
i ), we ran-

domly draw another two samples

Peer Samples: (xip1 , ȳ
noise
ip1

), (xip2 , ȳ
noise
ip2

)
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such that ip1 6= ip2 and ip1, i
p
2 6= i.

(xip1 , ȳ
noise
ip1

), (xip2 , ȳ
noise
ip2

) are the i-th data’s
peer samples. Then we calculate peer loss function
as shown in (Liu and Guo, 2020). The definition
of total peer loss Lpeer(Yp,Ynoise) is given as
follows:

N∑
i=1

`(ypi , ȳ
noise
i )− α · `(yp

ip1
, ȳnoiseip2

)

where `(ypi , ȳ
noise
i ) is a standard cross entropy loss

function where ypi is the i-th sample’s real-value
prediction of final LSTM model and ȳnoisei is the
corresponding noisy label. α is a hyperparameter
that we will tune with.

We use an LSTM neural network model with
the above defined peer loss function and train the
model. The procedure is further illustrated in Algo-
rithm 3.

Algorithm 3 Peer Loss aided Weakly Supervised
Learning

Require:
Input:
D = {(x1, y1), ..., (xN , yN )}: training data
L = {(x1, y1), ..., (xL, yL)}: labeled data
U = {x1, , ..., xU}: unlabeled data
T = {(x1, y1), ..., (xT , yT )}: test data
F = {f1, ..., fK}: classifiers

Ensure:
1: Train K classifiers (F ) on the labeled training

data L.
2: for j = 1 to K do
3: for i = 1 to N do
4: Compute ȳji using j-th basic classifier.
5: end for
6: end for
7: Compute {ȳnoisei }Ni=1 using majority rule.
8: for i = 1 to N do
9: Construct {(xi, ȳnoisei ), (xip1 , ȳ

noise
ip2

)}.
10: end for
11: Create noisy training dataset:
Dnoise = {(xi, ȳnoisei ), (xip1 , ȳ

noise
ip2

)}Ni=1.
12: Train the LSTM model using peer loss function

as shown in Section 5.2 on Dnoise.
13: for t = 1 to T do
14: Output prediction.
15: end for

5.3 Other Methods

To complete our analysis, we also take an
off-the-shelf semi-supervised learning technique
DIVIDEMIX (Li et al., 2020). It is a broad litera-
ture of methods proposed in semi-supervised learn-
ing and we chose the most recent and robust ap-
proach. DIVIDEMIX is a semi-supervised method
which trains two networks simultaneously and the
training dataset is dynamically divided into a la-
beled dataset and an unlabeled dataset in each iter-
ation. We adapt the setting of DIVIDEMIX to ours
to serve as a baseline comparison. DIVIDEMIX
can benefit from the unlabeled data but they do not
use bias-corrected loss function which is different
from our methodology.

6 Experiments

In this section, we present our experimental results
and findings and offer discussions.

6.1 Experimental Setup

We have 399 labeled and 2,170 unlabeled samples.
Randomly selected 300 (150:1;150:0) labeled and
2,170 unlabeled samples are considered as the train-
ing dataset. We test our proposed framework on
the remaining 99 (51:1;48:0) labeled replication
projects.

We consider both text and statistics features of
research papers. p-value, effect size, sample size
are utilized as statistics features. As for the text in-
formation, Tf-idf and word embeddings (obtained
by BERT) are used as the input features of bag-of-
words and sequential models respectively. Using
BERT helped us obtain better context-aware word
embedding features so that we could improve the
classification accuracy. A published BERT pre-
trained model (“bert-base-uncased”2) is utilized as
the embedding layer of LSTM model. “Bert-base-
uncased” is a pretrained model on English language
using a masked language modeling objective and
its vocabulary size is 30,522. We set the maximum
length of documents to 10,000 in the LSTM model
because the average length of all the documents in
the labeled dataset is about 10,000.

Since the text features and statistics feature are
not compatible with each other, we will train mod-
els on these two sets of features separately. But we
also try combining the results of these two sets of
models to further boost up the prediction perfor-

2https://huggingface.co/bert-base-uncased
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Model Train Setting Test Accuracy (Text) Test Accuracy (Text + Statistics)
LR 300 (L) 57.58% (57/99) 58.59% (58/99)
RF 300 (L) 51.52% (51/99) 52.53% (52/99)

SVM 300 (L) 58.59% (58/99) 60.61% (60/99)
MLP 300 (L) 59.60% (59/99) 60.61% (60/99)

LSTM 300 (L) 61.62% (61/99) 63.64% (63/99)
LSTM 300 (L) + 2,170 (U) 61.62% (61/99) 63.64% (63/99)

DIVIDEMIX 300 (L) + 2,170 (U) 62.63% (62/99) 63.64% (63/99)
VI 300 (L) + 2,170 (U) 66.67% (66/99) 67.68% (67/99)
PL 300 (L) + 2,170 (U) 71.72% (71/99) 75.76% (75/99)

Table 4: Comparison on Train setting, Test Accuracy (Text), and Test Accuracy (Text + Statistics) between different
eight trained models. VI is our variational inference based method, and PL is our peer loss based approach. 300
(L) means that 300 labelled dataset are used to train. 300 (L) + 2,170 (U) means that 300 labelled and 2,170 dataset
are used to train.

Model Precision Recall F1
LR 61.90% 50.98% 55.91%
RF 54.05% 39.22% 45.45%

SVM 63.04% 56.86% 59.79%
MLP 65.00% 50.98% 57.14%

LSTM 70.27% 50.98% 59.09%
DIVIDEMIX 65.11% 54.90% 59.57%

VI 72.50% 56.86% 63.74%
PL 71.43% 88.24% 78.95%

Table 5: Comparison on Precision, Recall, and F1 be-
tween different approaches (Setting: Text + Statistics)

mance. 3 A summation of their prediction proba-
bilities will be used.

6.2 Results

The results of text only and text + statistics are
reported in Table 4. From this table, we first ob-
serve that the ensemble models (combining text and
statistics) outperform the ones trained only on text
features. This suggests that the statistics feature are
complementary to text feature.

We report that LR, RF, and SVM models (non-
deep learning) trained using only statistics features
are only able to obtain a 54.55%, 50.51%, and
56.57% test accuracy respectively. Therefore our
experiments confirm that the performance of model
training on text features is better.

We compare eight methods LR, RF, SVM, MLP,
LSTM, DIVIDEMIX (Li et al., 2020), VI (our vari-
ational inference based method), and PL (our peer
loss based method). The first five models are com-

3In the combination, the model using only statistics fea-
tures is fixed to SVM since it has the best performance.

monly used binary classification algorithms and
they are trained only on 300 annotated data in-
stances. VI and PL return the best performance
and the result shows that our proposed methods
consistently outperform other models. Among our
two proposed approaches, PL obtains better per-
formance and it reaches 75.76% accuracy. This is
evidence to us that the PL approach works better
in handling the noise; on the other hand, likely ad-
ditional errors were introduced to VI during the
process of estimating the error rates.

We also trained LSTM on both labeled and unla-
beled datasets but with artificially provided labels.
We observe the same performance as training only
on the labeled dataset. It shows that the prediction
performance cannot be improved if we do not use
a noise-resistant procedure to correct the biases in
the artificially provided labels.

The experimental results on Precision, Recall,
and F1 score for eight models are also reported in
Table 5. Our weakly supervised methods achieved
the best performances consistently across different
measures.

6.3 Ablation Study on Feature Importance
for Research Replication

We explore which features are more indicative
of an article’s reproducibility. We perform the
with/without experiments to compare the perfor-
mance in different settings so that it can help us
understand which features are more important in
predicting replication.

The papers in our dataset contain different sec-
tions including title, authors, abstract, introduction,
method, experiment, discussion, conclusion, ref-
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Model Whole text w/o Abs + Intro w/o Method + Experiment w/o Dis + Con + Ref + App
LR 57.58% (57/99) 54.55% (54/99) 51.52% (51/99) 57.58% (57/99)
RF 51.52% (51/99) 45.45% (45/99) 48.48% (48/99) 51.52% (51/99)

SVM 58.59% (58/99) 52.53% (52/99) 48.48% (48/99) 51.52% (51/99)
MLP 59.60% (59/99) 54.55% (54/99) 48.48% (48/99) 58.59% (58/99)

LSTM 61.62% (61/99) 58.59% (58/99) 42.42% (42/99) 60.61% (60/99)

Table 6: Accuracy comparison between different features on the test dataset

Donors tend to avoid charities that dedicate a high percentage of expenses to administrative and fundraising costs, limiting the
ability of nonprofits to be effective. We propose a solution to this problem: Use donations from major philanthropists to cover
overhead expenses and offer potential donors an overhead-free donation opportunity. A laboratory experiment testing this
solution confirms that donations decrease when overhead increases, but only when donors pay for overhead themselves. In a
field experiment with 40,000 potential donors, we compared the overhead-free solution with other common uses of initial
donations. Consistent with prior research, informing donors that seed money has already been raised increases donations, as
does a $1:$1 matching campaign. Our main result, however, clearly shows that informing potential donors that overhead costs
3 are covered by an initial donation significantly increases the donation rate by 80% (or 94%) and total donations by 75%
(or 89%) compared with the seed (or matching) approach.

Table 7: Red color highlights words having positive weights and the absolute value is larger than 0.1. Blue color
highlights words having negative weights and the absolute value is larger than 0.1. Classification result of Logistic
Regression for this paper is Non-replicable (Wrong)

Donors tend to avoid charities that dedicate a high percentage of expenses to administrative and fundraising costs, limiting the
ability of nonprofits to be effective. We propose a solution to this problem: Use donations from major philanthropists to cover
overhead expenses and offer potential donors an overhead-free donation opportunity. A laboratory experiment testing this
solution confirms that donations decrease when overhead increases, but only when donors pay for overhead themselves. In a
field experiment with 40,000 potential donors, we compared the overhead-free solution with other common uses of initial
donations. Consistent with prior research, informing donors that seed money has already been raised increases donations, as
does a $1:$1 matching campaign. Our main result, however, clearly shows that informing potential donors that overhead costs
3 are covered by an initial donation significantly increases the donation rate by 80% (or 94%) and total donations by 75%
(or 89%) compared with the seed (or matching) approach.

Table 8: Red color highlights words having positive weights and the absolute value is larger than 0.15. Blue colors
highlight words having negative weights and the absolute value is larger than 0.15. Classification result of Peer
Loss for this paper is Replicable (Correct)

erence, and appendix. We consider each section
as a meta feature. The first set of features is ti-
tle + authors + abstract + introduction, comprising
the summary of this paper. The second set of fea-
tures is methods + experiments which describe the
details of the methods utilized in the paper and
the effectiveness of the methods. The third set of
features is discussion + conclusion + reference +
appendix which consist the general conclusion and
supplementary materials of this paper.

Experiments’ results are reported in Table 6. We
make several observations:
• Training using the entire body of text returns

the best performance. This implies the neces-
sity/informativeness of each component of an
article.

• Removing the abstract and introduction leads to
decreased performance but the reduction is not
significant. Our conjecture is that the first set
of features contains the summary of the whole

paper, but it lacks details of methods and experi-
ments.

• Cutting off the ending set of features (discus-
sion+conclusion+reference+appendix) results in
almost the same performance as the all text set-
ting. This is primarily because the information in
the third set of features has already been covered
in the first set of features or is supplementary.

• Removing method+experiment leads to a signif-
icant reduction of testing accuracy. We conjec-
ture this is because the second set of features
contains the core details.
In summary, we found that the methods and ex-

periments sections are more important than other
sections.

6.4 Case Study
We showed two samples which have the same text
but have different classification results with two
different classifiers. The paragraph is selected from
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the research paper “Avoiding overhead aversion in
charity” published in Behavioral Economics. This
article has been verified to be replicable. The goal
of this case study is to provide an intuitive view
about how the classifiers work and their ability to
identify relevant contexts.

The classification result of LR classifier is non-
replicable which is wrong. Since our text features
are Tf-idf, there is a weight coefficient for each
word in LR classifier. We highlight the words with
larger weights in Table 7. As for the PL classifiers,
its classification result is Replicable (Correct). We
highlight the words with larger weights in Table
8. Because PL uses a neural network to train the
model, there is a corresponding node in the input
layer for each word. Each node has multiple links
to the hidden layer and every link has a weight coef-
ficient. For each code, we calculate the summation
of all the weights. We do observe evidence that
the PL classifier is able to capture more relevant
keywords such as charity, donors, overhead, signif-
icantly, etc. This study demonstrates the possibility
of using our works to identify the keywords or key
paragraphs to spot-check an article.

7 Discussion

In this paper, we used two fields of corpus (“eco-
nomic review” and “psychological science”) to
train our model together because both of them
are social sciences that rely heavily on quantita-
tive methodologies (e.g., survey, experiments) and
draw conclusions based on statistics. Thus, they
share the same definition of replicability such that
whether the same statistical findings (e.g., effect
size, p-value) can be reproduced in replications fol-
lowing the same methodological procedure with
different samples. The same methodologies are
also widely used in empirical sciences (e.g., lab ex-
periments in Biology and Medicine) which demand
replicability in the same sense and also follow the
same format in reporting their procedures and find-
ings. Thus, our proposed methods should also work
in the contexts mentioned above.

8 Conclusion

The paper studies the possibilities of using weakly
supervised learning methods based on text infor-
mation of research papers to improve the predic-
tion accuracy of research replication using a small
amount of labeled data and a large amount of un-
labeled data. Our experiments show that our ap-

proaches successfully improved prediction perfor-
mance compared to the supervised models utilizing
only statistic features and a small size of labeled
dataset. Our approach can also be generically ex-
tended to other weakly supervised NLP.

Our study has limitations. First of all, our sam-
pling of the unsupervised articles is not ideal. As
a next step, we will include a more diverse and
bigger pool of representative articles into our study.
Our method replied on BERT for feature extraction,
which remains largely as a “blackbox” processor.
In the future, we plan to explore other advanced
NLP techniques such as Named Entity Recogni-
tion, Relation Extraction, etc. to help us identify
more explainable features. This information will
help facilitate the human evaluation of a research
claim’s replicability.
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