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Abstract

The need for the annotated training dataset
on which data-hungry machine learning algo-
rithms feed has increased dramatically with ad-
vanced acclaim of machine learning applica-
tions. To annotate the data, people with do-
main expertise are needed, but they are sel-
dom available and expensive to hire. This
has lead to the thriving of crowdsourcing
platforms such as Amazon Mechanical Turk
(AMT). However, the annotations provided by
one worker cannot be used directly to train
the model due to the lack of expertise. Ex-
isting literature in annotation aggregation fo-
cuses on binary and multi-choice problems. In
contrast, little work has been done on complex
tasks such as sequence labeling with imbal-
anced classes, a ubiquitous task in Natural Lan-
guage Processing (NLP), and Bio-Informatics.
We propose OPTSLA, an Optimization-based
Sequential Label Aggregation method, that
jointly considers the characteristics of sequen-
tial labeling tasks, workers reliabilities, and
advanced deep learning techniques to conquer
the challenge. We evaluate our model on
crowdsourced data for named entity recogni-
tion task. Our results show that the proposed
OPTSLA outperforms the state-of-the-art ag-
gregation methods, and the results are easier
to interpret.

1 Introduction

Crowdsourcing (Howe, 2008) is a popular platform
to annotate massive corpora inexpensively. It has
bred lots of interest in machine learning and deep
learning tasks. However, when workers provide
annotations, the results may be noisier comparing
with labels provided by experts. Thus, it becomes
essential to conduct truth inference from the noisy
annotations.

One common annotation aggregation approach
is Majority Voting (MV) (Lam and Suen, 1997), in

which annotation with the highest number of occur-
rences is deemed as truth. Another naive approach
is to regard an annotation as correct if a certain
number of workers provide the same annotation.
The concern with these methods is that they as-
sume all workers are of the same quality, which is
usually invalid in practice. In this paper, we study
the annotation aggregation problem for sequential
labeling tasks, a common NLP task.

Many existing crowdsourcing label aggregation
methods may suffer from performance loss because
they assume that data instances are independent
(Zheng et al., 2017). New approaches are recently
proposed to handle the particular characteristics
of sequential labeling tasks, where tokens in one
sentence have complex dependencies (Rodrigues
et al., 2014; Simpson and Gurevych, 2019; Nguyen
et al., 2017). In this line of approaches, proba-
bilistic models are adopted to model the workers’
labeling behavior and to model the dependencies
between adjacent tokens. There are some draw-
backs to the probabilistic models. First, they have
strong statistical assumptions when modeling the
sequence annotations, limiting the flexibility of the
models. Second, these models need to infer com-
plex parameters, making it hard to interpret the
relations between worker’s quality and token’s true
labels. Third, these aggregation methods can not
fully unleash the power of deep learning in sequen-
tial labeling tasks.

To address these challenges, we propose an opti-
mization framework to improve aggregation perfor-
mance. Our method OPTSLA estimates workers’
reliability and models the label dependencies to
infer the true labels from noisy annotations. OPT-
SLA handles complex sequential label aggrega-
tion problem with fewer parameters comparing the
state-of-the-art and produces easy-to-understand
results.

We further incorporate the state-of-the-art deep
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learning approach into OPTSLA, where the deep
learning component and the aggregation compo-
nent can maturely enhance each other. To ensure
high-quality training data, OPTSLA chooses sen-
tences with high confidence from the aggregation
component. The deep learning model is incremen-
tally trained with the iteratively updated aggrega-
tion results.

2 Related Works

Data aggregation and label inference tasks have
received lots of attention over the past decade, and
many methods are developed to handle various
challenges (Li et al., 2016; Zheng et al., 2017).
Earlier works such as (Dawid and Skene, 1979;
Yin et al., 2008; Snow et al., 2008; Whitehill et al.,
2009; Groot et al., 2011) proposed to model the
worker qualities and label inference using statisti-
cal methods. Later, optimization-based methods
are proposed (Zhou et al., 2012; Li et al., 2014). In-
tensive experiments in many applications and tasks
have shown that these methods generally outper-
form MV, which indicates that the worker qualities
estimation can play an essential role in label infer-
ence. However, in these methods, the annotation
instances are assumed to be independent.

More recently, methods are developed to han-
dle various types of correlations among annotation
instances. For example, methods in (Meng et al.,
2016; Yao et al., 2018; Zhi et al., 2018) are pro-
posed to handle the spatial-temporal dependencies
among instances, and methods in (Rodrigues et al.,
2014; Nguyen et al., 2017; Simpson and Gurevych,
2019) are proposed to handle the sequential label-
ing tasks in NLP, which are more related to this
paper. Rodrigues et al. (Rodrigues et al., 2014) pro-
posed a probabilistic approach using Conditional
Random Fields (CRF) to model the sequential an-
notations. In this model, the worker’s reliability is
modeled by his/her F1 score, but only one worker is
assumed to be correct for any instance. Nguyen et
al. relaxed the assumption and proposed a hidden
Markov model (HMM) extension in (Nguyen et al.,
2017). This model uses J parameters per worker
to model their reliabilities, where J is the num-
ber of classes. Recently, Simpson et al. (Simpson
and Gurevych, 2019) proposed a fully-Bayesian
approach, where J × J × J parameters are used to
model workers’ reliabilities.

The three models mentioned above are proba-
bilistic models with significantly more parameters

to tune and are harder to interpret than optimization-
based methods (Zheng et al., 2017). Moreover, the
existing methods do not fully unleash the power
of deep learning approaches in sequential labeling
tasks. In this paper, we propose an optimization-
based aggregation method to address the inter-
pretability challenge, and further include the deep
learning module to boost the performance.

3 Methodology

The sequential label aggregation task aims to com-
bine the annotations provided by different work-
ers to infer the ground truth sequential labels.
In this section, we describe our approach, an
optimization-based sequential label aggregation
method (OPTSLA), which aggregates multiple
workers’ annotations with deep learning results by
estimating the reliability of workers and modeling
the dependencies among tokens in the sentences.

3.1 OPTSLA

We first introduce the notations. Suppose m work-
ers (indexed by j) are hired to annotate s sentences
(indexed by k) with total n tokens in the corpus.
Let ik indicate the i-th token in the k-th sentence.
yjik is a one-hot vector that denotes the annotation
given by the j-th worker on the i-th token in the
k-th sentence. y∗ik is the inferred aggregation label
for the corresponding token. Each worker has a
weight parameter wj to reflect his/her annotation
quality, and W = {w1, w2, ..., wm} refers to the
set of all worker weights. A higher weight implies
that the worker is of higher reliability.

Our goal is to minimize the overall weighted loss
of the inferred aggregation labels y∗ik to the reliable
workers’ annotations yjik , deep learning predictions
ŷ∗ik , and the loss of inconsistencies in sequential
labels. Mathematically, we formulate the aggre-
gation problem as an optimization problem with
respect to set of worker weightsW , the weight of
deep learning model wdl, aggregated annotation
y∗ik , and the deep learning parameters θ shown in
Eq (1).

min f(W, wdl, {y∗ik}
n
ik=1,θ) =∑

j

wj

∑
k

ξ(y∗k)
∑
ik

H(yjik , y
∗
ik )

+ wdl

∑
k

ξ(y∗k)
∑
ik

H(y∗ik , ŷ
∗
ik )

−
∑
j

|{yjik}ik | log(wj) + n log(wdl)

+
∑
ik

(g(y∗ik−1, y
∗
ik ) + g(y∗ik , y

∗
ik+1)), (1)
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where H(·, ·) is the cross entropy loss function,
ξ(y∗k) is the confidence level of the k-th sentence,
|{yjik}ik | refers to the number of annotations pro-
vided by worker j, and g(., .) is a loss function
to maintain the consistency between tokens label.
More specifically, ξ(y∗k) = 1

lk

∑
ik
margin(y∗ik),

where lk is the number of tokens in sentence k and
margin(y∗ik) is the probability difference between
the two most likely labels of y∗ik .

In Eq(1),
∑

j wj

∑
k ξ(y

∗
k)

∑
ik
H(yjik , y

∗
ik
) is the

weighted cross-entropy loss between the inferred
aggregation labels and the workers’ annotations.
The loss is adjusted by confidence measurement
of (y∗k). Intuitively, if a worker is more reliable
(i.e., wj is high) and the annotations are agreed
with high confidence, high penalty will be received
if his/her annotations are quite different from the
inferred aggregation labels. In order to minimize
the objective function, the inferred aggregation la-
bels y∗ik will rely more on the workers with high
weights.

The term wdl

∑
k ξ(y

∗
k)

∑
ik
H(y∗ik , ŷ

∗
ik
) is the

weighted cross-entropy loss between y∗ik and the
predicted labels ŷ∗ik from a trained deep learning
model, wherewdl is the reliability of the deep learn-
ing model. In our model, the deep learning model
is essentially treated as an additional worker. The
training of the deep learning model is discussed in
Section 3.4.

The term
∑

j |{y
j
ik
}ik | log(wj)+n log(wdl) is a con-

straint to ensure that the calculated weights are
positive. The final term

∑
i g(y

∗
i−1, y

∗
i , y
∗
i+1) is a

loss function which gives penalties if the inferred
aggregation labels is not consistent with the sequen-
tial label rules. One simple example of g(·, ·) is

g(y∗ik−1, y
∗
ik
) =

{
0, if P (yik |yik−1) > 0.

1, Otherwise.
.

(2)
This function will give 0 loss if the sequence of
y∗ik−1, y

∗
ik

is valid according to sequential label
rules, and 1 if the sequence is invalid. Taking
NER task as an example, P (yik = ’I-LOC’|yik−1 =

’B-PER’) = 0, so g(y∗ik−1 = ’I-LOC’, y∗ik = ’B-PER’) =

1. Therefore in g(y∗ik−1, y
∗
ik
) + g(y∗ik , y

∗
ik+1), both

y∗ik−1 and y∗ik+1 are considered.
The inferred aggregation labels y∗ik , workers

weightsW and wdl, and the deep learning model
are learned simultaneously by optimizing the Eq
(1). To solve the problem, we adopt the block coor-
dinate descent method (Tseng, 2001), which will

keep reducing the value of the objective function.
To minimize the objective function in Eq (1), we
iteratively conduct the following three steps.

3.2 Workers’ Weight Update
We initialize all the workers with equal weights. To
update weights in each iteration, we treat the other
variables as fixed. Then

W ←− argmin
W

f(y∗ik ,W,θ). (3)

W has closed form solution by taking differentia-
tion of Eq (1) with respects toW . The solution is
shown as follows

wj =
|{yjik}ik |∑

k ξ(y
∗
k)

∑
ik
H(yjik , y

∗
ik
)
. (4)

wdl is updated similarly.

3.3 Aggregated Annotation Update
In the second step, once the workers’ weights are
updated, the inferred aggregation labels y∗ik are
updated to minimize Eq (1) as follows.

argmin
y∗
ik

(
∑
j

wj

∑
k

ξ(y∗k)
∑
ik

H(yjik , y
∗
ik )

+wdl

∑
k

ξ(y∗k)
∑
ik

H(y∗ik , ŷ
∗
ik ))

+
∑
ik

(g(y∗ik−1, y
∗
ik ) + g(y∗ik , y

∗
ik+1)). (5)

This function does not have a closed-form solu-
tion. In fact, for general label consistency loss
function g(·, ·), it might be non-trivial to solve Eq
(5) as variables are correlated. Therefore, we apply
the gradient descent method to calculate y∗ik while
fixing all other variables.

3.4 Incremental Deep Learning
With updated aggregation results, we update the
deep learning model. To maintain a high quality
model, we select sentences with high ξ({y∗k}) (i.g.,
ξ({y∗ik}) >0.9) as training data. Since y∗ik is up-
dated iteratively, the training data change as well.
However, the re-train of the deep learning model
can be time consuming. Therefore, we adopt the
incremental deep learning approach (Sarwar et al.,
2019) to improve algorithm efficiency.

3.5 Class Priority (ρ)
Many sequential labeling tasks have class imbal-
ance problem. For example, in the NER task, “O”
will dominate the entity annotations. To handle
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this problem, class priorities (ρ’s) can be used to
re-weight the classes. A higher ρ will increase the
weight for entity labels when calculating y∗ik .

4 Experiments.

Datasets. We use real-world data to demonstrate
the effectiveness of the proposed method OPTSLA.
NER dataset (Sang and De Meulder, 2003) 1 con-
sists of 5985 sentences and 47 workers are hired to
identify the named entities in the sentences and an-
notate them as persons, locations, organizations, or
miscellaneous. To make the task more challenging,
we use 4515 sentences where workers had conflict-
ing annotations, and for comparison we choose
3466 sentences to evaluate, which is the same as
test set for NER dataset. 2

To evaluate the proposed OPTSLA, we compare
the span level precision, recall, and F1 score3 of the
inferred aggregation labels with three state-of-the-
art baselines methods HMM-crowd (Nguyen et al.,
2017), CRF-MA (Rodrigues et al., 2014), and BSC-
seq result comes from (Simpson and Gurevych,
2019). For OPTSLA, Convolutional Neural Net-
work (CNN) is employed as the deep learning com-
ponent for the NER dataset. To evaluate the ef-
fect of the deep learning module, we also compare
OPTSLA without the deep learning component,
denoted as OPTSLA (W/O DL).

The results are shown in Table 14. It is clear that
the proposed OPTSLA method outperforms state-
of-the-art baselines methods. The results show that
the deep learning component can indeed enhance
aggregation performance. H(·, ·) and ξ({y∗ik}i)
help in predicting worker reliability properly which
in turn help in aggregation. This is because that
OPTSLA only uses sentences with high ξ({y∗ik})
for training, the deep learning model is trained
properly.

As the worker’s reliability estimation is the key
to obtain high-quality aggregation results, we fur-
ther show the weights estimated for workers with
respect to their actual F1 scores in Figure 1. It can
be observed that there is a strong positive correla-

1Dataset can be found on http://amilab.dei.uc.
pt/fmpr/crf-ma-datasets.tar.gz

2All codes, experiment scripts, datasets, and results are in
a public repository https://github.com/NasimISU/
OptSLA

3https://github.com/allenai/allennlp/
tree/master/allennlp

4The results for CRF-MA and HMM-crowd come from
(Nguyen et al., 2017), and BSC-seq results come from (Simp-
son and Gurevych, 2019)

Table 1: Performance Comparison

Prec. Rec. F1
MV 79.9 55.3 65.4
CRF-MA 80.29 51.20 62.53
HMM-crowd 77.40 72.29 74.76
BSC-seq 80.3 74.8 77.4
OPTSLA (W/O DL) 76.61 74.14 75.36
OPTSLA 79.42 77.59 78.49

tion between worker weights and their actual F1
scores. Because OPTSLA uses one parameter for
each worker, the results are more straightforward
to interpret and justify comparing with the baseline
methods.

We observe that OPTSLA converges quickly.
The algorithm stops when no more sentences can
be added to the training set. Figure 2 illustrates
the size of the training dataset with respect to the
number of iterations.

Figure 1: Worker weights w.r.t. their F1 scores

Figure 2: Training size w.r.t. iterations

5 Conclusion and Future Works

In this paper, we propose an innovative
optimization-based approach OPTSLA for
sequential label aggregation problem. Our model
jointly considers different factors in the objective
function, including the workers’ annotations,
workers’ reliability, the deep learning model, and
the characteristics of sequential labeling tasks.
Our experimental results illustrate that OPTSLA
outperforms the state-of-the-art sequential label
aggregations methods, such as CRF-MA, HMM-
Crowd, and Bayesian Sequence Combination

http://amilab.dei.uc.pt/fmpr/crf-ma-datasets.tar.gz
http://amilab.dei.uc.pt/fmpr/crf-ma-datasets.tar.gz
https://github.com/NasimISU/OptSLA
https://github.com/NasimISU/OptSLA
https://github.com/allenai/allennlp/tree/master/allennlp
https://github.com/allenai/allennlp/tree/master/allennlp
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(BSC) in terms of F1 score. For the future
work, we will evaluate more factors such as the
task assignment that may affect the aggregation
performance from the deep learning model and the
workers’ behaviors.
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