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Abstract

We present FELIX – a flexible text-editing ap-
proach for generation, designed to derive max-
imum benefit from the ideas of decoding with
bi-directional contexts and self-supervised pre-
training. In contrast to conventional sequence-
to-sequence (seq2seq) models, FELIX is effi-
cient in low-resource settings and fast at in-
ference time, while being capable of model-
ing flexible input-output transformations. We
achieve this by decomposing the text-editing
task into two sub-tasks: tagging to decide
on the subset of input tokens and their or-
der in the output text and insertion to in-fill
the missing tokens in the output not present
in the input. The tagging model employs a
novel Pointer mechanism, while the insertion
model is based on a Masked Language Model
(MLM). Both of these models are chosen to
be non-autoregressive to guarantee faster in-
ference. FELIX performs favourably when
compared to recent text-editing methods and
strong seq2seq baselines when evaluated on
four NLG tasks: Sentence Fusion, Machine
Translation Automatic Post-Editing, Summa-
rization, and Text Simplification.

1 Introduction

The ideas of text in-filling coupled with self-
supervised pre-training of deep Transformer net-
works on large text corpora have dramatically
changed the landscape in Natural Language Un-
derstanding. BERT (Devlin et al., 2019) and its
successive refinements RoBERTa (Liu et al., 2019),
ALBERT (Lan et al., 2019) implement this recipe
and have significantly pushed the state-of-the-art on
multiple NLU benchmarks such as GLUE (Wang
et al., 2018) and SQuAD (Rajpurkar et al., 2016).
More recently, masked or in-filling style objectives
for model pretraining have been applied to seq2seq
tasks, significantly pushing the state-of-the-art
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Figure 1: FELIX transforms the source “The big very
loud cat” into the target text “The very big old cat”.

on a number of text generation tasks, e.g, KER-
MIT (Chan et al., 2019), MASS (Song et al., 2019),
Bert2Bert (Rothe et al., 2020), BART (Lewis et al.,
2020) and T5 (Raffel et al., 2019).

While seq2seq frameworks offer a generic tool
for modeling almost any kind of text-to-text trans-
duction, there are still many real-world tasks where
generating target texts completely from scratch—
as is done with seq2seq approaches—can be un-
necessary. This is especially true for monolingual
settings where input and output texts have relatively
high degrees of overlap. In such cases a natural
approach is to cast conditional text generation as a
text-editing task, where the model learns to recon-
struct target texts by applying a set of edit opera-
tions to the inputs. Typically, the set of edit opera-
tions is fixed and pre-defined ahead of time, which
on one hand limits the flexibility of the model to
reconstruct arbitrary output texts from their inputs,
but on the other leads to higher sample-efficiency as
the limited set of allowed operations significantly
reduces the search space. Based on this observation,
text-editing approaches have recently re-gained sig-
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nificant interest (Gu et al., 2019; Dong et al., 2019;
Awasthi et al., 2019; Malmi et al., 2019).

In this paper we present a novel text-editing
framework, FELIX, which is heavily inspired by the
ideas of bi-directional decoding (slot in-filling) and
self-supervised pre-training. In particular, we have
designed FELIX with the following requirements:

Sample efficiency. Training a high-precision text
generation model typically requires large amounts
of high-quality supervised data. Self-supervised
techniques based on text in-filling have been shown
to provide a crucial advantage in low-resource set-
tings. Hence, we focus on approaches able to bene-
fit from already existing pre-trained language mod-
els such as BERT, where the final model is directly
fine-tuned on the downstream task. We show that
this allows us to train on as few as 450 datapoints.

Fast inference time. Achieving low latencies
when serving text-generation models typically
requires specialized hardware and finding a
trade-off between model size and accuracy. One
major reason for slow inference times is that
text-generation models typically employ an
autoregressive decoder, i.e., output texts are
generated in a sequential non-parallel fashion. To
ensure faster inference times we opt for keeping
FELIX fully non-autoregressive, resulting in two
orders of magnitude speedups.

Flexible text editing. While simplifying the
learning task, text-editing models are not as pow-
erful as general purpose sequence-to-sequence ap-
proaches when it comes to modeling arbitrary input-
output text transductions. Hence, we strive to strike
a balance between the complexity of learned edit
operations and the percentage of input-output trans-
formations the model can capture.

We propose to tackle text editing by decompos-
ing it into two sub-problems: tagging and insertion
(see Fig. 1). Our tagger is a Transformer-based
network that implements a novel Pointing mecha-
nism (Vinyals et al., 2015). It decides which source
tokens to preserve and in which order they appear
in the output, thus allowing for arbitrary word re-
ordering.

Target words not present in the source are rep-
resented by the generic slot predictions to be in-
filled by the insertion model. To benefit from
self-supervised pre-training, we chose our insertion
model to be fully compatible with the BERT archi-

tecture, such that we can easily re-use a publicly-
available pre-trained checkpoint.

By decomposing text-editing tasks in this way
we redistribute the complexity load of generating
an output text between the two models: the source
text already provides most of the building blocks
required to reconstruct the target, which is han-
dled by the tagging model. The missing pieces are
then in-filled by the insertion model, whose job
becomes much easier as most of the output text is
already in place. Moreover, such a two-step ap-
proach is the key for being able to use completely
non-autoregressive decoding for both models and
still achieve competitive results compared to fully
autoregressive approaches.

We evaluate FELIX on four distinct text gen-
eration tasks: Sentence Fusion, Text Simplifica-
tion, Summarization, and Automatic Post-Editing
for Machine Translation and compare it to recent
text-editing and seq2seq approaches. Each task
is unique in the editing operations required and
the amount of training data available, which helps
to better quantify the value of solutions we have
integrated into FELIX1.

2 Model description

FELIX decomposes the conditional probability of
generating an output sequence y from an input x
as follows:

p(y|x) ≈ pins(y|ym)ptag(y
t, π|x) (1)

where the two terms correspond to the tagging and
the insertion model. Term yt corresponds to the
output of the tagging model and consists of a se-
quence of tags assigned to each input token x and
a permutation π, which reorders the input tokens.
Term ym denotes an intermediate sequence with
masked spans and is fed into the insertion model.
Given this factorization, both models can be trained
independently.

2.1 Tagging Model
The tagging model is composed of three steps:
(1) Encoding, the source sentence is first encoded
using a 12-layer BERT-base model. (2) Tagging,
a tagger is applied on top of the encoder and tags
each source token. (3) Pointing, a pointer net-
work, using attention applied to the encoders hid-
den states, re-orders the source tokens. FELIX is

1The code is publicly available at: https://
felixmodel.page.link/code

https://felixmodel.page.link/code
https://felixmodel.page.link/code
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Src: The big very loud cat

Mask
yt: KEEP DEL DEL DELINS 2 KEEP
ym: The [REPL] big very loud [/REPL] MASK MASK cat
Pred: The noisy large cat

Infill
yt: KEEP DEL DEL DELINS KEEP
ym: The [REPL] big very loud [/REPL] MASK MASK MASK MASK cat
Pred: The noisy large PAD PAD cat

Figure 2: An example of two ways to model inputs to the insertion model: via token masking (Mask) or infilling
(Infill). In the former case the tagging model predicts the number of masked tokens (INS 2), while in the latter
it is delegated to the insertion model, which replaces the generic INS tag with a fixed length span (length 4), the
insertion model then predicts a special PAD symbol to mark the end of the predicted span. Replacements are
modeled by keeping the deleted spans between the [REPL] tags. For simplicity we do not show reordering.

trained to optimize both the tagging and pointing
loss:

L = Lpointing + λLtagging (2)

where λ is a hyperparameter.

Tagging. The tag sequence yt is constructed as
follows: source tokens that must be copied are
assigned the KEEP tag, tokens not present in the
output are marked by the DELETE tag, token spans
present in the output but missing from the input
are modeled by the INSERT (INS) tag. This tag
is then converted into masked token spans in-filled
by the insertion model.

Tags are predicted by applying a single feed-
forward layer f to the output of the encoder hL.
We define: p(yt|x) =

∏
i p(y

t
i|x), where i is the

index of the source token. The model then is
trained to minimize the cross-entropy loss. Dur-
ing decoding we use argmax to determine the tags,
yti = argmax(f(hLi )).

Pointing. FELIX explicitly models word reorder-
ing to allow for larger global edits, as well as
smaller local changes, such as swapping nearby
words, John and Mary→ Mary and John. Without
this word reordering step a vanilla editing model
based on just tagging such as (Malmi et al., 2019;
Dong et al., 2019), would first need to delete a span
(and Mary) and then insert Mary and before John.
FELIX is able to model this without the need for
deletions or insertions. Given a sequence x and the
predicted tags yt, the re-ordering model generates
a permutation π so that from π and yt we can re-
construct the insertion model input ym. Thus we
have:

P (ym|x) ≈
∏
i

p(π(i)|x,yt, i)p(yti|x). (3)

[CLS] The big very loud cat

root

Figure 3: Pointing mechanism to transform “the big
very loud cat” into “the very big cat”.

We highlight that each π(i) is predicted indepen-
dently, non auto-autoregressivly. The output of this
model is a series of predicted pointers (source token
→ next target token). ym can easily be constructed
by daisy-chaining the pointers together, as seen in
Fig. 3. As highlighted by this figure, FELIX’s re-
ordering process is similar to non-projective depen-
dency parsing Dozat and Manning (2017), where
head relationships are non-autoregressively pre-
dicted to form a tree. Similarly FELIX predicts next
word relationship and instead forms a sequence.

Our implementation is based on a pointer net-
work (Vinyals et al., 2015), where an attention
mechanism points to the next token. Unlike pre-
vious approaches where a decoder state attends
over an encoder sequence, our setup applies intra-
attention, where source tokens attend to all other
source tokens.

The input to the Pointer layer at position i
is a combination of the encoder hidden state
hLi , the embedding of the predicted tag e(yti)
and the positional embedding e(pi)2 as follows:
hL+1
i = f([hLi ; e(y

t
i); e(pi)]).

The pointer network attends over all hidden
states, as such:

p(π(i)|hL+1
i ) = attention(hL+1

i ,hL+1
π(i) ) (4)

2Voita et al. (2019) have shown that models trained with
masked language modeling objectives lose positional informa-
tion, a property we consider important for reordering.
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Attention between hidden states is calculated using
a query-key network with a scaled dot-product:

Attention(Q,K) = softmax(
QKT

√
dk

), (5)

where K and Q are linear projections of hL+1 and
dk is the hidden dimension. We found the optional
inclusion of an additional Transformer layer prior
to the query projection increased the performance
on movement-heavy datasets. The model is trained
to minimize cross-entropy loss of the pointer net-
work.

To realize the pointers, we use constrained beam
search (Post and Vilar, 2018). Like Figure 3, we
create the output by daisy chaining pointers, start-
ing with [CLS], and finding the most probable
pointer path, a token at a time. We ensure no loops
are formed by preventing source token from being
pointed to twice, and ensure that all source tokens
not tagged with delete are pointed to3. We note that
when using argmax, loops are only form in < 3%
of the cases.

Dataset construction. When constructing the
training dataset, there are many possible combi-
nations of π and yt which could produce y. For
instance, all source tokens could be replaced by
MASK tokens. However, we wish to minimize
the number of edits, particularly minimizing the
amount of inserted tokens. To do so we greedily ap-
ply the following rules, iterating through the target
tokens:

1. If the target token appears within the source
sentence, point to it and tag it with keep. In the
case, the target token appears multiple times
in the source sentence, point to the nearest
source token, as determined by the previously
pointed to source token.

2. If a source token is already pointed to, then it
cannot be pointed to again.4

3. If a target token does not appear within the
source sentence, then it must be inserted. The
previously pointed to source token is tagged
with insert.

4. If a source token is not pointed to, then it is
tagged with delete.

3We fix the beam size to 5. For a batch size of 32 and maxi-
mum sequence length of 128, beam search incurs an additional
penalty of about 12ms when run on a Xeon CPU@3.7GHz.

4As each word has at most one out-going edge, having two
incoming edges would form a loop.

2.2 Insertion Model
An input to the insertion model ym contains a sub-
set of the input tokens in the order determined by
the tagging model, as well as masked token spans
that it needs to in-fill.

To represent masked token spans we consider
two options: masking and infilling (see Fig. 2). In
the former case the tagging model predicts how
many tokens need to be inserted by specializing the
INSERT tag into INS k, where k translates the
span into k MASK tokens.

For the infilling case the tagging model predicts a
generic INS tag, which signals the insertion model
to infill it with a span of tokens of an arbitrary
length. If we were to use an autoregressive inser-
tion model, the natural way to model it would be to
run the decoder until it decides to stop by producing
a special stop symbol. Since by design we opted
for using a non-autoregressive model, to represent
variable-length insertions we use a PAD symbol to
pad all insertions to a fixed-length5 sequence of
MASK tokens.

Note that we preserve the deleted span in the
input to the insertion model by enclosing it between
[REPL] and [/REPL] tags. Even though this
introduces an undesired discrepancy between the
pretraining and fine-tuning data that the insertion
model observes, we found that making the model
aware of the text it needs to replace significantly
boosts the accuracy of the insertion model.

FELIX as Insertion Transformer. Another in-
tuitive way to picture how FELIX works is to draw
a connection with Insertion Transformer (Stern
et al., 2019). In the latter, the decoder starts with
a blank output text (canvas) and iteratively infills
it by deciding which token and in which position
should appear in the output. Multiple tokens can
be inserted at a time thus achieving sub-linear
decoding times. In contrast, FELIX trains a
separate tagger model to pre-fill6 the output canvas
with the input tokens in a single step. As the
second and final step FELIX does the insertion
into the slots predicted by the tagger. This is
equivalent to a single decoding step of the Insertion
Transformer. Hence, FELIX requires significantly
fewer (namely, two) decoding steps than Insertion
Transformer, and through the tagging/insertion
decomposition of the task it is straightforward

5A length of 8 was sufficient to represent over 99% of
insertion spans.

6This corresponds to more than 80% of the output tokens.
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to directly take advantage of existing pre-trained
MLMs.

Similar to the tagger, our insertion model is also
based on a 12-layer BERT-base and is initialized
from a public pretrained checkpoint.

When using the masking approach, the insertion
model is solving a masked language modeling task
and, hence, we can directly take advantage of the
BERT-style pretrained checkpoints. This is a con-
siderable advantage, especially in the low-resource
settings, as we do not waste training data on learn-
ing a language model component of the text-editing
model7. With the task decomposition where tag-
ging and insertion can be trained disjointly it essen-
tially comes for free.

Switching from masking to infilling shifts the
complexity of modeling the length of inserted to-
ken spans from the tagging model to the insertion
model. Depending on the amount of training data
available it provides interesting trade-offs between
the accuracy of the tagging and insertion models.
We compare these approaches in Sec. 3.4; for all
other tasks we use the masking approach.

3 Experiments

We evaluate FELIX on four distinct text editing
tasks: Sentence Fusion, Text Simplification, Sum-
marization, and Automatic Post-Editing for Ma-
chine Translation. In addition to reporting previ-
ously published results for each task8, we also com-
pare to a recent text-editing approach LASERTAG-
GER (Malmi et al., 2019), which combines editing
operations with a fixed vocabulary of additional
phrases which can be inserted. We follow their
setup and set the phrase vocabulary size to 500 and
run all experiments using their most accurate au-
toregressive model. To decode a batch of 32 on a
Nvidia Tesla P100, LASERTAGGER takes 1,300ms,
FELIX takes 300ms and a a similarly sized seq2seq
model takes 27,000ms (Malmi et al., 2019).

For all tasks we run an ablation study, examining
the effect of an open vocabulary with no reorder-
ing (FELIXINSERT), and a fixed vocabulary9 with
reordering model (FELIXPOINT).

7We still fine-tune the insertion model to accommodate
for the additional token spans between the [REPL] and
[/REPL]

8To ensure fairness, unless otherwise stated, we recalculate
all scores using our evaluation scripts.

9For simplicity we use the LASERTAGGER phrase vocabu-
lary.

Task analysis. The chosen tasks cover a diverse
set of edit operations and a wide range of dataset
sizes. Table 1 provides dataset statistics includ-
ing: the size, sentence length, and the translation
error rate (TER) (Snover et al., 2006) between the
source and target sentences. We use TER to high-
light unique properties of each task. The summa-
rization dataset is a deletion-heavy dataset, with
the highest number of deletion edits and the largest
reduction in sentence length. It contains moder-
ate amounts of substitutions and a large number of
shift edits, caused by sentence re-ordering. Both
the simplification and post-editing datasets con-
tain a large number of insertions and substitutions,
while simplification contains a greater number of
deletion edits. Post-editing, however, is a much
larger dataset covering multiple languages. Sen-
tence fusion has the lowest TER, indicating that
obtaining the fused targets requires only a limited
number of local edits. However, these edits re-
quire modeling the discourse relation between the
two input sentences, since a common edit type is
predicting the correct discourse connective (Geva
et al., 2019). Additionally, within Table 2 we pro-
vide coverage statistics (the percentage of training
instances for which an editing model can fully re-
construct the output) and MASK percentages (the
percentage of output tokens which the insertion
model must predict). As both FELIX and FELIX-
INSERT use an open vocabulary, they cover 100%
of the data, whereas FELIXPOINT and LASERTAG-
GER often cover less than half. For every dataset
FELIXPOINT covers a significantly higher percent-
age than LASERTAGGER, with the noticeable case
being summarization, where there is a 3x increase
in coverage. This can be explained by the high num-
ber of shift edits within summarization (Table 1),
something FELIXPOINT is explicitly designed to
model. We found that the difference in coverage be-
tween FELIXPOINT and LASERTAGGER correlates
strongly (correlation 0.99, p<0.001) with the num-
ber of shift edits. Comparing MASK percentages,
we see that FELIX always inserts (∼50%) fewer
MASKs than FELIXINSERT.

3.1 Summarization

Summarization is the task that requires systems to
shorten texts in a meaning-preserving way.

Data. We use the dataset from (Toutanova et al.,
2016), which contains 6,168 short input texts (one
or two sentences) and one or more human-written
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Dataset Size Lsrc Ltgt TER Ins Del Sub Shft

Post-editing 5M 18.10 17.74 24.97 04.24 06.25 11.30 02.69
Simplification 296K 22.61 21.65 26.02 04.75 08.97 09.90 02.41
Summarization 26K 32.48 22.16 43.23 00.29 32.06 09.34 10.71
Sentence fusion 4.5M 30.51 30.04 10.92 02.49 04.91 03.75 00.62

Table 1: Statistics across tasks: size of the dataset (Size), source length in tokens (Lsrc), target length in tokens
(Ltgt), and TER scorse, including number of insertions (Ins), deletions (Del), substitutions (Sub), and shifts (Shft).

Dataset Coverage % ↑ MASK % ↓
LASERTAGGER FELIXPOINT FELIXINSERT FELIX

Postediting 35.10 40.40 42.39 17.30
Simplification 36.87 42.27 18.23 13.85
Summarization 16.71 48.33 15.92 11.91
Sentence fusion 85.39 95.25 14.69 09.20

Table 2: Coverage and MASK statistics. FELIXINSERT
and FELIX have 100% coverage.

SARI ADD DEL KEEP Rouge BLEU

SEQ2SEQBERT 32.10 52.70 08.30
LASERTAGGER 40.23 06.10 54.48 60.12 81.36 35.05

FELIXPOINT 41.61* 06.80 58.67* 59.36 80.58 32.90
FELIXINSERT 41.99* 06.80 61.65* 57.53 77.78 29.68
FELIX 42.78* 08.11* 57.62* 62.62* 83.48* 35.85

Table 3: Summarization results. All models copied
the source less than 2% of the time. Models signifi-
cantly different from LASERTAGGER are marked with
* (p < 0.01). Significance tests were performed using
a student t-test.

summaries, resulting in 26,000 total training pairs.
The human experts were not restricted to just
deleting words when generating a summary, but
were allowed to also insert new words and reorder
parts of the sentence.

Metrics. We report SARI (Xu et al., 2016),
which computes the average F1 scores of the added,
kept, and deleted n-grams, as well as breaking it
down into each component KEEP, DELETE, and
ADD, as we found the scores were uneven across
these metrics. We also include ROUGE-L and
BLEU-4, as these metrics are commonly used in
the summarization literature.

Results. In Table 3 we compare against
LASERTAGGER and SEQ2SEQBERT from (Malmi
et al., 2019), a seq2seq model initialized using
BERT. The results show that FELIX achieves the
highest SARI, ROUGE and BLEU scores. All ab-
lated models achieve higher SARI scores than all
other models.

3.2 Simplification

Sentence simplification is the problem of simpli-
fying sentences such that they are easier to under-
stand. Simplification can be both lexical, replacing
or deleting complex words; or syntactic, replacing
complex syntactic constructions.

Data. Training is performed on WikiLarge,
(Zhang and Lapata, 2017a) a large simplifica-
tion corpus which consists of a mixture of three
Wikipedia simplification datasets collected by
(Kauchak, 2013; Woodsend and Lapata, 2011; Zhu
et al., 2010). The test set was created by Xu et al.
(2016) and consists of 359 source sentences taken
from Wikipedia, and then simplified using Amazon
Mechanical Turkers to create eight references per
source sentence.

Metrics. We report SARI, a readability metric
FleschKincaid grade level (FKGL), and the per-
centage of unchanged source sentences (copy).

Results. In Table 4 we compare against: Three
state-of-the-art SMT-based simplification systems:
(1) PBMT-R (Wubben et al., 2012), a phrase-based
machine translation model; (2) Hybrid (Narayan
and Gardent, 2014), a model which performs
sentence splitting and deletions and then simpli-
fies with PBMT-R; (3) SBMT-SARI (Xu et al.,
2016), a syntax-based translation model trained
on PPDB and then tuned using SARI. Four neural
seq2seq approaches: (1) DRESS (Zhang and Lap-
ata, 2017b), an LSTM-based seq2seq trained with
reinforcement learning; (2) DRESS-Ls, a variant
of DRESS which has an additional lexical simpli-
fication component; (3) NTS (Nisioi et al., 2017),
a seq2seq model; and (4) DMASS (Zhao et al.,
2018), a transformer-based model enhanced with
simplification rules from PPDB. And two neu-
ral editing models: (1) LASERTAGGER and (2)
EditNTS (Dong et al., 2019), an autoregressive
LSTM-based approach for text simplification, us-
ing KEEP/DELETE tags and open vocabulary pre-
dictions.
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WikiLarge SARI ADD DEL KEEP FKGL Copy

SBMT-SARI 37.94 05.60 37.96 70.27 8.89 0.10
DMASS+DCSS 37.01 05.16 40.90 64.96 9.24 0.06
PBMT-R 35.92 05.44 32.07 70.26 10.16 0.11
HYBRID 28.75 01.38 41.45 43.42 7.85 0.04
NTS 33.97 03.57 30.02 68.31 9.63 0.11
DRESS 33.30 02.74 32.93 64.23 8.79 0.22
DRESS-LS 32.98 02.57 30.77 65.60 8.94 0.27
EDITNTS 34.94 03.23 32.37 69.22 9.42 0.12
LASERTAGGER 32.31 03.02 33.63 60.27 9.82 0.21

FELIXPOINT 34.37 02.35 34.80 65.97 9.47 0.18
FELIXINSERT 35.79 04.03 39.70 63.64 8.14 0.09
FELIX 38.13 03.55 40.45 70.39 8.98 0.08

Table 4: Sentence Simplification results on WikiLarge.

FELIX achieves the highest overall SARI score
and the highest SARI-KEEP score. In addition, all
ablated models achieve higher SARI scores than
LASERTAGGER. While FELIXINSERT achieves
a higher SARI score than EditNTS, FELIXPOINT

does not; this can in part be explained by the large
number of substitutions and insertions within this
dataset, with FELIXPOINT achieving a low SARI-
ADD score.

3.3 Post-Editing

Automatic Post-Editing (APE) is the task of auto-
matically correcting common and repetitive errors
found in machine translation (MT) outputs.

Data. APE approaches are trained on triples: the
source sentence, the machine translation output,
and the target translation. We experiment on the
WMT17 EN-DE IT post-editing task10, where the
goal is to improve the output of an MT system that
translates from English to German and is applied
to documents from the IT domain. We follow the
procedures introduced in (Junczys-Dowmunt and
Grundkiewicz, 2016) and train our models using
two synthetic corpora of 4M and 500K examples
merged with a corpus of 11K real examples over-
sampled 10 times. The models that we study expect
a single input string. To obtain this and to give the
models a possibility to attend to the English source
text, we append the source text to the German trans-
lation. Since the model input consists of two dif-
ferent languages, we use the multilingual Cased
BERT checkpoint for FELIX and LASERTAGGER.

Metrics. We follow the evaluation procedure of
WMT17 APE task and use TER as the primary
metric and BLEU as a secondary metric.

10http://statmt.org/wmt17/ape-task.html

TER ↓ BLEU ↑

COPY 24.48 62.49
TRANSFORMER 22.1 67.2
LASERTAGGER 24.29 63.83
LEVT 21.9 66.9
SOTA (Lee et al., 2019) 18.13 71.80

FELIXPOINT 22.51 65.61
FELIXINSERT 29.09 57.42
FELIX 21.87 66.74

Table 5: WMT17 En→De post-editing results.

Results. We consider the following baselines:
COPY, which is a competitive baseline given
that the required edits are typically very limited;
LASERTAGGER (Malmi et al., 2019); LEVEN-
SHTEIN TRANSFORMER (LEVT) (Gu et al., 2019),
a partially autoregressive model that also employs
deletion and insertion mechanisms; a standard
TRANSFORMER evaluated by (Gu et al., 2019);
and a state-of-the-art method by (Lee et al., 2019).
Unlike the other methods, the last baseline is tai-
lored specifically for the APE task by encoding the
source separately and conditioning the MT output
encoding on the source encoding (Lee et al., 2019).

Results are shown in Table 5. First, we can
see that using a custom method (Lee et al., 2019)
brings significant improvements over generic text
transduction methods. Second, FELIX performs
very competitively, yielding comparative results to
LEVT which is a partially autoregressive model,
and outperforming the other generic models in
terms of TER. Third, FELIXINSERT performs con-
siderably worse than FELIX and FELIXPOINT, sug-
gesting that the pointing mechanism is important
for the APE task. This observation is further
supported by Table 2 which shows that without
the pointing mechanism the average proportion of
masked tokens in a target is 42.39% whereas with
pointing it is only 17.30%. This suggests that, re-
moving the pointing mechanism shifts the respon-
sibility too heavily from the tagging model to the
insertion model.

3.4 Sentence Fusion

Sentence Fusion is the problem of fusing indepen-
dent sentences into a coherent output sentence(s).

Data. We use the balanced Wikipedia portion of
the DiscoFuse dataset (Geva et al., 2019) and also
study the effect of the training data size by creating
four smaller subsets of DiscoFuse: 450,000 (10%),
45,000 (1%), 4,500 (0.1%) and 450 (0.01%) data

http://statmt.org/wmt17/ape-task.html
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Model Insertion Oracle SARI Exact 10% 1% 0.1% 0.01%
Mask Infill TAG INS

BERT2BERT 89.52 63.90 54.45 42.07 03.35 00.00
SEQ2SEQBERT 85.30 53.60 52.80 43.70 00.00 00.00
LASERTAGGER 85.45 53.80 47.31 38.46 25.74 12.32

FELIXPOINT 88.20 60.76 53.75 44.90 31.87 13.82

FELIXINSERT

• • 82.91 77.25 71.49 57.94 36.61
• • 75.00 71.97 66.87 57.08 38.89
• 88.44 60.80 52.82 46.09 34.11 15.34

• • 72.91 64.00 55.45 39.71 18.89
• • 88.86 84.11 81.76 75.88 61.68
• 88.72 63.37 56.67 48.85 33.32 13.99

FELIX

• • 70.32 71.78 64.28 51.20 28.42
• • 78.37 75.56 72.24 65.95 55.97
• 87.69 58.32 55.11 48.84 38.01 20.49

• • 67.78 59.62 52.74 41.48 17.30
• • 87.52 86.45 83.13 79.79 67.60
• 88.78 61.31 52.85 45.45 36.87 16.96

Table 6: Sentence Fusion results on DiscoFuse using the full and subsets 10%, 1%, 0.1% and 0.01% of the training
set. We report three model variants: FELIXPOINT, FELIXINSERT and FELIX using either Mask or Infill insertion
modes. Rows in gray background report scores assuming oracle tagging (TAG) or insertion (INS) predictions.

points.

Metrics. Following Geva et al. (2019), we report
two metrics: Exact score, which is the percentage
of exactly correctly predicted fusions, and SARI.

Results. Table 6 includes additional BERT-based
seq2seq baselines: SEQ2SEQBERT and BERT2BERT

from (Rothe et al., 2020). For all FELIX variants
we further break down the scores based on how
the INSERTION is modelled: via token-masking
(Mask) or Infilling (Infill). Additionally, to better
understand the contribution of tagging and inser-
tion models to the final accuracy, we report scores
assuming oracle insertion and tagging predictions
respectively (highlighted rows).

The results show that FELIX and its variants sig-
nificantly outperform the baselines LASERTAGGER

and SEQ2SEQBERT, across all data conditions. Un-
der the 100% condition BERT2BERT achieves the
highest SARI and Exact score, however for all other
data conditions FELIX outperforms BERT2BERT.
Both seq2seq models perform poorly with less than
4500 (0.1%) datapoints, whereas all editing models
achieve relatively good performance.

When comparing FELIX variants we see on
the full dataset FELIXINSERT outperforms FELIX,
however we note that for FELIXINSERT we fol-
lowed Malmi et al. (2019) and used an additional
sentence re-ordering tag, a hand crafted feature
tailored to DiscoFuse which swaps the sentence
order. It was included in Malmi et al. (2019) and

resulted in a significant (6% Exact score) increase.
However, in the low resource setting, FELIX out-
performs FELIXINSERT, suggesting that FELIX is
more data efficient than FELIXINSERT.

Ablation. We first contrast the impact of the in-
sertion model and the tagging model, noticing that
for all models Infill achieves better tagging scores
and worse insertion scores than Mask. Secondly,
FELIX achieves worse tagging scores but better
insertion scores than FELIXINSERT. This high-
lights the amount of pressure each model is do-
ing, by making the tagging task harder, such as
the inclusion of reordering, the insertion task be-
comes easier. Finally, the insertion models, even
under very low data conditions, achieve impressive
performance. This suggests that under low data
conditions most pressure should be applied to the
insertion model.

4 Related work

Seq2seq models (Sutskever et al., 2014) have been
applied to many text generation tasks that can
be cast as monolingual translation, but they suf-
fer from well-known drawbacks (Wiseman et al.,
2018): they require large amounts of training data,
and their outputs are difficult to control. Whenever
input and output sequences have a large overlap, it
is reasonable to cast the problem as a text editing
task, rather than full-fledged sequence-to-sequence
generation. Ribeiro et al. (2018) argued that the
general problem of string transduction can be re-
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duced to sequence labeling. Their approach ap-
plied only to character deletion and insertion and
was based on simple patterns. LaserTagger (Malmi
et al., 2019) is a general approach that has been
shown to perform well on a number of text editing
tasks, but it has two limitations: it does not allow
for arbitrary reordering of the input tokens; and in-
sertions are restricted to a fixed phrase vocabulary
that is derived from the training data. Similarly, Ed-
itNTS (Dong et al., 2019) and PIE (Awasthi et al.,
2019) are two other text-editing models developed
specifically for simplification and grammatical er-
ror correction, respectively.

Pointer networks have been previously proposed
as a way to copy parts of the input in hybrid seq2seq
models. Gulcehre et al. (2016) and Nallapati et al.
(2016) trained a pointer network to specifically deal
with out-of-vocabulary words or named entities.
Chen and Bansal (2018) proposed a summarization
model that first selects salient sentences and then
rewrites them abstractively, using a pointer mech-
anism to directly copy some out-of-vocabulary
words.

Previous approaches have proposed alternatives
to autoregressive decoding (Gu et al., 2018; Lee
et al., 2018; Chan et al., 2019; Wang and Cho,
2019). Instead of the left-to-right autoregressive
decoding, Insertion Transformer (Stern et al., 2019)
and BLM (Shen et al., 2020) generate the output
sequence through insertion operations, whereas
LEVT (Gu et al., 2019) additionally incorporates
a deletion operation. These methods produce the
output iteratively, while FELIX requires only two
steps: tagging and insertion.

The differences between the proposed model,
FELIX, its ablated variants, and a selection of re-
lated works is summarized in Table 7.

5 Conclusions and Future Work

We have introduced FELIX, a novel approach to text
editing, by decomposing the task into tagging and
insertion which are trained independently. Such
separation allows us to take maximal benefit from
the already existing pretrained masked-LM models.
FELIX works extremely well in low-resource set-
tings and it is fully non-autoregressive which favors
faster inference. Our empirical results demonstrate
that it delivers highly competitive performance
when compared to strong seq2seq baselines and
other recent text editing approaches.

In the future we plan to investigate the following

Type Non-autore-
gressive Pretrained Reordering Open

vocab

TRANSFORMER
seq2seq

X
+ COPYING X X
T5 X (X) X

LEVT

Text edit

(X) X X
PIE X X X
EDITNTS X
LASERTAGGER X X

FELIXINSERT X X X
FELIXPOINT X X X
FELIX X X X X

Table 7: Model comparison along five dimensions:
model type, whether the model: is non-autoregressive
(LEVT is partially autoregressive), uses a pretrained
checkpoint, uses a word reordering mechanism (T5
uses a reordering pretraining task but does not have a
copying mechanism), able to generate any possible out-
put (Open vocab).

ideas: (i) how to effectively share representations
between the tagging and insertion models using
a single shared encoder, (ii) how to perform joint
training of insertion and tagging models instead of
training them separately, (iii) strategies for unsu-
pervised pre-training of the tagging model. which
appears to be the bottleneck in highly low-resource
settings, and (iv) distillations recipes.
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