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Abstract

Recent advances in Knowledge Graph Embed-
ding (KGE) allow for representing entities and
relations in continuous vector spaces. Some
traditional KGE models leveraging additional
type information can improve the representa-
tion of entities which however totally rely on
the explicit types or neglect the diverse type
representations specific to various relations.
Besides, none of the existing methods is ca-
pable of inferring all the relation patterns of
symmetry, inversion and composition as well
as the complex properties of 1-N, N-1 and N-N
relations, simultaneously. To explore the type
information for any KG, we develop a novel
KGE framework with Automated Entity TypE
Representation (AutoETER), which learns the
latent type embedding of each entity by regard-
ing each relation as a translation operation be-
tween the types of two entities with a relation-
aware projection mechanism. Particularly, our
designed automated type representation learn-
ing mechanism is a pluggable module which
can be easily incorporated with any KGE
model. Besides, our approach could model
and infer all the relation patterns and com-
plex relations. Experiments on four datasets
demonstrate the superior performance of our
model compared to state-of-the-art baselines
on link prediction tasks, and the visualization
of type clustering provides clearly the explana-
tion of type embeddings and verifies the effec-
tiveness of our model.

1 Introduction

In recent years, knowledge graph (KG) has been
viewed as a powerful technique for recognition
systems and prevalent in many fields such as E-
commerce, intelligent healthcare, and public secu-
rity. Knowledge graphs collect and store a great
deal of commonsense or domain knowledge in fac-
tual triples composed of entity pairs with their
relations. The existing large scale KGs such as
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Figure 1: An actual example of the entity-specific
triples and the type-specific triples with relation-aware
projection mechanism. Will Smith has multiple types
such as Singer and Actor, but only the type Singer
should be focused on for the relation SangSong.

Freebase (Bollacker et al., 2008), WordNet (Miller,
1995), YAGO (Suchanek et al., 2007) have shown
their validity in various applications, including
question answering (Diefenbach et al., 2018), di-
alogue generation (He et al., 2017) and recom-
mender systems (Wang et al., 2019).

However, the existing KGs are inevitably in-
complete whether they are constructed manually
or automatically, limiting the effectiveness when
exploited for downstream applications. Some ex-
isting KG inference approaches such as inductive
logic programming algorithm (Ray, 2009), Markov
logic networks based method (Qu and Tang, 2019)
and reinforcement learning-based approach (Lin
et al., 2018) try to predict entities or relations in
KGs but face the limited performance and suffer
from the low efficiency. Compared to the above
approaches, knowledge graph embedding models
could learn the latent representations of the entities
and relations and show the best performance on
the KG completion task. However, most of the KG
embedding models such as TransE (Bordes et al.,
2013) and its variants TransH (Wang et al., 2014),
TransR (Lin et al., 2015b) learn KG embeddings
relying on single triples, which simply exploit the
structure information implied in KGs.

Entity types define categories of entities that are
valid to enhance the representation of entities. In
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many type-embodied models such as TKRL (Xie
et al., 2016) and TransT (Ma et al., 2017), the ex-
plicit types are necessary while some KGs (i.e.,
WordNet) lack them, which limits the versatility of
these approaches. JOIE (Hao et al., 2019) jointly
encodes both the ontology and instance views of
KGs. Nevertheless, ontologies’ concepts always
represent the general categories of entities but can-
not reflect the specific types, primarily associated
with different relations. Jain (Jain et al., 2018)
learned the type embeddings by defining the com-
patibility between an entity type and a relation.
Still, it ignores the semantics implied in a whole
triple consisting of a relation jointly with its linked
two entity types. Moreover, all the previous type-
based approaches neglect the diversity of entity
type representations specific to various relations.
As Figure 1 shows, contrary to the previous re-
searches considering entity types, the triples in the
entity level could be extended to triples in the type
level. Each entity has multiple types, and diverse
types should be focused on for different specific
relations.

Additionally, some models embed the entities
and relations into the complex vector space instead
of the frequently-used real space to improve the ca-
pability of representation learning, including Com-
plEx (Trouillon et al., 2016) and RotatE (Sun et al.,
2019). Nevertheless, none of the existing embed-
ding models could model and infer all the relation
patterns and the complex 1-N, N-1 and N-N rela-
tions, simultaneously.

To conduct the KG inference from the perspec-
tives of both entity-specific triples and type-specific
triples on any KG, whether the explicit types exist,
we propose AutoETER to automatically learn the
diverse type representations of each entity when
focusing on the various associated relations. Intu-
itively, the high-dimensional entity embeddings im-
ply the individual features to distinguish the diverse
entities. In contrast, the low-dimensional type em-
beddings capture the general features to discover
the similarity of entities according to their cate-
gories. Inspired by the translational-based principle
in TransE, we expect that given a head entity and
its associated relation, the tail entity’s type repre-
sentation can be obtained by typehead+relation =
typetail. Particularly, the latent type embeddings
of two head or two tail entities focused on the same
relation should be close to each other since they
imply the same type. Furthermore, the embeddings

of the entity-specific triples and the type-specific
triples are capable of modeling and inferring sym-
metry, inversion, composition, and complex 1-N,
N-1, N-N relations.

The contributions of this work are summarized
as follows:

• We model type representations to enrich the
general features of entities. A novel model Au-
toETER is proposed to learn the embeddings
of entities, relations and entity types from
entity-specific triples and type-specific triples
without explicit types in KGs. Furthermore,
the type embeddings can be incorporated with
the entity embeddings for inference.

• To the best of our knowledge, we are the first
to model and infer all the relation patterns, in-
cluding symmetry, inversion and composition,
as well as complex relations of 1-N, N-1 and
N-N for the KG inference.

• We conduct extensive experiments on link pre-
diction on four real-world benchmark datasets.
The evaluation results demonstrate the superi-
ority of our proposed model over other state-
of-the-art algorithms. The visualization of
clustering type embeddings validates the ef-
fectiveness of automatically representing en-
tity types with relation-aware projection.

2 Related Works

2.1 Knowledge Graph Inference

To address the inherent incompleteness of KGs,
multiple KG inference methods are investigated
and have made significant progress. Traditional
researches devote to generate logic rules based on
inductive logic programming such as HAIL (Ray,
2009) to predict the missing entities in KGs. How-
ever, employing logic rules in KG inference lim-
its generalization performance. Path ranking algo-
rithm (PRA) (Lao et al., 2011) extracts the rela-
tional path features based on random-walk to infer
the relationships between entity pairs. DeepPath
(Lin et al., 2018) is a foundational approach that
formulates the multi-hop reasoning as a Markov
decision process and leverages reinforcement learn-
ing (RL) to find paths in KGs. However, the RL-
based multi-hop KG reasoning approaches con-
sume much time in searching paths.
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2.2 KG Embedding Models

Various KG embedding models have been exten-
sively developed for KG inference in recent years
(Wang et al., 2017). KGE models are capable of
capturing latent representations of entities and re-
lations in KGs independently from hand-crafted
rules, and they have shown a strong capacity of
efficient computation in many knowledge-aware
applications (Ji et al., 2020). TransE (Bordes et al.,
2013) is the foundational translation-based method,
which regards a relation as a translation operation
from the head entity to the tail entity. Along with
TransE, multiple variants are proposed to improve
the embedding performance of KGs (Niu et al.,
2020; Yuan et al., 2019; Xiao et al., 2016). ConvE
(Dettmers et al., 2018) is a typical method rep-
resenting entities and relations based on convolu-
tional neural networks (CNN). Another category of
KG embedding contains many tensor decomposi-
tion models, including DisMult (Yang et al., 2015).
Particularly, ComplEx (Trouillon et al., 2016) ex-
tends DisMult to learn the KG embeddings in the
complex space. RotatE (Sun et al., 2019) defines a
relation as a rotation from source to target entities
in a complex space but cannot infer the complex
relations 1-N, N-1 and N-N. What’s more, all the
approaches above purely depend on the triples di-
rectly observed in KGs.

2.3 Models Incorporating Entity Types

To further improve the performance of KG embed-
ding, various auxiliary information is introduced,
such as paths (Lin et al., 2015a; Niu et al., 2020),
graph structure (Michael et al., 2018) and entity
types (Xie et al., 2016; Krompaß et al., 2015; Ma
et al., 2017). Among such information, entity types
contain less noise and are appropriate for provid-
ing more general semantics for each entity. TKRL
(Xie et al., 2016) projects each entity with the type-
specific projection matrices. TransT (Ma et al.,
2017) measures the semantic similarity of enti-
ties and relations utilizing types. However, all the
above type-based KG embedding models require
the supervision of explicit types and cannot work
on KGs without explicit types. JOIE (Hao et al.,
2019) links entities to their concepts in the ontology
for jointly embed the instance-view graph and the
ontology-view graph, but the concepts in ontolo-
gies provide too broad or even noisy information
to represent the specific and precise types of each
entity. (Jain et al., 2018) introduces the compatibil-

ity between the embeddings of an entity type and
a relation for link prediction. Still, all the existing
type-enhanced models neglect that an entity’s di-
verse types should be focused on when this entity is
associated with various relations. Meanwhile, the
association property implied in the embeddings of
the type-specific triples has not been well modeled.

3 AutoETER: KGE with Automated
Entity Type Representation

To cope with the above limitations, we describe
the proposed model AutoETER, which aims to au-
tomatically learn a variant of type representations
semantically compatible with various relations and
infer all the relation patterns and complex relations.
As figure 2 shows, we first embed the entities and
relations into complex space via the entity-specific
triple encoder with a hyper-plane projection strat-
egy (§3.1). Additionally, the type-specific triple
encoder is developed to learn type embeddings in-
corporated with a relation-aware projection mech-
anism (§3.2). Meanwhile, the type embeddings
are constrained by their similarity derived from
the associated relations (§3.3). Afterward, we pro-
pose the overall optimization objective with both
entity-specific triple and type-specific triple repre-
sentations and the similarity constraint of the type
embeddings (§3.4).

3.1 Entity-specific Triple Encoder

We embed the entities and relations into the com-
plex space and regard a relation as the rotation
operation from the head entity to the tail entity as
in RotatE (Sun et al., 2019). To further model and
infer the complex relations such as 1-N, N-1 and
N-N, we project entities into their associated rela-
tion hyper-planes to ensure each entity has various
representations concerning the specific relations.
In terms of an entity-specific triple (h, r, t), the
energy function E1(h, r, t) is defined as

eh,r = h− h>wrh, et,r = t− t>wrt (1)

E1(h, r, t) = ‖eh,r ◦ r− et,r‖ (2)

where h ∈ Ck, t ∈ Ck, r ∈ Ck are the embeddings
of head entity h, tail entity t and relation r in the
complex space with dimension k. wr ∈ Rk denotes
the normal vector of the hyper-plane involved in
the relation r. eh,r ∈ Ck and et,r ∈ Ck represent
the entity embeddings of h and t projected in the
hyper-plane wr. ◦ is the Hadamard product.
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A triple fact in the KG
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Figure 2: The architecture of AutoETER. Given a triple fact (h, r, t), eh,r and et,r are the projected entity embed-
dings in the hyper-plane of relation r, yh,r and yt,r are type embeddings focusing on relation r. Furthermore, we
expect the embeddings of entity-specific triple satisfies rotation operation and type-specific triple satisfies transla-
tion operation from head to tail entities. Type embeddings associated with the same relation r are constrained to
be closer, where γ is the margin enforced between two clusters of type embeddings related to different relations.

On account of the embeddings of entity-specific
triples, our model can infer all the relation patterns
via the rotation operation from head to tail entities
as in RotatE. Particularly, r is constrained to be
|ri| = 1, i = 1, 2, ..., k for inferring the symmetric
relation pattern and at least one element of r is -1
to ensure the diverse representations of head and
tail entities. Moreover, the projection operation
shown in Eq. 1 enables our model to infer the
complex relations via various representations of
entities regarding different relations.

3.2 Type-specific Triple Encoder

Given an entity e and its associated relation r in a
triple, we aim to learn the type and relation embed-
dings with a relation-aware projection mechanism
to output the most important information of the
type representations:

fatt(e, r) = Mrye (3)

where ye ∈ Rd denotes the type embedding of en-
tity e in the real space with dimension d. Mr ∈
Rd×d is defined as the projection weight matrix
associated with the relation r, which could auto-
matically select the latent information of each type
embedding most relevant to the relation r.

With the relation-aware projection defined in Eq.
3, the energy function involved in type-specific
triples is defined as

yh,r = fatt(h, r), yt,r = fatt(t, r)

E2(h, r, t) = ‖yh,r + yr − yt,r‖
(4)

where yh,r ∈ Rd, yt,r ∈ Rd are the type embed-
dings of entities h and t both focusing on the rela-
tion r and yr ∈ Rd denotes the embedding of the
relation r in the type-specific triple. In terms of the
energy function in Eq. 4, we expect that

yh,r + yr = yt,r (5)

Furthermore, with the type and relation embed-
dings learned in the real spaces, our model cost
fewer parameters and could model and infer all the
relation patterns including symmetry (Lemma 1),
inversion (Lemma 2) and composition (Lemma 3)
as well as the complex properties of relations:

Lemma 1. Our model could infer relation pattern
of symmetry by type-specific triple embeddings.

Proof. If a relation r is symmetric, two triples
(h, r, t) and (t, r, h) will hold. From Eq. 5, the
correlations among the embeddings of types and
relations can be obtained as:

yh,r + yr = yt,r, yt,r + yr = yh,r (6)

From Eq. 6, we can further derive that

yh,r = yt,r, yr = 0 (7)

We prove that the embedding of a symmetric rela-
tion should be zero vector, and the type embeddings
of head and tail entities should be equal. The above
results are reasonable owing to the focused types
of two entities linked by the symmetric relation are
supposed to be same.
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Lemma 2. Our model is able to infer relation pat-
tern of inversion by type-specific triple embeddings.

Proof. With the inverse relations r1 and r2, two
triples (h, r1, t) and (t, r2, h) hold. From Eqs. 3, 4
and 5, it can be retrieved that

Mr1yh + yr1 = Mr1yt (8)

Mr2yt + yr2 = Mr2yh (9)

We can define a transform matrix P ∈ Rd×d that
satisfies

Mr1 = PMr2 (10)

Substituting Eq. 10 into Eq. 9, the latter can be
modified as

Mr1yt + Pyr2 = Mr1yh (11)

Then, substituting Eq. 11 into Eq. 8, it yields that

yr1 = −Pyr2 (12)

We can model and infer the inverse relations with
the relation embeddings satisfying the relationship
as in Eq. 12.

Lemma 3. Our model is capable of inferring the
relations of composition by type-specific triple em-
beddings.

Proof. On account of the relations of composition
pattern r3(a, c) ⇐ r1(a, b) ∧ r2(b, c), the corre-
sponding triples (a, r1, b), (b, r2, c) and (a, r3, c)
hold. Meanwhile, considering Eqs. 3, 4 and 5, it
can be obtained that

Mr1ya + yr1 = Mr1yb (13)

Mr2yb + yr2 = Mr2yc (14)

Mr3ya + yr3 = Mr3yc (15)

We can define two transform matrices P ∈ Rd×d

and Q ∈ Rd×d to satisfy

PMr1 = Mr3 (16)

QMr2 = Mr3 (17)

Substituting Eq. 16 into Eq. 13 and Eq. 17 into Eq.
14, respectively, we can derive that

Mr3ya + Pyr1 = Mr3yb (18)

Mr3yb + Qyr2 = Mr3yc (19)

Substituting Eq. 18 into Eq. 19, it can be retrieved
that

Mr3ya + Pyr1 + Qyr2 = Mr3yc (20)

Combining Eqs. 15 and 20, we can model the
correlation among the relation embeddings of com-
position pattern as

yr3 = Pyr1 + Qyr2 (21)

We prove that we can model and infer the relations
of composition pattern for type-specific triples with
the relation embeddings as shown in Eq. 21.

Specific to the inference on type-specific triples
with the relations of complex properties 1-N, N-1
and N-N, we could exploit the various represen-
tations of an entity type associated with different
relations via the relation-aware projection mecha-
nism defined in Eq. 3 to infer on these relations.

3.3 Type Embeddings Similarity Constraint
In addition to learning type embeddings by the
type-specific triple encoder (§3.2), the type repre-
sentations should be constrained by the similarity
between the entity types. The type embeddings of
head entities involved in the triples with the same
relation are closer to each other (the same as type
embeddings of tail entities). Thus, as for two triples
with the same relation, we expect that

yh1,r = yh2,r, yt1,r = yt2,r (22)

where yh1,r and yh2,r are type embeddings of head
entities while yt1,r and yt2,r are type embeddings
of tail entities. Particularly, they all focus on the
same relation r by the relation-aware projection
mechanism of Eq. 3.

Now, considering any two triples (h1, r1, t1) and
(h2, r2, t2), we design the energy function for eval-
uating the dissimilarity of the type embeddings as

E3((h1, r1, t1), (h2, r2, t2)) =
1

2

(
‖yh1,r1 − yh2,r2‖

+ ‖yt1,r1 − yt2,r2‖
)

(23)

where yh1,r1 and yh2,r2 are two head entity type
embeddings, yt1,r1 and yt2,r2 are two tail entity
type embeddings, and they are all associated with
the relation r1 or r2. Therefore, we expect the value
derived from Eq. 23 tends to be smaller if r1 and
r2 are the same relation.

3.4 Optimization Objective
The designed entity-specific triples encoder, type-
specific triples encoder and type representations
similarity constraint could be trained as a unified
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end-to-end model. We optimize our model accord-
ing to a three-component objective function:

L =
∑

(h,r,t)∈S

 ∑
(h′,r,t′)∈S′

{
L1 + α1L2

}
+ α2L3


(24)

in which the overall training objective consists of
three components: L1 and L2 are two pair-wise
loss functions that correspond to the entity-specific
triple encoder and the type-specific triple encoder,
respectively, and L3 is a triple loss function for con-
straining the type embeddings. α1 and α2 denote
the weights of L2 and L3 for the tradeoff between
the entity-specific triple, the type-specific triple
and the type similarity constraint. S contains all
the triples in the train set, and S′ is the negative
sample set generated by replacing the entities in S.
Specifically, L1, L2 and L3 are defined as

L1 = − log σ(γ1 − E1(h, r, t))

− log σ(E1(h
′, r, t′)− γ1) (25)

L2 = max
[
0, E2(h, r, t) + γ2 − E2(h

′, r, t′)
]
(26)

L3 =
∑

(hp,r,tp)∈Y

∑
(hn,r′,tn)∈Y ′

max
[
0, E3((h, r, t),

(hp, r, tp)) + γ3 − E3((h, r, t), (hn, r
′, tn))

]
(27)

where γ1, γ2 and γ3 denote the fixed margins in
L1, L2 and L3, respectively. In specific, L3 can
be viewed as the regularization in optimization for
restraining the entity type embeddings. σ denotes
the sigmoid function. max[0,x] is the function to
select the larger value between 0 and x. Particu-
larly, in Eq. 27, the triple (h, r, t) is regarded as the
anchor instance and (hp, r, tp) is a positive instance
in the set Y containing other triples correlated to
the same relation r, while (hn, r

′, tn) is any neg-
ative instance in the set Y ′ containing the other
triples without the relation r. Besides, we employ
self-adversarial sampling as in (Sun et al., 2019).

4 Experiment Results

In this section, we evaluate our model AutoETER
for KG completion on four real-world benchmark
datasets. Additionally, we visualize the clustering
results of type embeddings for demonstrating the
effectiveness of representing types automatically.

Dataset WN18 YAGO3-10 FB15K FB15K-237

#Entity 40,943 123,182 14,951 14,505
#Relation 18 37 1,345 237

#Train 141,442 1,079,040 483,142 272,115
#Valid 5,000 5,000 50,000 17,535
#Test 5,000 5,000 59,071 20,466

Table 1: Statistics of datasets used in the experiments.

4.1 Experimental Setup
4.1.1 Datasets
We utilize four standard datasets1 for link predic-
tion tasks: FB15K (Bordes et al., 2013) is a widely
used dataset that is a subgraph of the commonsense
knowledge graph Freebase. WN18 (Bordes et al.,
2013) is a subset of the lexical knowledge graph
WordNet. YAGO3-10 (Dettmers et al., 2018) is a
subset of YAGO. Each of the three datasets con-
sists of all the relation patterns, including symme-
try, inversion, composition and complex 1-N, N-1
and N-N of relations. FB15K-237 (Toutanova and
Chen, 2015) is a subset of FB15K and removes all
the inverse relations. Table 1 exhibits the statistics
of all the datasets exploited.

4.1.2 Evaluation Protocol
The link prediction task aims to predict when the
head or tail entity of a triple in the test set is missing.
For link prediction, all the entities in the KG are
respectively replaced with the missing entity to
generate the candidate triples. Then, on account of
each candidate triple (h, r, t), we combine the two
perspectives of the entity-specific triple jointly with
the type-specific triple to evaluate the plausibility
of this candidate triple, and the energy function for
evaluation is designed as follows:

Epred(h, r, t) = E1(h, r, t) + α1E2(h, r, t) (28)

The above energy function Epred(h, r, t) is com-
posed of the energy functions E1(h, r, t) (with re-
gard to the entity-specific triple) and E2(h, r, t)
(with respect to the type-specific triple) defined in
Eqs. 2 and 4, respectively. α1 is the weight which
is the same as in Eq. 24 for a trade-off. Then, the
scores with respect to all the candidate triples are
calculated by Eq. 28. Subsequently, these scores
are sorted in ascending order, and further, the cor-
rect triple rank can be obtained.

Three standard metrics are employed to evaluate
the performance of link prediction:

1Datasets could be found at onedrive: https://1drv.ms/u/s!
Ajh jEjaTE0SbbceogcmdwSu9ME?e=zfw6sN

https://1drv.ms/u/s!Ajh_jEjaTE0SbbceogcmdwSu9ME?e=zfw6sN
https://1drv.ms/u/s!Ajh_jEjaTE0SbbceogcmdwSu9ME?e=zfw6sN
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Model FB15K WN18
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE (Bordes et al., 2013) - 0.463 0.297 0.578 0.749 - 0.495 0.113 0.888 0.943
DistMult (Yang et al., 2015) 42 0.798 - - 0.893 655 0.797 - - 0.946
HolE (Nickel et al., 2016) - 0.524 0.402 0.613 0.739 - 0.938 0.930 0.945 0.947

ComplEx (Trouillon et al., 2016) - 0.692 0.599 0.759 0.840 - 0.941 0.936 0.945 0.947
ConvE (Dettmers et al., 2018) 51 0.657 0.558 0.723 0.831 374 0.943 0.935 0.946 0.956

RotatE (Sun et al., 2019) 40 0.797 0.746 0.830 0.884 309 0.949 0.944 0.952 0.959
QuatE (Zhang et al., 2019) 40 0.765 0.692 0.819 0.878 393 0.950 0.942 0.954 0.959

R-GCN (Michael et al., 2018) - 0.696 0.601 0.760 0.852 - 0.819 0.697 0.929 0.964
PTransE (Lin et al., 2015a) 54 0.679 0.565 0.768 0.855 472 0.890 0.931 0.942 0.945

TKRL (Xie et al., 2016) 68 - - - 0.694 - - - - -
TypeComplex (Jain et al., 2018) - 0.753 0.677 - 0.869 - 0.939 0.932 - 0.951

AutoETER 33 0.799 0.750 0.833 0.896 174 0.951 0.946 0.954 0.961

Table 2: Evaluation Results on FB15K and WN18. Best results are in bold and second best results are underlined.

Model FB15K-237 YAGO3-10
MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10

TransE (Bordes et al., 2013) 357 0.294 - - 0.465 - - - -
DistMult (Yang et al., 2015) 254 0.241 0.155 0.263 0.419 5926 0.34 0.24 0.38 0.54

ComplEx (Trouillon et al., 2016) 339 0.247 0.158 0.275 0.428 6531 0.36 0.26 0.40 0.55
ConvE (Dettmers et al., 2018) 244 0.325 0.237 0.356 0.501 1671 0.44 0.35 0.49 0.62

RotatE (Sun et al., 2019) 177 0.338 0.241 0.375 0.533 1767 0.495 0.402 0.550 0.670
QuatE (Zhang et al., 2019) 172 0.311 0.220 0.344 0.495 - - - - -

R-GCN (Michael et al., 2018) - 0.249 0.151 0.264 0.417 - - - - -
PTransE (Lin et al., 2015a) 302 0.363 0.234 0.374 0.526 - - - -

TypeComplex (Jain et al., 2018) - 0.259 0.186 - 0.411 - 0.411 0.319 - 0.609

AutoETER 170 0.344 0.250 0.382 0.538 1179 0.550 0.465 0.605 0.699

Table 3: Evaluation Results on FB15K-237 and YAGO3-10 datasets.

1) Mean Rank (MR) of the correct triples.
2) Mean Reciprocal Rank (MRR) of the correct
triples.
3) Hits@n measures the proportion of the correct
triples in top-n candidate triples.

We also follow the filtered setting as the previous
study (Dettmers et al., 2018) that evaluates the per-
formance by filtering out the corrupt triples already
exist in the KG.

4.1.3 Baselines and Hyper-parameters

We compare the developed model AutoETER with
two categories of the state-of-the-art baselines: (1)
Models only considering entity-specific triples in-
cluding TransE, DisMult, HolE, ComplEx, ConvE,
RotatE and QuatE; (2) Models introducing addi-
tional information such as TKRL with explicit
types and the type-sensitive model TypeComplex,
R-GCN with graph structure and PTransE with
paths. All the baselines are selected because
they achieve good performance and provide source
codes for ensuring the reliability and reproducibil-
ity of the results. The results of R-GCN are from
(Zhang et al., 2019). The results of TKRL are
from (Xie et al., 2016). The results of PTransE2,

2https://github.com/thunlp/KB2E/tree/master/PTransE

TypeComplex3 and QuatE 4 are obtained by us-
ing their source codes. The other results of the
baselines are from (Sun et al., 2019).

We tune our model utilizing a grid search to se-
lect the optimal hyper-parameters. The optimal
configurations are provided as: the batch size is set
as 1024, the learning rate is lr = 0.0001, and the
weights in optimization are α1 = 0.1, α2 = 0.5.
The dimension of the entity and relation embed-
dings in entity-specific triples is k = 1000, the
dimension of the type and relation embeddings
in type-specific triples is d = 200. For datasets
FB15K and YAGO3-10, the three fixed margins
are set as γ1 = 22, γ2 = 8, γ3 = 6. For datasets
WN18 and FB15K-237, γ1 = 10, γ2 = 6, γ3 = 3.

4.2 Evaluation Results and Analyses

Table 2 and Table 3 report the evaluation results of
link prediction on the four datasets. We can observe
that our model AutoETER outperforms all the base-
lines, including the state-of-the-art models RotatE
and QuatE. These results demonstrate the supe-
riority of modeling and inferring all the relation
patterns and the complex relations by our model.
Specifically, AutoETER performs better than the

3https://github.com/dair-iitd/KBI/tree/master/kbi-pytorch
4https://github.com/cheungdaven/QuatE

https://github.com/thunlp/KB2E/tree/master/PTransE
https://github.com/dair-iitd/KBI/tree/master/kbi-pytorch
https://github.com/cheungdaven/QuatE
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"johnny & june"

"movie actress"

"the two 
towers"

"cannes best 
actor award"

academy award 
for best story

"golden bear award 
for best short film"

"american english"

"chinese"

"spanish"

"tv producer"

"grauman 's 
chinese theatre"

"english national opera"

(a) (b) (c)

Figure 3: The visualization of type embeddings clustering on FB15K-237. (a) The clustering of the original type
embeddings. (b) The clustering of the entity embeddings. (c) The clustering of the type embeddings all focusing
on the relation /award/award category/nominated for.

Model Head Entity Prediction (Hits@10) Tail Entity Prediction (Hits@10)
1-1 1-N N-1 N-N 1-1 1-N N-1 N-N

TransE (Bordes et al., 2013) 0.437 0.657 0.182 0.472 0.437 0.197 0.667 0.500
TransH (Wang et al., 2014) 0.668 0.876 0.287 0.645 0.655 0.398 0.833 0.672
TransR (Lin et al., 2015b) 0.788 0.892 0.341 0.692 0.792 0.374 0.904 0.721
RotatE (Sun et al., 2019) 0.922 0.967 0.602 0.893 0.923 0.713 0.961 0.922

PTransE (Lin et al., 2015a) 0.910 0.928 0.609 0.838 0.912 0.740 0.889 0.864

AutoETER 0.933 0.979 0.618 0.903 0.931 0.717 0.968 0.927

Table 4: Evaluation results on FB15K by mapping properties of relations.

type-embodied models TKRL and TypeComplex,
emphasizing the type representations learned au-
tomatically with relation-aware projection by Au-
toETER are more effective for inference than to-
tally leveraging the explicit types or ignoring the
diversity of type embeddings focusing on various
relations. Furthermore, AutoETER outperforms
RotatE because AutoETER could infer the com-
plex relations of 1-N, N-1 as well as N-N and takes
advantage of type representations. These results
all illustrate the type representations learned from
KGs are available to predict entities more accu-
rately by restricting the candidate entities with type
embeddings.

In view of more diverse relations existed in
FB15K compared with the other three datasets, we
select FB15K to evaluate link prediction perfor-
mance by mapping 1-1, 1-N, N-1 and N-N rela-
tions. The results are shown in Table 4. Our model
achieves better performance on both head entity
prediction and tail entity prediction than other base-
lines particularly RotatE, which illustrates the supe-
riority of capturing various representations of enti-
ties specific to different relations with the relation-
aware projection mechanism to represent entity

Model MR MRR H@1 H@3 H@10

AutoETER 170 0.344 0.250 0.382 0.538
-TSC 175 0.342 0.246 0.379 0.536
-TR 177 0.340 0.244 0.377 0.534

Table 5: Ablation study on FB15K-237. “H@” is the
abbreviation of “Hits@”.

types.

4.3 Ablation Study

We conduct the ablation study of our model on
dataset FB15K-237 when we only omit the type
similarity constraint (-TSC) and omit the type rep-
resentation (-TR) from our model. Table 5 demon-
strates that our model performs better than the two
ablated models. It illustrates the type representa-
tion and the type similarity constraint both signif-
icantly impact the performance of link prediction
and suggests that our automatically learned type
representations play a pivotal role in our approach.

4.4 Visualization of Clustering Entity Type
Representations

We utilize Kmeans to cluster the type embeddings
and further employ t-SNE to implement dimen-
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sionality reduction for 2d visualization. As Figure
3(a) shows, some type embeddings are clustered
into independent categories, while some clusters
stay close to each other because these entities share
many common types. For instance, johnny&june
and the two towers are clustered into the same cat-
egory which actually represents the type movie as
we know. Figure 3(b) shows the clustering of the
entity embeddings. It can be clearly observed that
entity type clustering has better compactness than
entity clustering, which demonstrates that entity
type embeddings could reflect the characteristics
of types. The type embeddings focusing on rela-
tion /award/award category/nominated for
are visualized in Figure 3(c). It is evident that some
type embeddings representing the type award
such as academy award for best story and
cannes best actor award are clustered into the
same category while others stay far away. These
visualization results explain the effectiveness of
our type embeddings learned automatically with
relation-aware projection from the KG.

5 Conclusion and Future Work

In this paper, we propose an AutoETER framework
to learn type representations for enriching KG em-
bedding automatically. We introduce two classes of
encoders to learn the entity-specific triple and type-
specific triple embeddings, which could model and
infer all the relation patterns of symmetry, inversion
and composition as well as the complex 1-N, N-1
and N-N relations. We also constrain the type em-
beddings by the type similarity. Our experiments
on four real-world datasets for link prediction illus-
trate the superiority of our model and the visualiza-
tion of the type embeddings clustering verifies the
availability of representing types automatically. In
future work, we intend to extend our approach to
obtain the better type representations incorporating
the supervision of ontologies.
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Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML,
page 2071–2080.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
2017. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions
on Knowledge and Dada Engineering, 29(12):2724–
2743.

Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and
Tat-Seng Chua. 2019. KGAT: knowledge graph
attention network for recommendation. In KDD,
pages 950–958.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by
translating on hyperplanes. In AAAI 2014, page
1112–1119.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016.
From one point to a manifold: Knowledge graph em-
bedding for precise link prediction. In IJCAI, pages
1315–1321.

Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016.
Representation learning of knowledge graphs with
hierarchical types. In IJCAI, page 2965–2971.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. In ICLR.

Jun Yuan, Neng Gao, , and Ji Xiang. 2019. TransGate:
Knowledge graph embedding with shared gate struc-
ture. In AAAI.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings. In
NeurIPS, pages 2731–2741.


