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Abstract

Metaphors are rhetorical use of words based
on the conceptual mapping as opposed to their
literal use. Metaphor detection, an important
task in language understanding, aims to iden-
tify metaphors in word level from given sen-
tences. We present IlliniMet, a system to au-
tomatically detect metaphorical words. Our
model combines the strengths of the contex-
tualized representation by the widely used
RoBERTa model and the rich linguistic in-
formation from external resources such as
WordNet. The proposed approach is shown
to outperform strong baselines on a bench-
mark dataset. Our best model achieves F1
scores of 73.0% on VUA ALLPOS, 77.1% on
VUA VERB, 70.3% on TOEFL ALLPOS and
71.9% on TOEFL VERB.

1 Introduction

Metaphors are a form of figurative language used
to make an implicit or implied comparison between
two things that are unrelated (Ortony and Andrew,
1993). They are widely used in natural language,
conveying rich semantic information which devi-
ates from their literal meaning. For instance, in the
sentence “Tom has always been an early bird wak-
ing up at 5:30 a.m.”, the phrase “early bird” does
not mean a real animal but refers to someone doing
something early.

The ubiquity and subtlety of metaphors present
challenges to language understanding in natural lan-
guage processing. Detecting metaphors is the first
step towards metaphor understanding, which helps
to uncover the meaning more accurately. Metaphor
detection has been used in a variety of downstream
applications such as sentiment classification (Ren-
toumi et al., 2012) and machine translation (Koglin
et al., 2015).

Some existing approaches to metaphor detection
rely on linguistic features such as lexicon based

metaphor constructions, lexical abstractness and
word categories in WordNet (Dodge et al., 2015;
Klebanov et al., 2016). Most of these approaches
either do not consider the contextual information
or only focus on limited contexts. Others use un-
igram based features regardless of their contexts
(Köper and im Walde, 2017), and still others iden-
tify metaphors in the limited context of subject-
verb-object triples (Bulat et al., 2017). We note that
the contextual information is crucial for metaphor
detection. As shown in Table 1, the word “fix” can
be used both metaphorically and literally depend-
ing on its context.

Table 1: Metaphorical and Literal Usage of Word “Fix”

Metaphor: I think that we need to begin from
facts and fix important data.
Literal: They couldn’t fix my old computer,
and I had to buy a new one.

Recent studies incorporating contextual infor-
mation into metaphor detection include unsuper-
vised approaches (Gong et al., 2017) and super-
vised models (Wu et al., 2018; Stowe et al., 2019).
Neural networks such as Long Short Term Mem-
ory (LSTM) have achieved state-of-the-art perfor-
mance in metaphor detection due to their ability to
encode contextual information (Gao et al., 2018).

Recently proposed contextualized representation
models that have been widely used include Embed-
dings from Language Models (ELMo) (Peters et al.,
2018), Representations from Transformer (BERT)
(Devlin et al., 2019) and Robustly Optimized BERT
Pretraining Approach (RoBERTa) (Liu et al., 2019).
Their use has shown dramatic improvements in the
performance of several NLP tasks. These models
are pretrained on large text corpora to encode rich
contextualized knowledge into the semantic repre-
sentation of words with deep network structures.
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In this paper, we build our metaphor detection
model upon RoBERTa to leverage its strength in
capturing contextual information. In addition, we
enhance the power of contextualized representa-
tion by using linguistic features. Using external
resources our model integrates features such as
word concreteness, which serves to complement
the contextual knowledge in RoBERTa embed-
dings and aid the task of metaphor detection. This
model was our contribution to the Second Shared
Task on Metaphor Detection (Leong et al., 2020).
Our best model achieves F1 scores of 73.0% and
77.1% on all words and verbs alone respectively
for metaphors in the VUA dataset. Our model per-
formance is 70.3% and 71.9% on all words and
only verbs respectively in the TOEFL dataset. We
make our implementation available for a wider ex-
ploration1.

2 Related Work

Metaphor Detection. Metaphor detection has re-
cently attracted a lot of research interest in the
area of natural language processing. The metaphor
detection task can be broadly classified into two
categories. The first involves predicting whether
a given word or phrase is a metaphor (Gong et al.,
2017). The second category can be formulated as a
sequential labeling task of predicting the metaphor-
ical or literal usage of every word in a sentence
(Leong et al., 2018). Our current study falls into
the second category.

Feature-based approaches. Many recent
works have explored the use of various linguistic
features for automatic metaphor detection. These
features include word abstractness (Köper and
im Walde, 2017), WordNet features, hypernyms
and synonyms (Mao et al., 2018), syntactic depen-
dencies and semantic patterns (Hovy et al., 2013),
word imageability (Strzalkowski et al., 2013) as
well as word embeddings (Köper and im Walde,
2017).

Neural network models. Deep learning mod-
els are becoming very popular in various down-
stream applications of natural language process-
ing owing to the ability to train models in an end-
to-end manner without explicit feature engineer-
ing. Approaches built upon neural networks have
shown great successes in metaphor detection task
as well. Different structures of neural networks

1https://github.com/HongyuGong/
MetaphorDetectionSharedTask.git

have been extensively studied to better encode se-
mantic knowledge by capturing metaphorical pat-
terns (Leong et al., 2018).

Sequential models such as Recurrent Neural
Networks (RNN) demonstrate strong performance
in metaphor detection (Bizzoni and Ghanimi-
fard, 2018). An LSTM is applied to identifying
metaphors together with a Convolutional Neural
Network (CNN) (Wu et al., 2018). The model uti-
lizes pretrained word2vec word embeddings. An-
other approach built on sequential models is a Bidi-
rectional LSTM model augmented with pretrained
contextualized embeddings (Gao et al., 2018).

A recent work draws inspiration from linguistic
theories, and proposes RNN HG and RNN MHCA,
which are variants of RNN models (Mao et al.,
2019). Assuming that pretrained GloVe embed-
dings carry literal meaning, the model RNN HG
detects metaphors by comparing GloVe embed-
dings with the contextualized word representa-
tions learned by the RNN. The other variant,
RNN MHCA, integrates the multi-head atten-
tion mechanism in model hidden states, and en-
riches word representations with information from
broader contexts.

Contextualized representation model. The
linguistic theory of Selectional Preference Viola-
tion (SPV) states that a metaphorical phrase or
word is semantically different from its context
(Wilks, 1975, 1978). This suggests the impor-
tance of contextual information for metaphor detec-
tion. A few pretrained contextualized represen-
tation models have been recently proposed and
shown to achieve better performance than com-
monly used sequential models in a variety of lan-
guage understanding tasks. A few models that
encode contextual knowledge include ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). The advantages of
these models are that they are trained on a large
amount of text to encode rich semantic and con-
textual information into the representations giving
them greater representation power than the mod-
els which are only trained on small task-specific
datasets. In this work, we build our system upon
RoBERTa to take advantage of its contextual repre-
sentation for metaphor detection.

3 Metaphor Detection

In this section, we will introduce our model design,
training and prediction for metaphor detection.

https://github.com/HongyuGong/MetaphorDetectionSharedTask.git
https://github.com/HongyuGong/MetaphorDetectionSharedTask.git
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Figure 1: Model structure of IlliniMet system for metaphor detection. Its RoBERTa module learns contextualized
representations, and the feature generator generates linguistic features for words. The outputs of RoBERTa and
feature generator are combined as the word representations, which are sent to feed-forward classifier for metaphor
classification.

3.1 Model

We cast the problem of metaphor detection as a
sequence labeling task, where each word in the
input sentence is classified as either metaphor or
non-metaphor. As shown in Fig. 1, the framework
of our IlliniMet model consists of three modules:
RoBERTa, a feature generator and a feed-forward
classifier. We will discuss each module in detail in
the following parts.

RoBERTa. The meaning of words can vary sub-
tly from one context to another, and RoBERTa
generates contextualized word representations to
capture the context-sensitive semantics of words
(Liu et al., 2019). The use of word representations
from RoBERTa has resulted in state-of-the-art per-
formance in a variety of language understanding
tasks. Given a sentence s consisting of n words
{w1, . . . , wn}, RoBERTa model generates their
contextualized representations {vc

s,w1
, . . . ,vc

s,wn
}.

Linguistic features. The second module in our
model is a feature generator. Previous works on
metaphor detection have shown that linguistic fea-
tures are useful for detecting metaphors. The fea-
tures considered in our work are:

• Part-of-speech (POS) feature. We use the part-
of-speech tags of the input words as the POS
feature (Klebanov et al., 2014). Instead of us-
ing a one-hot vector as the POS feature, we
create an embedding lookup table for POS
tags, where each POS tag is mapped to a vec-

tor. All POS vectors are randomly initialized
and are tuned during model training. We can
obtain the representation of a given tag from
the table during model training and prediction.

• Topic feature. The topic feature (Klebanov
et al., 2014) is a distribution of a word over
100 topics extracted using Latent Dirichlet
Allocation (LDA) (Blei et al., 2003).

• Word concreteness. Word concreteness is ob-
tained from the database of (Brysbaert et al.,
2014). Following (Klebanov et al., 2015),
we binned words’ concreteness rating rang-
ing from 1 to 5 with upward and downward
thresholds respectively. A word would be as-
signed to a bin with the upward threshold a if
its concreteness is at least a. Similarly, it is
assigned to a bin with the downward threshold
b if its concreteness is at most b. Each word
is represented with a binary vector indicating
the bins in which its rating falls.

• WordNet feature. WordNet, a commonly
used linguistic resource, provides the seman-
tic classes of words such as verbs of com-
munication and consumption. We use binary
vectors corresponding to these classes as the
WordNet feature for words (Klebanov et al.,
2016).

• VerbNet feature. The VerbNet database classi-
fies verbs based on their syntactic and seman-
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tic patterns such as their frames, predicates,
thematic roles and thematic role fillers. We
again use binary feature vectors to represent
the classes of verbs as in (Klebanov et al.,
2016).

• Corpus-based feature. Verbs are clustered into
150 semantic clusters, and are assigned with
corresponding one-hot vectors as the corpus-
based features (Klebanov et al., 2016).

We note that some words may not have certain
features; for instance, nouns do not have VerbNet
features. We assign feature vectors of all zeros to
those words without corresponding features.

The Feed-forward classifier. Lastly we have a
feed-forward network based classifier as the infer-
ence module. The model derives word represen-
tations from the concatenation of contextualized
representations and linguistic features. The con-
catenated representations are fed to the classifier
and used to predict word labels (either metaphor or
non-metaphor). We use a one-layer fully-connected
feed-forward neural network for classification. For
word w denote its RoBERTa embedding by vc

s,w in
sentence s and linguistic feature vf

s,w. The infer-
ence module predicts ŷw, the probability over the
two classes (both metaphor and non-metaphor).

ŷw = softmax(W(vc
s,w ⊕ vf

s,w) + b), (1)

where ŷw is a two-dimensional vector, and⊕ is the
concatenation operator. The weight matrix W and
the bias vector b are both trainable model parame-
ters.

As will be described in Section 4, the datasets
we have are imbalanced with many more non-
metaphorical words than metaphorical ones. There-
fore, we used a weighted cross-entropy loss, and
assign less weight to the more frequent label. We
denote yw as the true label of word w, and ŷw as
its predicted probability. Given a set of training
sentences S, the training loss L is formulated as
follows:

L = −
∑
s∈S

∑
w∈s

αyw log ŷw, (2)

where αyw is the weight coefficient of label yw, and
it is the total number of labels divided by the count
of the label αyw .

3.2 Training and Prediction

Training. We divided the training data into train
and dev sets with a split ratio of 4 : 1, and trained
the model to minimize the loss. The model which
achieved the best F1 score on the dev set was
used for testing. We used the pretrained RoBERTa
model with 24 hidden layers in our system. Other
model parameters were randomly initialized.

The system was trained end-to-end, and all
model parameters including RoBERTa’s parame-
ters were tuned during model training. We set the
dropout probability as 0.1, and the training epochs
as 4 for all datasets. The learning rate was set as
2e−5. We availed the warmup schedule by linearly
increasing the learning rate from 0 to 2e− 5 within
the first training epoch. The warmup schedule is
a useful technique for tuning a pretrained model,
while prevents the large deviation of the model
from its pretrained parameters when it is tuned on
a new dataset (Devlin et al., 2019).

Prediction. We use an ensemble method for the
model prediction. Three models were trained in-
dependently with different train/dev splits, and we
collect their predictions on the test data. Ensemble
methods have been proposed to reduce the variance
in predictions made by machine learning and deep
learning models (Dietterich, 2000). In our exper-
iments, we decide the word label by the majority
vote of the predictions from these three models.

4 Experiment

We empirically evaluate our model for metaphor
detection in this section. Precision, Recall and
F1 score are the evaluation metrics used in our
experiments. We report metaphor detection results
on words of any POS tags as well as verbs alone in
the test set provided by the shared task 2.

Dataset. Two datasets were used for the eval-
uation of metaphor detection – the VU Amster-
dam Metaphor Corpus (VUA) (Steen, 2010) and
the TOEFL dataset (Klebanov et al., 2018). The
sentences in these two datasets were manually an-
notated for the task of metaphor detection at the
word level.

The VUA dataset was collected from the BNC
in four genres including news, academic, fiction
and conversation. It provides 12, 122 sentences for
training, and 4, 080 sentences for testing. Around

2https://competitions.codalab.org/
competitions/22188

https://competitions.codalab.org/competitions/22188
https://competitions.codalab.org/competitions/22188
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Table 2: The Test Performance of Different Models on Metaphor Detection

Dataset VUA TOEFL
Type ALLPOS VERB ALLPOS VERB

Metric P R F1 P R F1 P R F1 P R F1
RoBERTa w. feature

(ensemble)
74.6 71.5 73.0 76.7 77.2 77.0 72.6 67.5 70.0 73.1 70.7 71.9

RoBERTa w. feature
(single)

75.0 69.8 72.3 76.5 75.5 76.0 74.2 63.8 68.6 72.0 69.4 70.7

RoBERTa
(ensemble)

74.4 70.3 72.3 76.1 78.1 77.1 70.9 69.7 70.3 70.8 72.7 71.8

RoBERTa
(single)

75.6 68.6 72.0 77.4 75.2 76.3 70.6 67.5 69.0 68.2 70.4 69.3

CNN-LSTM 60.8 70.0 65.1 60.0 76.3 67.2 - - - - - -
ELMo-LSTM 71.6 73.6 72.6 68.2 71.3 69.7 - - - - - -

RNN HG 71.8 76.3 74.0 69.3 72.3 70.8 - - - - - -

11% of VUA tokens are metaphors in the training
data.

The TOEFL dataset consists of essays written
by non-native speakers of English. It contains 180
train essays with 2, 741 sentences and 60 test es-
says with 968 sentences. In the training partition,
7% of TOEFL tokens are metaphors.

Models. We report and compare the perfor-
mance of the variants of our model. The methods
we discuss in this work include:

1. RoBERTa w. feature (ensemble): our full
model with both RoBERTa embeddings and
linguistic features. The ensemble method is
used to make predictions based on the votes
of three separately trained models.

2. RoBERTa w. feature (single): a single full
model trained to classify metaphors.

3. RoBERTa (ensemble): the model built on only
RoBERTa and the classification layer without
using linguistic features. Again, an ensemble
method is applied to model predictions.

4. RoBERTa (single): the model has only
RoBERTa and the classifier. A single model
is trained to make predictions on test data.

Baselines. We also include three strong base-
lines for an empirical comparison in the task of
metaphor detection.

• CNN-LSTM (Wu et al., 2018). This base-
line combines CNN and LSTM layers to learn
contextualized word embedding, and also in-
cludes additional features such as POS and

word clusters. It has achieved the best perfor-
mance on the VUA dataset in the 2018 VUA
Metaphor Detection Shared Task (Leong et al.,
2018).

• ELMo-LSTM (Gao et al., 2018). Built
upon LSTM, this baseline makes use of
pretrained contextualized embeddings from
ELMo model (Peters et al., 2018).

• RNN HG (Mao et al., 2019). This is the most
recent model on metaphor detection reporting
the state-of-the-art results on VUA dataset. It
includes a bidirectional LSTM and makes use
of GloVe and ELMo embeddings.

Results. Table 2 reports the results of our model
variants as well as those of the three baselines dis-
cussed above. All variants of our model achieve
better performance than the baselines, CNN-LSTM
and ELMo-LSTM on both VUA ALLPOS and
VUA VERB. The ensemble model of RoBERTa
with feature falls behind the baseline RNN HG by
1% in F1 score on VUA ALLPOS, while outper-
forming it by a large margin of 6.2%.

Ablation analysis. Ablation analysis was per-
formed to compare the performance of our model
variants. We can evaluate the effect of linguistic
features by comparing our model with and without
external features. When the ensemble method is
used, the incorporation of external features does
not influence the detection of metaphor verbs per-
formance too much on both VUA and TOEFL data.
When it comes to metaphor detection of all words,
external features improve the F1 score by 0.7%
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on VUA data, but degrades the performance on
TOEFL data by 0.3%.

The gain in VUA ALLPOS is brought by the
linguistic information of external features, which
is not captured by the contextualized embeddings.
The performance drop in TOEFL ALLPOS might
have resulted from a larger search space of model
parameters when the external features were added.
Considering that the training data of TOEFL is
much smaller in size compared tto that of VUA,
the TOEFL model is likely to result in sub-optimal
parameters after training when more parameters
are introduced to the classification layer by the
linguistic features.

We also evaluated the effectiveness of the ensem-
ble method by comparing its performance with the
performance of the single model. The ensemble
model outperforms the single model regardless of
whether external features were used. With exter-
nal features, the ensemble model achieves gains
of 0.7% and 1.4% in VUA and TOEFL dataset
respectively when evaluated on all words.

Other model designs. We have only reported
our best-performing models until now. In order
to provide some empirical insights for those in-
terested, we also discuss some designs which we
had tried even though those did not yield perfor-
mance gains. Besides RoBERTa embedding and
linguistic features, we tried other features to ex-
pand the word representation. Borrowing ideas
from (Devlin et al., 2018), we included the con-
catenation and the average of hidden state vec-
tors of RoBERTa’s last four layers. Another idea,
which was inspired from (Mao et al., 2019), was to
include the context-independent embedding from
the bottom layer of RoBERTa. The intuition was
that the model could identify metaphors more eas-
ily by comparing words’ context-independent and
context-sensitive embeddings.

Besides expanding word representation, we also
experimented with different classification modules.
We increased the layers of the feed-forward net-
work, and also tried different activation functions
in the feed-forward layer. We did not observe sig-
nificant performance gains with these modifications
to word representations and the inference module.

5 Discussion

In this section, we perform an analysis to explore
the strengths and weaknesses of our model. Since
we did not have ground truth labels for the test

instances, we divided the training data into train,
dev and test sets with a ratio of 4 : 1 : 1 for the
purpose of error analysis. We trained and tuned our
best performing model on the resulting train and
dev sets respectively, and evaluated it on the test
set.

Model performance on different POS tags.
We evaluate the model performance on words of
different part-of-speech tags. On the VUA dataset,
determiners (“DT”), prepositions and conjunctions
(“IN”) had the highest F1 scores, while adjectives
(“JJ”) and plural nouns (“NNS”) got the lowest F1
scores among all words. On the TOEFL dataset, the
best-performing words were adjectives (“JJ”) and
verbs (“VB”). Words ranking at the bottom were
prepositions and conjunctions (“IN”) and nouns
(“NN”).

The nouns on both datasets received low F1
scores. One explanation is that nouns have a large
vocabulary and often have multiple senses. As will
be discussed in the error analysis below, the model
may not make correct predictions if a noun and its
different senses are not included in the training data.
Interestingly, prepositions and conjunctions in the
VUA dataset got good F1 scores while those in the
TOEFL dataset got low scores. Since TOEFL data
was collected from written texts of non-native En-
glish learners, we conjecture that there is more va-
riety in the usage of prepositions in TOEFL dataset.
The corresponding noise may have made it harder
for the model to generalize from the training set to
the test set.

Error analysis. We look through the examples
where our model made wrong predictions, and sum-
marize the patterns of these error examples below.

• Words that are unseen in the training set.
Some metaphorical words in the test set do
not occur in the training set. Examples are
“whip-aerials”, “puritans”, “half-imagined”
and “pandora box”. Our model incorrectly
classifies these words as non-metaphorical.

• Words that have senses unseen in the train-
ing set. We note that some words occur in
both training and test sets, but they are used
with different senses. For example, the word
“wounded” is only used metaphorically in the
training set. Our model incorrectly predicts
its literal usage as metaphorical usage in the
test data.

• Words whose test labels have inter-annotator
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disagreement. Words “pack” and “bags” are
labeled as metaphorical in the sentence “ his
job was to convince amaldi to pack his bags
because there was a ship waiting at naples to
take him to the united states”. However, we
think these words carry their literal senses in
the given context.

• Inaccurate interpretation of contexts. In the
long sentence “the 63-year-old head of pem-
bridge investments , through which the bid
is being mounted says ...”, word “says” with
the subject “the head” is not a metaphor. Our
model may not capture its subject correctly
given the long-distance dependency, which
results in a false positive prediction.

6 Conclusion

In this paper, we introduced the IlliniMet system
for the task of word-level metaphor detection. Our
model leveraged contextual and linguistic informa-
tion by combining contextualized representation
and external linguistic features. We adopted an
ensemble approach to reduce the variance of pre-
dictions and improve the model performance. The
empirical results showed the effectiveness of our
model. We also performed an error analysis to gain
insights into the model behavior.
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