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Abstract

Social media platforms and discussion forums
such as Reddit, Twitter, etc. are filled with
figurative languages. Sarcasm is one such cat-
egory of figurative language whose presence
in a conversation makes language understand-
ing a challenging task. In this paper, we
present a deep neural architecture for sarcasm
detection. We investigate various pre-trained
language representation models (PLRMs) like
BERT, RoBERTa, etc. and fine-tune it on the
Twitter dataset1. We experiment with a variety
of PLRMs either on the twitter utterance in iso-
lation or utilizing the contextual information
along with the utterance. Our findings indicate
that by taking into consideration the previous
three most recent utterances, the model is more
accurately able to classify a conversation as be-
ing sarcastic or not. Our best performing en-
semble model achieves an overall F1 score of
0.790, which ranks us second2 on the leader-
board of the Sarcasm Shared Task 2020.

1 Introduction

Sarcasm can be defined as a communicative act of
intentionally using words or phrases which tend to
transform the polarity of a positive utterance into its
negative counterpart and vice versa. The significant
increase in the usage of social media channels has
generated content that is sarcastic and ironic in
nature. The apparent reason for this is that social
media users tend to use various figurative language
forms to convey their message. The detection of
sarcasm is thus vital for several NLP applications
such as opinion minings, sentiment analysis, etc
(Maynard and Greenwood, 2014). This leads to

1The dataset is provided by the organizers of Sarcasm
Shared Task FigLang-2020

2We are ranked 8th with an F1 score of 0.702 on the Reddit
dataset leaderboard using the same approach. But we do
not describe those results here as we could not test all our
experiments within the timing constraints of the Shared Task.

a considerable amount of research in the sarcasm
detection domain among the NLP community in
recent years.

The Shared Task on Sarcasm Detection 2020
aims to explore various approaches for sarcasm de-
tection in a given textual utterance. Specifically, the
task is to understand how much conversation con-
text is needed or helpful for sarcasm detection. Our
approach for this task focuses on utilizing various
state-of-the-art PLRMs and fine-tuning it to detect
whether a given conversation is sarcastic. We ap-
ply an ensembling strategy consisting of models
trained on different length conversational contexts
to make more accurate predictions. Our best per-
forming model (Team name - nclabj) achieves an
F1 score of 0.790 on the test data in the CoadaLab
evaluation platform.

2 Problem Description

The dataset assigned for this task is collected from
the popular social media platform, Twitter. Each
training data contains the following fields: “la-
bel” (i.e., “SARCASM” or “NOTSARCASM”),
“response” (the Tweet utterance), “context” (i.e.,
the conversation context of the “response”). Our
objective here is to take as input a response along
with its optional conversational context and predict
whether the response is sarcastic or not. This prob-
lem can be modeled as a binary classification task.
The predicted response on the test set is evaluated
against the true label. Three performance metrics,
namely, Precision, Recall, and F1 Score are used
for final evaluation.

3 Related Work

Various attempts have been made for sarcasm detec-
tion in recent years (Joshi et al., 2017). Researchers
have approached this task through different method-
ologies, such as framing it as a sense disambigua-
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tion problem (Ghosh et al., 2015) or considering
sarcasm as a contrast between a positive sentiment
and negative situation (Riloff et al., 2013; Maynard
and Greenwood, 2014; Joshi et al., 2015, 2016b;
Ghosh and Veale, 2016). Recently, few works have
taken into account the additional context informa-
tion along with the utterance. (Wallace et al., 2014)
demonstrate how additional contextual informa-
tion beyond the utterance is often necessary for
humans as well as computers to identify sarcasm.
(Schifanella et al., 2016) propose a multi-modal
approach to combine textual and visual features
for sarcasm detection. (Joshi et al., 2016a) model
sarcasm detection as a sequence labeling task in-
stead of a classification task. (Ghosh et al., 2017)
investigated that the conditional LSTM network
(Rocktäschel et al., 2015) and LSTM networks with
sentence-level attention on context and response
achieved significant improvement over the LSTM
model that reads only the response. Therefore, the
new trend in the field of sarcasm detection is to
take into account the additional context informa-
tion along with the utterance. The objective of
this Shared Task is to investigate how much of the
context information is necessary to classify an ut-
terance as being sarcastic or not.

4 System Description

We describe our proposed system for sarcasm de-
tection in this section. We frame this problem as
a binary classification task and apply a transfer
learning approach to classify the tweet as either
sarcastic or not. We experiment with several state
of the art PLRMs like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), as well as pre-trained
embeddings representations models such as ELMo
(Peters et al., 2018), USE (Cer et al., 2018), etc.
and fine-tune it on the assigned Twitter dataset. We
briefly review these models in subsections 4. For
fine-tuning, we add additional dense layers and
train the entire model in an end to end manner. Fig-
ure 1 illustrates one such approach for fine-tuning
a RoBERTa model. We sequentially unfreeze the
layers with each ongoing epoch. We apply a model
ensembling strategy called “majority voting”, as
shown in Figure 2 to come out with our final pre-
dictions on the test data. In this ensemble tech-
nique, we take the prediction of several models
and choose the label predicted by the maximum
number of models.

Figure 1: The proposed methodology to fine-tune a
RoBERTa model

Figure 2: The majority voting ensemble methodology
consisting of three sample models

4.1 Embeddings from Language Models
(ELMo)

ELMo introduces a method to obtain deep contex-
tualized word representation. Here, the researchers
build a bidirectional Language model (biLM) with
a two-layered bidirectional LSTM architecture and
obtain the word vectors through a learned function
of the internal states of biLM. This model is trained
on 30 million sentence corpus, and thus the word
embeddings obtained using this model can be used
to increase the classification performance in sev-
eral NLP tasks. For our task, we utilize the ELMo
embeddings to come out with a feature represen-
tation of the words in the input utterance and pass
it through three dense layers to perform the binary
classification task.

4.2 Universal Sentence Encoder (USE)

USE presents an approach to create embedding
vector representation of a complete sentence to
specifically target transfer learning to other NLP
tasks. There are two variants of USE based on
trade-offs in compute resources and accuracy. The
first variant uses an encoding sub-graph of the trans-
former architecture to construct sentence embed-
dings (Vaswani et al., 2017) and achieve higher
performance figures. The second variant is a light
model that uses a deep averaging network (DAN)
(Iyyer et al., 2015) in which first the input embed-
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ding for words and bi-grams are averaged and then
passed through a feedforward neural network to
obtain sentence embeddings. We utilize the USE
embeddings from the Transformer architecture on
our data and perform the classification task by pass-
ing them through three dense layers.

4.3 Bidirectional Encoder Representations
from Transformers (BERT)

BERT, a Transformer language model, achieved
state-of-the-art results on eleven NLP tasks. There
are two pre-training tasks on which BERT is trained
on. In the first task, also known as masked lan-
guage modeling (MLMs), 15% of words are ran-
domly masked in each sequence, and the model
is used to predict the masked words. The second
task, also known as the next sentence prediction
(NSP), in which given two sentences, the model
tries to predict whether one sentence is the next
sentence of the other. Once the above pre-training
phase is completed, this can be extended for classi-
fication related task with minimal changes. This is
also known as BERT fine-tuning, which we apply
for our sarcasm detection task. In the paper, two
models (BERTBASE & BERTLARGE) are released
depending on the number of transformer blocks
(12 vs. 24), attention heads (12 vs. 16), and hid-
den units size (768 vs. 1024). We experiment
with BERTLARGE model for our task, since it gener-
ally performs better as compared to the BERTBASE
model.

4.4 Robustly Optimized BERT Approach
(RoBERTa)

RoBERTa presents improved modifications for
training BERT models. The modifications are as
follows: 1. training the model for more epochs
(500K vs. 100K) 2. using bigger batch sizes
(around 8 times) 3. training on more data (160GB
vs. 16 GB). Apart from the above parameters
changes, byte-level BPE vocabulary is used instead
of character-level vocabulary. The dynamic mask-
ing technique is used here instead of the static mask-
ing used in BERT. Also, the NSP task is removed
following some recent works that have questioned
the necessity of the NSP loss (Sun et al., 2019; Lam-
ple and Conneau, 2019). Summarizing, RoBERTa
is trained with dynamic masking, sentences with-
out NSP loss, large batches, and a larger byte-level
BPE.

Notation Description Seq. Length

RESP only response 70

CON1 previous 1 turn followed by response 130

CON2 previous 2 turns followed by response 180

CON3 previous 3 turns followed by response 230

CON entire context followed by response 450

Table 1: Different Variants of Data

5 Experiments and Results

5.1 Dataset Preparation

The dataset assigned for this task is collected from
Twitter. There are 5,000 English Tweets for train-
ing, and 1,800 English Tweets for testing purpose.
We use 10% of the training data for the validation
set to tune the hyper-parameters of our model.We
apply several preprocessing steps to clean the given
raw data. Apart from the standard preprocessing
steps such as lowercasing the letters, removal of
punctuations and emojis, expansion of contractions,
etc., we remove the usernames from the tweets.
Also, since hashtags generally consist of phrases
in CamelCase letters, we split them into individual
words since they carry the essential information
about the tweet.

To incorporate contextual information along
with a given tweet, we prepare the data in the man-
ner, as shown in Table 1. For data in which only
the previous two turns are available, for them, only
those two turns are considered in CON3 & CON
case illustrated in Table 1. We fix the maximum
sequence length based on the coverage of the data
(greater than 90th percentile) in the training and
test set. This sequence length is determined by
considering each word as a single token.

5.2 Implementation Details

Here, we describe a detailed set up of our ex-
periments and the different hyper-parameters of
our models for better reproducibility. We ex-
periment with various advanced state-of-the-art
methodologies such as ELMo, USE, BERT, and
RoBERTa. We use the validation set to tune the
hyper-parameters. We use Adam (Kingma and Ba,
2014) optimizer in all our experiments. We use
dropout regularization (Srivastava et al., 2014) and
early stopping (Yao et al., 2007) to prevent overfit-
ting. We use a batch size of {2, 4, 8, 16} depending
on the model size and the sequence length.

Firstly, the data is prepared as mentioned in
subsection 5.1. For fine-tuning ELMo, USE, and
BERTLARGE models, we use the module from Ten-
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Model ELMo USE BERTLARGE

Data Pr Re F1 Pr Re F1 Pr Re F1
RESP 0.688 0.690 0.688 0.728 0.728 0.728 0.720 0.735 0.716
CON1 0.677 0.679 0.676 0.718 0.718 0.718 0.714 0.719 0.712
CON2 0.652 0.670 0.643 0.715 0.715 0.715 0.729 0.731 0.729
CON3 0.697 0.697 0.697 0.719 0.725 0.717 0.741 0.758 0.737
CON 0.699 0.699 0.699 0.704 0.705 0.704 0.734 0.734 0.734

Table 2: We compare the fine-tuning of different individual models ELMo and USE and BERTLARGE on different
variants of Twitter test data. The metric Precision (Pr), Recall (Re) and F1 Score (F1) denotes the test set results.

Model RoBERTaLARGE A RoBERTaLARGE B
Data ID Pr Re F1 ID Pr Re F1
RESP 1 0.742 0.745 0.742 6 0.744 0.744 0.744
CON1 2 0.751 0.756 0.750 7 0.752 0.753 0.751
CON2 3 0.751 0.751 0.750 8 0.763 0.764 0.763
CON3 4 0.773 0.778 0.772 9 0.766 0.766 0.766
CON 5 0.759 0.760 0.759 10 0.757 0.757 0.757

Table 3: We compare the fine-tuning of RoBERTaLARGE model on different variants of Twitter test data. We
fine-tune this model twice on the same train and validation data with different weight initialization. We represent
each of these results with a unique ID to utilize them in the ensemble network.

Description Models IDs Pr Re F1
Top 3 RoBERTa A 3, 4, 5 0.773 0.775 0.772
Top 3 RoBERTa B 8, 9, 10 0.778 0.779 0.778
Top 3 RoBERTa A & B 4, 8, 9 0.790 0.792 0.790
Top 5 RoBERTa A & B 4, 5, 8, 9, 10 0.788 0.789 0.787

Table 4: We compare the ensembling results based on several combinations of RoBERTaLARGE models. Bold font
denotes the best results.

sorflow Hub 345 and wrap it in a Keras Lambda
layer whose weights are also trained during the
fine-tuning process. We add three dense layers
{512, 256, 1} with a dropout of 0.5 between these
layers. The relu activation function is being ap-
plied between the first two layers whereas sigmoid
is used at the final layer. ELMo and USE mod-
els are trained for 20 epochs while BERTLARGE is
trained for 5 epochs. During the training, only the
best model based on the minimum validation loss
was saved by using the Keras ModelCheckpoint
callback. Instead of using a threshold value of 0.5
for binary classification, a whole range of threshold
values from 0.1 to 0.9 with an interval of 0.01 is
experimented on the validation set. The threshold
value for which the highest validation accuracy is
obtained is selected as the final threshold and is
being applied on the test set to get the test class
predictions.

3https://tfhub.dev/google/elmo/2
4https://tfhub.dev/google/

universal-sentence-encoder-large/3
5https://tfhub.dev/tensorflow/bert_en_

uncased_L-24_H-1024_A-16/1

For fine-tuning RoBERTaLARGE model, we use
the fastai (Howard and Gugger, 2020) framework
and utilize PLRMs from HuggingFace’s Transform-
ers library (Wolf et al., 2019). HuggingFace library
contains a collection of state-of-the-art PLRMs
which is being widely used by the researcher and
practitioner communities. Incorporating Hugging-
Face library with fastai allows us to utilize powerful
fastai capabilities such as Discriminate Learning
Rate, Slanted Triangular Learning Rate and Grad-
ual Unfreezing Learning Rate on the powerful pre-
trained Transformer models. For our experiment,
first of all, we extract the pooled output (i.e. the last
layer hidden-state of the first token of the sequence
(CLS token) further processed by a linear layer
and a Tanh activation function). It is then passed
through a linear layer with two neurons followed
by a softmax activation function. We use a learn-
ing rate of 1e-5 and utilize the “1cycle” learning
rate policy for super-convergence, as suggested by
(Smith, 2015). We gradually unfreeze the layers
and train on a 1cycle manner. After unfreezing
the last three layers, we unfreeze the entire layers

https://tfhub.dev/google/elmo/2
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1
https://tfhub.dev/tensorflow/bert_en_uncased_L-24_H-1024_A-16/1
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and train in the similar 1cycle manner. We stop
the training when the validation accuracy does not
improve consecutively for three epochs.

We use a simple ensembling technique called
majority voting to ensemble the predictions of dif-
ferent models to further improvise the test accuracy.

5.3 Results and Error Analysis

Here, we compare and discuss the results of our
experiments. First, we summarize the results of
the individual model on the test set using different
variants of data in Tables 2 & 3. From Table 2, we
can observe that adding context information of spe-
cific lengths helps in improving the classification
performance in almost all the models. USE results
are better as compared to the ELMo model since
Transformers utilized in the USE are able to handle
sequential data comparatively better than that as
LSTMs being used in ELMo. On the other hand,
BERTLARGE outperforms USE with the increase
in the length of context history. The highest test
accuracy by BERTLARGE is obtained on the CON3
variant of data which depicts the fact that adding
most recent three turns of context history helps the
model to classify more accurately. This hypothesis
is further supported from the experiments when
a similar trend occurs with the RoBERTaLARGE
model. Since the results obtained by RoBERTa
are comparatively better than other models, we
train this model once again on the same train and
validation data with different weight initialization.
By doing this, we can have a variety of models to
build our final ensemble architecture. The evalu-
ation metrics used are Precision (Pr), Recall (Re),
F1-score (F1).

As observed in Table 3, RoBERTa fine-tuned
on the CON3 variant of data outperforms all other
approaches. In the case of fine-tuning PLRMs like
BERTLARGE & RoBERTaLARGE on this data, we
can observe the importance of most recent three
turns of context history. From the experiments,
we conclude that on increasing the context his-
tory along with the utterance, the model can learn
a better representation of the utterance and can
classify the correct class more accurately. Finally,
RoBERTa model outperforms every other model
because this model is already an optimized and
improved version of the BERT model.

Table 4 summarizes the results of our various
ensemble models. For ensembling, we choose dif-
ferent variants of best performing models on the

test data and apply majority voting on it to get the
final test predictions. We experiment with several
combinations of the models and report here the
results of some of the best performing ensembles.
We can observe that the ensemble model consist-
ing of top three individual models gave us the best
results.

6 Conclusion & Future Work

In this work, we have presented an effective
methodology to tackle the sarcasm detection task
on the twitter dataset by framing it as a binary
classification problem. We showed that by fine-
tuning PLRMs on a given utterance along with its
specific length context history, we could success-
fully classify the utterance as being sarcastic or
not. We experimented with different length context
history and concluded that by taking into account
the most recent three conversation turns, the model
was able to obtain the best results. The fine-tuned
RoBERTaLARGE model outperformed every other
experimented models in terms of precision, recall,
and F1 score. We also demonstrated that we could
obtain a significant gain in the performance by us-
ing a simple ensembling technique called majority
voting.

In the future, we would like to explore with these
PLRMs on other publicly available datasets. We
also aim to dive deep into the context history in-
formation and derive insights about the contextual
part, which helps the model in improvising the
classification result. We also wish to investigate
more complex ensemble techniques to observe the
performance gain.
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