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Abstract

Automatic fact checking is an important task
motivated by the need for detecting and pre-
venting the spread of misinformation across
the web. The recently released FEVER chal-
lenge provides a benchmark task that assesses
systems’ capability for both the retrieval of re-
quired evidence and the identification of au-
thentic claims. Previous approaches share
a similar pipeline training paradigm that de-
composes the task into three subtasks, with
each component built and trained separately.
Although achieving acceptable scores, these
methods induce difficulty for practical applica-
tion development due to unnecessary complex-
ity and expensive computation. In this paper,
we explore the potential of simplifying the sys-
tem design and reducing training computation
by proposing a joint training setup in which
a single sequence matching model is trained
with compounded labels that give supervision
for both sentence selection and claim verifica-
tion subtasks, eliminating the duplicate compu-
tation that occurs when models are designed
and trained separately. Empirical results on
FEVER indicate that our method: (1) outper-
forms the typical multi-task learning approach,
and (2) gets comparable results to top perform-
ing systems with a much simpler training setup
and less training computation (in terms of the
amount of data consumed and the number of
model parameters), facilitating future works
on the automatic fact checking task and its
practical usage.

1 Introduction

The increasing concern with the spread of misinfor-
mation has motivated research regarding automatic
fact checking datasets and systems (Pomerleau and
Rao, 2017; Hanselowski et al., 2018a; Bast et al.,
2017; Pérez-Rosas et al., 2018; Zhou et al., 2019;
Vlachos and Riedel, 2014; Wang, 2017; Shu et al.,

Our code will be publicly available on our webpage.

2019a,b). The Fact Extraction and VERification
(FEVER) dataset (Thorne et al., 2018a) is the most
recent large-scale dataset that enables the devel-
opment of data-driven neural approaches to the
automatic fact checking task. Additionally, the
FEVER Shared Task (Thorne et al., 2018b) intro-
duced a benchmark, the first of this kind, that is
capable of evaluating both evidence retrieval and
claim verification.

Several top-ranked approaches on FEVER (Nie
et al., 2019a; Yoneda et al., 2018; Hanselowski
et al., 2018b) decompose the task into 3 subtasks:
document retrieval, sentence selection, and claim
verification, and follow a similar pipeline training
setup where sub-components are developed and
trained sequentially. Although achieving higher
scores on benchmarks, pipeline training is time-
consuming and imposes difficulty for fast applica-
tion development since downstream training relies
on data provided by a fully-converged upstream
component. The impossibility of parallelization
also causes data-inefficiency as training the same
input sentence for both sentence selection and
claim verification requires twice the computation,
whereas humans can learn the task of sentence se-
lection and claim verification jointly.

In this work, we simplify the training procedure
and increase training efficiency for sentence se-
lection and claim verification by merging redun-
dant components and computation that exist when
training the two tasks separately. We propose a
joint training setup in which sentence selection and
claim verification are tackled by a single neural
sequence matching model. This model is trained
with a compounded label space in which for a given
claim, an input sentence that is labeled as “NON-
SELECT” for sentence selection module training
will also be labeled as “NOTENOUGHINFO” for
claim verification module training. Similarly, in-
put evidence that is labeled as “SUPPORTS” or
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“REFUTES” for claim verification module training
will also be labeled as “SELECT” for sentence se-
lection module training.

To validate our new setup, we compare with the
previous pipeline setup and a multi-task learning
setup which trains the two tasks alternately. Fig. 1
illustrates differences among these three setups.

Results indicate that: our method (1) outper-
forms the multi-task learning setup, and (2) yields
comparable results with a top performing pipeline-
trained system while consuming less than half the
number of data points, reducing the parameter size
by one-third, and converging to a functional state
much faster than the pipeline-trained system. We
argue that the aforementioned design simplification
and training acceleration are valuable especially
during time-sensitive application development.

2 Related Work

2.1 Previous FEVER Systems

Many of the top performing FEVER 1.0 systems,
all achieving greater than 60% FEVER score on the
respective leaderboard (Nie et al., 2019a; Yoneda
et al., 2018; Hanselowski et al., 2018b), share the
same pipeline training schema in which document
retrieval, sentence selection, and claim verification
are all trained separately.

While Nie et al. (2019a) proposed formalizing
sentence selection and claim verification as a simi-
lar problem, sentence selection and claim verifica-
tion are still trained separately on the task, which
contrasts with our setup. Additionally, Yin and
Roth (2018) proposed a hierarchical neural model
to tackle both sentence selection and claim verifi-
cation at the same time, but did not induce compu-
tational savings as in our setup.

2.2 Information Retrieval

Neural networks have been successfully applied
to information retrieval tasks in Natural Language
Processing (Huang et al., 2013; Guo et al., 2016;
Mitra et al., 2017; Dehghani et al., 2017; Qi et al.,
2019; Nie et al., 2019b) with a focus on rele-
vant retrieval. Information retrieval is generally a
relevance-matching task whereas claim verification
is a more semantics-intensive task. We consider
using a single semantics-focused model to conduct
both sentence retrieval and claim verification.

2.3 Natural Language Inference
Natural Language Inference (NLI) requires a sys-
tem to classify the logical relationship between two
sentences in which one is the premise and one is
the hypothesis. This classifier decides whether the
relationship is entailment, contradiction, or neu-
tral. Several large-scale datasets have been created
for this purpose, including the Stanford Natural
Language Inference Corpus (Bowman et al., 2015)
and the Multi-Genre Natural Language Inference
Corpus (Williams et al., 2018). This task can be
formalized as a semantic sequence matching task,
which bears resemblance to both the sentence re-
trieval and claim verification tasks.

2.4 Multi-Task Learning
Multi-task learning (MTL) (Caruana, 1997) has
been successfully used to merge Natural Language
Processing tasks (Luong et al., 2016; Hashimoto
et al., 2017; Dong et al., 2015) for improved per-
formance. Parameter sharing, in particular sharing
of certain structures such as label spaces, has been
used widely in several NLP tasks for this purpose
(Liu et al., 2017; Søgaard and Goldberg, 2016).
Zhao et al. (2018) used a multi-task learning setup
for FEVER that shared certain layers between sen-
tence selection and claim verification modules. Au-
genstein et al. (2018) used shared label spaces in
MTL for sequence classification. Following this
work, Augenstein et al. (2019) used shared label
spaces for automatic fact checking. However, the
labels involved in this work were limited to claim
verification labels only, and did not incorporate
sentence selection as we do in this paper.

2.5 Fake News Detection
In addition to the FEVER shared task, other recent
work in fake news detection has focused on several
aspects of data collection and statement verification.
Shu et al. (2019b) looked into the role of social
context in fake news detection. Additionally, Shu
et al. (2019a) also explored creating explainable
fake news detection.

3 Model

3.1 Sequence Matching Model
Sentence selection and claim verification can be
easily structured as the same sequence matching
problem in which the input is a pair of textual se-
quences and the output is a semantic relationship
label for the pair. Nie et al. (2019a) proposed using
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Figure 1: Different training setups. In the pipeline setup, sentence selection and claim verification models are
trained separately. In the multi-task setup, the two tasks are treated separately, but use a single model. In the
compounded-label training setup, the training is simplified to a single task by mixing the data of the two tasks
and allowing controlled supervision between the two tasks. S, R, NEI, SL, and NSL represent “SUPPORTS”,
“REFUTES”, “NOTENOUGHINFO”, “SELECT”, and “NON-SELECT”, respectively.

the same architecture, the neural semantic match-
ing network (NSMN), on the two tasks and showed
it was effective on both. Thus, we use the same
NSMN model with a modified output layer in our
experiments.

3.2 Neural Semantic Matching Network
(NSMN)

For convenience, we give a description similar to
the original paper (Nie et al., 2019a) about the
model below.
Encoding Layer:

Ū = BiLSTMe(U) ∈ Rd1×n (1)

H̄ = BiLSTMe(H) ∈ Rd1×m (2)

where U ∈ Rd0×n and H ∈ Rd0×m are the two
input sequences, d0 and d1 are input and output
dimensions, and n and m are lengths of the two
sequences.
Alignment Layer:

A = Ū>H̄ ∈ Rn×m (3)

where an element in A[i,j] indicates the alignment
score between i-th token in U and j-th token in H.
Aligned sequences are computed as:

Ũ = H̄ · Softmaxcol(A>) ∈ Rd1×n (4)

H̃ = Ū · Softmaxcol(A) ∈ Rd1×m (5)

where Softmaxcol is column-wise softmax, Ũ is the
aligned representation from H̄ to Ū and vice versa
for H̃. The aligned and encoded representations
are combined as:

F = f([Ū, Ũ, Ū− Ũ, Ū ◦ Ũ]) ∈ Rd2×n (6)

G = f([H̄, H̃, H̄− H̃, H̄ ◦ H̃]) ∈ Rd2×m (7)

where f is one fully-connected layer with a rectifier
as an activation function and ◦ denotes element-
wise multiplication.
Matching Layer:

R = BiLSTMm([F,U∗]) ∈ Rd3×n (8)

S = BiLSTMm([G,H∗]) ∈ Rd3×m (9)

where U∗ and H∗ are sub-channels of the input U
and H without GloVe, provided to the matching
layer via a shortcut connection.
Output Layer:

r = Maxpoolrow(R) ∈ Rd3 (10)

s = Maxpoolrow(S) ∈ Rd3 (11)

h(r, s, |r− s|, r ◦ s) = m (12)

where function h denotes two fully-connected lay-
ers with a rectifier being applied on the output of
the first layer.

3.3 Compounded-Label Output Layer
We propose the following compounded-label out-
put layer for simpler, more efficient training. Given
the input pair xi, the NSMN model is:

m = NSMN(xi) (13)

where m ∈ R4 is the output vector of NSMN in
which the first three elements correspond to claim
verification and the last element to sentence selec-
tion. Then, the probabilities are calculated as:

ycv = softmax(m[0:3]) (14)

yss = sigmoid(m3) (15)

where m[0:3] denotes the first three elements
of m and ycv ∈ R3 denotes the probabil-
ity of predicting the relation between the in-
put and claim as “SUPPORTS”, “REFUTES”, or
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“NOTENOUGHINFO”, while m3 denotes the fourth
element of m and yss ∈ R indicates the probabil-
ity of choosing the input as evidence for the claim.
This allows us to transfer the model’s outputs to
predictions in a compact way.

3.4 Compounded-Label Training
In order to simplify the training procedure and in-
crease data efficiency, we introduce compounded-
label training. Consider the model output vector:

ŷi =

 ycv

yss
1− yss

 (16)

where ŷi ∈ R5 is the concatenation of ycv and
[yss, 1− yss]>. To optimize the model, we use the
entropy objective function:

J = −yi · log(ŷi) (17)

In a typical classification setup, the ground truth
label embedding yi is a one-hot column vector cho-
sen from an identity matrix, where the dimension
equals the total number of categories. However,
our compounded-label embedding is structured as
the matrix with some supervision provided in the
zero-area of one-hot embeddings shown below:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 λ2
λ1 λ1 0 1 0
0 0 0 0 1

 (18)

The first 3 columns are label embed-
dings for “SUPPORTS”, “REFUTES”, and
“NOTENOUGHINFO” in verification and the last 2
columns are the label embeddings for “SELECT”
and “NON-SELECT” in sentence selection, resp.
Thus, for a given claim, “SUPPORTS” and
“REFUTES” evidence will also give supervision as
positive examples to sentence selection weighted
by λ1 and “NON-SELECT” sentences will also give
supervision as “NOTENOUGHINFO” evidence to
claim verification weighted by λ2.

4 Experimental Setup

We focused on comparing the following five
NSMN1 training setups for sentence selection and
claim verification. We obtain upstream document
retrieval data using the method in Nie et al. (2019a).
Training details are in the appendix.

1We remove the external WordNet features from NSMN
for simplicity and speed.

Pip. Mul. Mix. Cmp.

Shared Parameters 7 3 3 3
Mix. in Same Batch 7 7 3 3
Supv. for Other Task 7 7 7 3

Table 1: Properties of different training setups. “Pip.”,
“Mtl.”, “Mix.”, “Cmp.” stand for pipeline, multi-task
learning, direct mixing, and compounded-label training
setup, respectively. ‘Supv.’=Supervision.

Model FEVER Score Rec. # Param Data

D.M. 57.92 85.3 18.2M 11.5M
MTL. 62.25 85.3 18.2M 14.4M
Rdc-Pip. 61.82 83.7 18.2M 11.4M
C.L. 64.68 86.6 18.2M 3.52M

Pip. 65.37 86.8 27.6M 9.6M

Table 2: Final performance, evidence recall, model
size, and data consumption (until convergence) for
all 5 setups. We measure data consumption as the
amount of data the model used for parameter updat-
ing, e.g., 10K updates w/ batch size 32 consumes 320K
data. ‘D.M.’=direct mixing, ‘C.L.’=compounded-label,
‘MTL.’=multi-task learning, ‘Rdc-Pip.’=pipeline w/ re-
duced size, ‘Pip.’=pipeline (Nie et al., 2019a).

Pipeline: We train separate sentence selection and
claim verification models as in Nie et al. (2019a).

Multi-task Learning: We follow the neural multi-
task learning setup called alternate training (Dong
et al., 2015; Luong et al., 2016; Hashimoto et al.,
2017), where each batch contains examples from a
single task only. We build a single NSMN model
for both selection and verification and alternatively
optimize the two tasks.

Direct Mixing: We simply blend the input exam-
ples of the two tasks into the same batch, providing
additional simplicity over our multi-task learning
setup in which batches need to be task-exclusive.

Compounded-Label Training: We also blend the
inputs of the two tasks, but counter to direct mixing,
we use the compounded-label embedding described
in Sec. 3 for optimization and downsample the
input examples to reduce training time.

Reduced Pipeline: This is the same pipeline setup
as described above, except that we reduce the
model sizes for both sentence selection and ver-
ification such that the total model size is equal to
all other setups that use only a single joint model.
This experiment gives a fair comparison between
each of the setups by canceling out the parameter-
size variance. Table 1 shows a comparison of the
first four different setups.
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Figure 2: Model performance for different setups with
respect to number of sequence pairs consumed. We
only show performance until the consumption of the
first 30×320K data points.

5 Results and Analysis

FEVER Score Performance: We observe from
Table 2 that compounded-label training outper-
forms2 both the multitask learning and direct mix-
ing setups. We speculate that the performance
gap is due to the fact that in the multi-task and
direct mixing training setups, the same model is
trained by separated and different supervisions of
two tasks, resulting in oscillation and making it
difficult to reach a better global minimum. How-
ever, in the compounded-label setup, training the
model on one task always gives a subtly-controlled
supervision on the other task. This not only applies
natural regularization on the targeted task itself,
but also pushes the model towards a better state for
both tasks.

Next, we also show that the compounded-label
setup achieves a higher FEVER score than the
reduced-pipeline setup (3rd row in Table 2), in-
dicating its ability to model the two tasks jointly in
a more compact and parameter-efficient way. Al-
though the full pipeline setup gives a slightly higher
FEVER score, the compounded-label setup has the
advantage of reducing parameter size by one-third,
requiring less than half the training computation,
and improving the training efficiency (elaborated
on in the following subsection). Finally, we also
compare recall scores, since this is most related
to the FEVER score, as validated by Nie et al.
(2019a).
Efficiency: In Fig. 2, we show the training effi-

2In Table 2, the improvements of compounded-label over
the first three entries are significant with p < 10−5 while
the improvement of full pipeline over compounded-label is
significant with p < 0.05. Stat. significance was computed
on bootstrap test with 100K iterations (Noreen, 1989; Efron
and Tibshirani, 1994).

Model FEVER LA F1

Pipeline 62.69 66.20 53.71
Compounded-Label 61.65 66.21 50.28

Table 3: Performance of systems on blind test results.

ciency of different approaches by tracking perfor-
mance with the number of data points consumed.3

Parameter update settings are equal across all ex-
periments and thus show an accurate depiction of
the speedup independent of batch size, etc. For
fair comparison, there is no FEVER score for the
first 22 × 320K data points in the pipeline setup
since these data points are consumed in the sep-
arate upstream sentence selection training. The
compounded-label training setup exhibits a more
stable training curve than the other setups during
initial training, and reaches a 60%+ FEVER score
after seeing only 1,280K data points. This indicates
that the compounded-label setting allows the model
to quickly reach a stable and functional state. This
is valuable for online learning on streaming data,
where the model is trained with real-time human
feedback. On the contrary, the performance of the
multi-task learning and direct mixing setups fluc-
tuates at a low level during initial training stages,
which shows that optimization oscillation makes
training difficult in these setups.
Blind Test Results: In Table 3 we compare the two
setups on the blind test set. Compounded Label
achieved 61.65% FEVER score and 66.21% label
score (LA) while the pipeline setup got 62.69%
and 66.20% for FEVER score and LA, respectively.
Since the upper bound is dependent on document
retrieval quality, we report the upper bound of these
scores as 92.42% following Nie et al. (2019a). Our
method was able to yield results comparable to the
pipeline model on FEVER score and even higher
results on label score, with simpler design, faster
convergence and only two-thirds the number of
parameters.

6 Conclusion

We present a simple compounded-label setup for
jointly training sentence selection and claim veri-
fication. This setup provides higher training effi-
ciency and lower parameter size while still achiev-
ing comparable results to the pipeline approach.

3We measure the training efficiency based on the size of
data consumed until convergence rather than training time
or the full training size because it gives a fair measurement
about how fast the model can reach a fully-functional state
independent of computational resources and platforms.
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A Appendix

A.1 NSMN Output Layer Modifications

The dimension of final NSMN output vector can
be customized depending on the downstream task.
In the pipeline setting, multi-task learning setting,
and direct mixing setting, m = 〈m+,m−〉 for sen-
tence selection, where m+ ∈ R is a scalar value in-
dicating the score for selecting the current sentence
as evidence and m− gives the score for discard-
ing it. For claim verification, m = 〈ms,mr,mn〉,
where the elements of the vector denote the score
for predicting the three labels, namely SUPPORTS,
REFUTES, and NEI, respectively. However, in the
compounded-label setting, m ∈ R4 and the model
is optimized with a compact label embedding de-
scribed in the paper.

A.2 Training Details

This section includes the training details for sen-
tence selection and verification. We use the
pageview method in Nie et al. (2019a) to obtain the
same upstream document retrieval data for all of
our four setups.

Pipeline: In the pipeline and the reduced-size-
pipeline setup, we use exactly the same training
setup as in Nie et al. (2019a) for sentence selection
and claim verification.

Multi-task Learning: In this setup, we choose
batch as 64 and use Adam optimizer with default
initial parameters. The mixing ratio for sentence
selection and claim verification is set to 1 thus the
two tasks are both trained alternately every two
batches. As in Nie et al. (2019a), we downsample
the training data for the sentence selection task at
the beginning of each epoch.

Data Mixing: We use a batch size of 64 and
Adam optimizer with default settings. As our two
subtasks contain different amounts of training data,
we use the data size ratio as the task mixing ratio
within each batch. We guarantee that each label is
present at least once in each mini-batch.

Compounded-Label: We use a batch size of 32
and Adam optimizer with default settings. We
downsample the negative examples for sentence
selection with the probability of p (this is done at
the beginning of every epoch) and randomly mix
and shuffle the training data for both sentence se-
lection and claim verification into one input set and
train the single model with compounded-label as
described in the paper. p is set to be 0.1 at the first
epoch and 0.025 otherwise. λ1 and λ2 are set to be
1 and 0.5 respectively.

Hyper-parameter Selection: In the experi-
ments for multi-task learning, data mixing and
compounded-label settings, the batch size is chosen
from either 64 or 32 by optimizing final FEVER
Score.4 In multi-task learning, the mixing ratio
of sentence selection to claim verification is tuned
from {1, 2}. For the compounded-label setting, λ1
and λ2 are tuned from {1, 0.9} and {0.45, 0.5}
respectively based on the intuition that supporting
and refuting sentences can be also treated as posi-
tive evidence examples with high confidence while
partially relevant sentences that cannot verify the
claim can be treated as weakly related evidence.

4We observed a failure of convergence when we choose
batch size as 32 in multi-task learning settings.


