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Abstract

The analogy task introduced by Mikolov et al.
(2013) has become the standard metric for tun-
ing the hyperparameters of word embedding
models. In this paper, however, we argue
that the analogy task is unsuitable for low-
resource languages for two reasons: (1) it re-
quires that word embeddings be trained on
large amounts of text, and (2) analogies may
not be well-defined in some low-resource set-
tings. We solve these problems by introducing
the OddOneOut and Topk tasks, which are
specifically designed for model selection in the
low-resource setting. We use these metrics to
successfully tune hyperparameters for a low-
resource emoji embedding task and word em-
beddings on 16 extinct languages. The largest
of these languages (Ancient Hebrew) has a 41
million token dataset, and the smallest (Old
Gujarati) has only a 1813 token dataset.

1 Introduction

Imagine you’re given the task of training a text clas-
sification model for Middle English. This form of
English was spoken in the Middle Ages from 1066-
1500 CE. It is significantly different from modern
English (Chamonikolasová, 2014), and only a hand-
ful of historians speak this language today.

A natural first step would be to train word embed-
dings. So you use the Classical Language ToolKit
(CLTK) (Johnson, 2014) to download the largest
corpus of known Middle English documents (only
7 million tokens, 0.3 million unique tokens), and
Gensim (Řehůřek and Sojka, 2010) to train the
embeddings. To evaluate the embeddings, you fol-
low the current standard practice established by
Mikolov et al. (2013) of using an analogy test set.
Of course, you can’t use Mikolov et al. (2013)’s
test set—it is in Modern English, and Middle En-
glish is not Modern English. But you also can’t
even use translations of their test set—many of the
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Figure 1: The standard analogy task (Mikolov et al.,
2013) fails to measure the quality of word embeddings
trained on small datasets, but our novel OddOneOut
and Topk tasks succeed in this regime.

analogy concepts simply didn’t exist in the Middle
Ages. For example, the analogy

London is to England as Paris is to France

can be translated perfectly fine into Middle English,
but the concept of nations and capitals didn’t exist
in the Middle Ages, so the analogy is not semanti-
cally meaningful. To create a meaningful analogy
test set, you hire a historian fluent in Middle En-
glish, and with considerable effort and research she
creates custom analogies that make sense in Middle
Age England.

With this analogy test set in hand, you train
dozens of models with varying hyperparameters.
Unfortunately, all these models get 0 accuracy on
your test set. You simply don’t have enough data
to get good results on the analogy task. As Figure
1 shows, the analogy task requires a large training
dataset before it begins getting non-zero results
(Details provided in Section 3.1 below). But that
does not mean that you cannot train word embed-
dings on Middle English.

In this paper, we introduce the OddOneOut and
Topk tasks for evaluating word vectors on low-
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resource languages, successfully train word embed-
dings for 16 extinct languages (including Middle
English), and perform a low-resource emoji em-
bedding task. To get a sense of scale, the origi-
nal word2vec paper trained English word embed-
dings on a dataset with 6 billion tokens (Mikolov
et al., 2013) with subsequent work improving per-
formance by training on datasets as large as 630
billion tokens (Grave et al., 2018). In this paper,
the largest dataset we consider has 41 million to-
kens, and the smallest only 1813 tokens. We argue
that different evaluation techniques are needed for
datasets like ours that are more than 1000 times
smaller. Figure 1 shows that the OddOneOut and
Topk tasks are better suited than the analogy task
to measure improvement in embedding quality with
datasets like these.

1.1 Related Work

Other work in the low-resource regime has focused
on developing new training methods rather than
evaluation methods. Specifically, the goal has been
to reduce the sample complexity of word embed-
ding models by adding new regularizations (Adams
et al., 2017; Jiang et al., 2018; Gupta et al., 2019;
Jungmaier et al., 2020). A common thread of this
work is the difficulty of evaluation. Unfortunately,
each of these works evaluate their method only in a
simulated low-resource environment using Modern
English text and not on any actual low-resource
languages. They do this specifically because no
evaluation metrics were available that were suit-
able for their low-resource target languages. More
theoretical work has also shown that these simu-
lated low-resource design methodologies give bi-
ased hyperparameter estimates which systemati-
cally overestimate model performance (Kann et al.,
2019). This highlights the need for new evalua-
tion methods like ours, which are suitable for the
low-resource regime.

From an evaluation standpoint analogies are not
the only metric available to tune the hyperparam-
eters of low-resource embedding models. Other
work has focused on similarity tasks, establishing
evaluation benchmarks based on human annotation
of English language word pairs (Finkelstein et al.,
2001; Radinsky et al., 2011; Bruni et al., 2012).
Compared to the analogy task, these methods are
more sensitive to low-resource experimental design,
however, they suffer from the high overhead costs
associated with manually generating test datasets.

In contrast, our tasks leverage the Wikidata knowl-
edge base to automate the process of creating cus-
tom test sets while still maintaining sensitivity to
low-resource settings.

High-resource languages also directly benefit
from our methods in two ways. First, we help au-
tomate evaluation on many languages. Grave et al.
(2018) trained FastText embeddings on 157 lan-
guages using data from the Common Crawl project.
But they were only able to explicitly evaluate 10 of
these language models using the analogy task due
to the expense required in developing appropriate
test sets. A major advantage of our OddOneOut
and Topkmethods is that test sets can be generated
for them automatically in any of Wikidata’s 581
supported languages (including extinct languages
like Middle English).

Second, many applications of word embeddings
investigate low-resource subsets of high-resource
languages. There is growing body of digital hu-
manities work where English language text is sub-
divided into smaller corpora based on time periods
(e.g. Kulkarni et al., 2015; Hamilton et al., 2016b,a;
Dubossarsky et al., 2017; Szymanski, 2017; Chen
et al., 2017; Liang et al., 2018; Tang, 2018; Kutu-
zov et al., 2018; Kozlowski et al., 2019) or different
political ideologies Azarbonyad et al. (2017). Word
embeddings are then trained on these smaller cor-
pora, and differences in the resulting embeddings
are used to track changes in word usage. Our eval-
uation methods can be used to improve the ability
to evaluate this work as well.

1.2 Contributions
Our contributions can be summarized with the fol-
lowing three points.

1. We introduce the first word embedding evalu-
ation tasks designed specifically for the low-
resource setting, OddOneOut and Topk.
Code for computing these metrics is released
as an open source Python library.1

2. We introduce a method for automatically gen-
erating test datasets for the OddOneOut and
Topk tasks in the 581 languages supported
by the Wikidata project.

3. We perform the largest existing multilin-
gual evaluation on low-resource languages us-
ing 16 extinct languages from the Classical

1https://github.com/n8stringham/
gensim-evaluations

https://github.com/n8stringham/gensim-evaluations
https://github.com/n8stringham/gensim-evaluations
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Language ToolKit (CLTK) (Johnson, 2014).
Specifically, we provide word embeddings for
16 of the 18 languages with corpora in the
CLTK library (Johnson, 2014) and introduce
the Language Comparison Task (LCT) to in-
vestigate which topics are included in these
classical language corpora.

The remainder of the paper is organized as fol-
lows. Section 2 formally defines the Topk and
OddOneOut tasks. Section 3 empirically demon-
strates that these tasks are better than the analogy
task in low-resource settings. We use a synthetic
English language experimental design common
in previous work, and demonstrate the versatility
of our evaluation metrics by applying them to an
emoji embedding task for which the analogy task
is not even well defined. Section 4 computes word
embeddings for 16 extinct languages and intro-
duces our technique to automatically generate test
sets for the OddOneOut, Topk, and LCT tasks
using Wikidata. We also provide a semantic analy-
sis of the topics covered in each of the 16 language
corpora. Section 5 concludes by discussing how
extensions to this work could serve communities
working with low-resource languages.

2 Evaluation Methods

The OddOneOut and Topk tasks are simple and
widely applicable. Both tasks require a test set
consisting of a list of categories, where each cat-
egory contains a list of words belonging to that
category. Figure 4 shows some example categories
generated through a fully automated process (de-
scribed in Section 4.1). The Topk task measures
a model’s ability to identify words that are related
to each category, and conversely the OddOneOut
task measures a model’s ability to identify words
that are unrelated to each category,

Formally, assume that there are m categories,
that each category has n words2, that there are v
total words in the vocabulary, and that the words are
embedded into Rd. The method of generating the
embedding (e.g. word2vec, GloVe, fastText) does
not matter. Let ci,j be the jth word in category i,
and let Ci = {ci,1, ci,2, ..., ci,n} be the ith category.

2In practice, the number of words per category can vary for
each category, however for notational simplicity we assume
that each category has the same number of words.

2.1 The Topk method
Let Sim(k,w) return the k most similar words in
the vocabulary to w. We use the cosine distance in
all our experiments, but any distance metric can be
used. Next, define the Topk score for class i to be

Topk(k, i) =
1

n

n∑
j=1

1

k

∑
x∈Sim(k,ci,j)

1[x ∈ Ci] (1)

and the Topk score for the entire evaluation set to
be

Topk(k) =
1

m

m∑
i=1

Topk(k, i). (2)

The runtime of Sim is O(dvk).3 So the run-
time of Topk(k, i) is O(dnk2v) and the runtime
of Topk(k) is O(dnmk2v). Typically k is small
(we recommend k = 3 in our experiments), and so
the runtime is linear in all of the interesting param-
eters. In particular, it is linear in both the size of
our vocabulary, the number of categories in the test
set, and the size of the categories.

2.2 The OddOneOut method
Define the OddOneOut score of a set S with k
words with respect to a word w 6∈ S as

OddOneOut(S,w) = 1[w = ŵ] , (3)

where
ŵ = argmin

x∈S∪{w}

x · µ
‖x‖‖µ‖

(4)

and µ =
1

k + 1

(
w +

k∑
i=1

si

)
. (5)

We define the kth order OddOneOut score of a
category i to be

OddOneOut(k, i) =
1

|P |
∑

(S,w)∈P

OddOneOut(S,w)

(6)
where

P = {(S,w) : S is a combination of k words

from Ci, and w ∈ V − Ci}. (7)

In Equation (7) above, the total number of val-
ues that S can take is

(
n
k

)
= O(nk), and the to-

tal number of values that w can take is O(v), so
3We use Gensim’s implementation of Sim, which uses the

naive loop strategy for computing the nearest neighbor. Data
structures like the kd-tree or cover tree could potentially be
used to speed up this search, but we did not find such data
structures necessary.
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|P | = O(nkv). Finally, we define the k-th order
OddOneOut score of the entire evaluation set to
be

OddOneOut(k) =
1

m

m∑
i=1

OddOneOut(k, i).

(8)
The runtime of OddOneOut(S,w) is

O(dk). So the runtime of OddOneOut(k, i)
is O(dknkv) and the runtime of OddOneOut(k)
is O(dkmnkv). This exponential dependence on k
is very bad. In practice, we used k = 3 in all of
our experiments, but even this small value required
prohibitively long run times.

To solve this problem, we use a sampling strat-
egy. Let P̃ denote the set of p samples without
replacement from the set P . Then we rewrite Equa-
tion 6 as

OddOneOut(k, i) =
1

p

∑
(S,w)∈P̃

OddOneOut(S,w)

(9)
With this definition, the runtime of
OddOneOut(k) is O(dkmpv), which is lin-
ear in all the parameters of interest. In our
experiments, we found p = 1000 to give suffi-
ciently accurate results without taking too much
computation.

3 Experiments

We demonstrate the usefulness of our evaluation
metrics with two experiments. First, we show
that the OddOneOut and Topk metrics are bet-
ter measures of word embedding quality than the
analogy metric in the low-resource regime using
simulated English data. Second, we show that
the OddOneOut and Topk metrics are useful for
model selection in an emoji embedding task where
the analogy task is not well defined. This experi-
ment also demonstrates that the OddOneOut and
Topk metrics correlate with downstream task per-
formance.

3.1 English Experiments
This experiment measures the performance of the
OddOneOut, Topk, and analogy metrics as a
function of dataset size.

For training data, we use a 2017 dump of the
English-language Wikipedia that contains 2 bil-
lion total tokens and 2 million unique tokens. The
dataset is freely distributed with the popular Gen-
Sim library (Řehůřek and Sojka, 2010) for training
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Figure 2: Breakdown of model performance by cate-
gory. There does not appear to be any correlation be-
tween the performance of the three tasks, indicating
that each task is measuring a different aspect of linguis-
tic knowledge.

word embeddings, and it is therefore widely used.
State-of-the-art embeddings are trained on signifi-
cantly larger datasets—for example, datasets based
on the common crawl contain hundreds of billions
of tokens even for non-English languages (Buck
et al., 2014; Grave et al., 2018)—but since our em-
phasis is on the low-resource setting, this 2 billion
token dataset is sufficient.

Using the Wikipedia dataset, we generate a se-
ries of synthetic low-resource datasets of varying
size. First, we sort the articles in the Wikipedia
dataset randomly.4 Then, each dataset i con-
tains the first 2i tokens in the randomly ordered
Wikipedia dump.

4This sorting is required for our low-resource datasets to be
representative of English language text. Without this random
sorting step, most of our datasets would be based only on
articles that begin with the letter A, and therefore would not
contain a representative sample of English words.



180

On each of these low-resource datasets, we train
a word2vec skipgram model with GenSim’s default
hyperparameters5, which are known to work well
in many contexts. Importantly, we do not tune these
hyperparameters for each low-resource dataset. In-
stead, we use the same hyperparameters because
our goal is to isolate the effects of dataset size on
the three evaluation metrics.

For the analogy task, we use the standard Google
Analogy test set introduced by (Mikolov et al.,
2013). This test set contains 14 sets of analo-
gies, and each analogy set contains 2 categories
that are being compared. We generate test sets for
the OddOneOut and Topk tasks from all 28 cat-
egories in the Google test set. For example, the
countries-capitals analogy set has analogies like

London is to England as Paris is to France

In order to convert this analogy to work with
OddOneOut and Topk test sets we use the set of
all capitals and the set of all countries as separate
categories. Applying this same method on each
analogy pair in the original Google Analogy test
set results in an evaluation dataset that is compat-
ible with the OddOneOut and Topk tasks. Note
that this dataset conversion, results in explicitly
losing information about how these categories re-
late to each other. While the analogy task tests
a model’s knowledge of the relationship between
categories, the OddOneOut and Topk tasks will
only test a model’s knowledge about each cate-
gory individually. Since these tasks are testing
less knowledge, it makes since that they will get
improved performance on smaller data sets. This
intuition is confirmed in the results shown in Fig-
ure 1. The accuracy broken down by category for
our model trained on the full dataset is shown in
Figure 2. How a category performs on one task
does not seem correlated to how a model performs
on other tasks, which indicates that all three tasks
are in fact measuring different aspects of linguis-
tic knowledge (and not just representing the same
knowledge scaled differently).

3.2 Emoji Experiments

This second experiment demonstrates the versatil-
ity of our methods by applying them to the domain
of emoji embeddings. We show that our generic
Topk and OddOneOut metrics perform as well

5Embedding dimension 100, number of epochs 1, learning
rate 0.025, window size is 5, min count is 5.
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Figure 3: The performance of the generic OddOneOut
and Topk tasks mirrors the performance of Eisner
et al. (2016)’s emoji-specific model selection task as
the learning rate varies. All three tasks provide can be
used to estimate the optimal learning rate for the down-
stream sentiment classification task.

as a custom designed emoji evaluation metric. That
is, we don’t sacrifice performance by choosing
our easy-to-use and widely applicable metrics over
harder-to-use domain-specific metrics.

Emoji embeddings are an important topic of
study because they are used to improve the perfor-
mance of sentiment analysis systems (e.g. Eisner
et al., 2016; Felbo et al., 2017; Barbieri et al., 2017;
Ai et al., 2017; Wijeratne et al., 2017; Al-Halah
et al., 2019). Unfortunately, the standard analogy
task is not suitable for evaluating the quality of
emoji embeddings for two reasons. First, emoji em-
beddings are inherently low-resource—only 3000
unique emojis exist in the Unicode standard—and
thus evaluation techniques specifically designed
for the low-resource setting will be more effective.
Second, the semantics of most emojis do not allow
them to be used in any analogy task. In particular,
the original emoji2vec paper (Eisner et al., 2016)
identifies only 6 semantically meaningful emoji
analogies.

In order to tune their emoji embeddings, Eisner
et al. (2016) therefore do not use the analogy task,
and instead introduce an ad-hoc “emoji-description
classification” metric that required the creation of a
test set with manually labeled emotion-description
pairs. Due to the expense of manually creating this
test set, only 1661 of the 3000 Unicode emojis are
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included.6 The Topk and OddOneOut metrics
improve on the “emoji-description classification”
metric because they are able to evaluate the quality
of all emojis and require no manual test set creation.
For our test set categories, we use the categories
that the Unicode standard provides for each emoji.7

To test the performance of the three metrics,
we use them to tune the hyperparameters of an
emoji2vec model. To ensure the fairest compari-
son possible, we use the original emoji2vec code
for training and model selection, changing only
the function call to the metric used. In particu-
lar, this means we are only embedding and evalu-
ating on the subset of 1661 emojis supported by
the “emoji-description classification” custom met-
ric. The code allows tuning of the model’s learning
rate, dimension, epochs, and three other hyperpa-
rameters unique to Eisner et al. (2016)’s custom
metric. We found that the learning rate was the
only hyperparameter to have a significant impact.
Figure 3 shows how it affects performance on the
three evaluation metrics and a downstream sen-
timent analysis task. All metrics show optimal
performance with a learning rate of approximately
8 × 10−4, which also results in the best perfor-
mance on the downstream task. This indicates that
our Topk and OddOneOut metrics generate the
same models as the specialized “emoji-description
classification” metric, but our metrics have the ad-
vantage of being simpler, more widely applicable,
and easier to generate test data for.

Note that it is incorrect to conclude that the
Eisner et al. (2016) method is better than the
OddOneOut and Topk values because it achieves
higher accuracy rates in Figure 3. When evaluating
a model selection metric, the important point to
consider is the location where the metric is max-
imized, and not the maximum value itself. The
location is used to determine the optimal hyperpa-
rameter, and all three metrics have maximal perfor-
mance at the same location.

4 Multilingual Content Analysis

In this section we perform the first highly multilin-
gual analysis of word embeddings for low-resource
languages. We analyze 18 languages provided by
the Classical Language ToolKit (CLTK) library

6New emojis have been added to the Unicode standard
since the publication of Eisner et al. (2016), but these emojis
have not been added to the test set.

7For the full list of categories, see https://unicode.
org/Public/emoji/13.0/emoji-test.txt

Human Biblical Figures: Abednego, Abra-
ham, Azor, Chedorlaomer, Christ, Goliath,
Hilkiah, Lo-Ammi, Matthew the Apostle, Peter,
Sheba, Uz, Yael, Zerubbabel

Buddhism: Adharma, Buddha, Bhagavan,
Bindu, Guru, Impermanence, Karma, Medita-
tion, Mu, Mudra, Nirvana, Nondualism, Rein-
carnation, Sutra, Vipassanā

Hinduism: Adharma, Ashvadamedha, Brah-
min, Bhagavan, Guru, Hindu Prayer Beads,
Karma, Mahātmā, Mudra, Nirvana, Reincar-
nation, Rishi, Samadhi, Sutra

Figure 4: A sample of 3 categories and their respec-
tive terms from our test set that we automatically ex-
tracted from Wikidata. Only the English translations
are shown.

(Johnson, 2014).8 Each is “extinct” in the sense
that no new native text will ever be generated in
these languages. That is not to say that CLTK is
necessarily comprehensive in its coverage, nor that
it’s impossible that new data sources in these lan-
guages will be discovered. Rather, we claim that
data representing them in their historical context
(and consequently the theoretical amount of infor-
mation we are able to extract) is capped. It’s true
that some classical languages are studied and used
in modern times; however, this is almost always
motivated by the need to extract meaning from
historical corpora, not to add to them. For these
reasons, the prospect of improving models on ex-
tinct languages through additional data collection
seems unlikely. Instead, we must develop better
techniques for the low-resource setting.

Among our datasets, the largest is Ancient He-
brew, with 41 million tokens, and the smallest is
Old Gujarati with only 1813 tokens. Our tech-
niques successfully let us choose hyperparameters
for 16 of the 18 languages under consideration,
including the tiny Old Gujarati model.

First we describe a procedure for automatically
generating test set data for the OddOneOut and
Topk tasks using Wikidata. Then, we describe our
model training and selection procedure for each
language. Finally, we perform the LCT task and an
interlanguage analysis of the corpora’s content.

8Specifically, we analyzed all languages for which CLTK
provides both a training corpus and a tokenization function, as
these are the minimum requirements needed for training word
embeddings.

https://unicode.org/Public/emoji/13.0/emoji-test.txt
https://unicode.org/Public/emoji/13.0/emoji-test.txt
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Corpus Hyperparameters (∗) Metrics

Language Total Tokens Uniq. Tok. Model Type Dim WS LR MC Lem OddOneOut Topk Avg

Helenic
Anc. Greek 37 868 209 1 877 574 w2v cbow 40 9 0.1 4 False 0.1900 0.0178 0.0327

Italic
Latin 17 777 429 470 790 w2v cbow 50 10 0.1 7 False 0.1527 0.0645 0.0908
Old French 68 741 8 343 fast sg 250 6 0.1 8 False 0.0001 0.0109 0.0003

Germanic
Mid. English 7 048 144 314 527 fast sg 90 5 0.1 7 False 0.0239 0.0012 0.0024
Mid. High German 2 090 954 60 674 fast cbow 15 6 0.1 3 False 0.0005 0.0029 0.0010
Old English 104 011 33 018 fast cbow 425 3 0.1 3 True 0.0000 0.0005 0.0002
Old Norse 458 377 59 186 w2v cbow 60 10 0.1 3 False 0.0569 0.0093 0.0161
Old Swedish 1 297 740 116 374 fast sg 50 8 0.1 5 False 0.0031 0.0001 0.0004

Indic
Bengali 5 539 2 323 fast cbow 15 3 0.1 4 False 0.0000 0.0065 0.0002
Gujarati 1 813 1 140 fast sg 80 3 0.1 5 False 0.0000 0.0292 0.0002
Hindi 587 655 55 483 fast cbow 45 4 0.1 8 False 0.0175 0.0038 0.0064
Malayalam 9 235 5 405 - - - - - - - - - -
Marathi 797 926 96 778 w2v sg 400 4 0.1 6 False 0.0214 0.0065 0.0101
Punjabi 1 024 075 31 343 fast sg 50 8 0.1 5 False 0.0000 0.0001 0.0001
Sanskrit 4 042 204 896 480 w2v sg 35 9 0.1 10 False 0.1391 0.0093 0.0175
Telugu 537 673 276 330 w2v cbow 60 10 0.1 3 False 0.0042 0.0000 0.0002

Semitic
Classical Arabic 81 306 20 493 - - - - - - - - - -
Hebrew 41 378 460 893 512 fast sg 30 4 0.1 3 False 0.0646 0.0056 0.0104

(∗) w2v = word2vec, fast = fastText, sg = skipgram, Dim = Dimension, WS = Window Size, LR = Learning Rate, MC = Min Count, Lem = Lemmatization

Table 1: The optimal hyperparameters selected for training a model on each corpus, and their corresponding
evaluation metrics. (Avg denotes the harmonic mean of OddOneOut and Topk.) We successfully trained models
on 16 of the 18 languages provided by the CLTK library (everything except Malayalam and Classical Arabic).
Previously, word embeddings had only been trained on Ancient Greek and Latin.

4.1 Test Set Generation with Wikidata

One of the most difficult and time consuming steps
of evaluating word embeddings on a new language
is generating a high quality test set in that language.
We now present the first fully automatic way to gen-
erate these test sets. Our method uses Wikidata9,
which is the knowledge base that powers Wikipedia
and contains millions of items and their semantic
relationships. Wikidata supports 581 languages,
and our test set generation method works for all of
them. This method does not work for generating
analogy test sets, but only works for generating the
category test sets needed for our OddOneOut and
Topk tasks. We implement this process using the
Wikidata Query Service and SPARQL in our open
source Python library, making it easy to generate
arbitrary test sets.

The idea is straightforward. Some items in Wiki-
data actually represent categories, and other items
can be an “instance of” or “facet of” these cat-
egories. For example, item Q9181 (the Bibli-
cal patriarch “Abraham”) is an instance of item
Q20643955 (the category of “Human Biblical
Figures”). We can then generate a category of “Hu-
man Biblical Figures” by gathering all the items
that are an instance of this category, and extract-

9https://wikidata.org

ing the translation of these items in our chosen
language(s).

There are two minor complications to the pro-
cess above. First, the item may not have a trans-
lation into all languages. Item Q3276278 (the
minor Hebrew prophet Hilkiah), for example, does
not have a translation into any of the languages
we are studying except for Hebrew. We replace
all of these words with a special out-of-vocabulary
token. During the evaluation tasks, the models will
be guaranteed to miss any test case involving these
words. This will cause the model’s performance
to decrease, but it will not cause the optimal set
of hyperparameters to change because the model’s
performance will decrease uniformly for all hyper-
parameters. This is acceptable because our primary
goal with the OddOneOut and Topk metrics is
model selection.

Second, the item may have a multi-word trans-
lation. Item Q43600 is translated into English as
“Mathew the Apostle” which is guaranteed to be
out of vocabulary because our embeddings are only
for individual words and not phrases. We handle
this case simply by treating phrases the same way
we would treat any other out of vocabulary word
for these models. For a word2vec model, these
phrases are commonly replaced by a single out
of vocabulary token, but fastText models incorpo-

https://wikidata.org
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rate sub-word information and are therefore able
to generate reasonable vectors that are good repre-
sentations of these phrases. We therefore expect
fastText models to perform better on datasets with
many multi-word translations.

Given the relative ease with which categories of
similar items can be generated from Wikidata, it’s
natural to wonder why our method could not be
adapted to extract analogies instead. In some cases,
it is possible however the task requires more ef-
fort and is difficult to generalize. For example, we
could generate items that follow the state-capital
analogy with a query that first returns all instances
of US states and then finds all items that are related
to those instances through the “capital” property
P36. However, if we consider another popular
analogy relationship such as singular-plural we run
into trouble. Since there is no Wikidata property
relating singular nouns to their plural forms, it’s not
clear how to generate a test set for this analogy re-
lationship. Even if the lack of appropriate Wikidata
properties could be overcome by developing more
complicated queries, it’s unlikely that these would
generalize to other analogy relationships. Com-
pared to OddOneOut and Topk, extracting test
sets for the analogy task is much less automatic.

Using the method described above, we evalu-
ate on a broad set of 18 categories which includes
the semantic categories from the Google Analogy
set along with others such as Fruit, Sports, An-
cient Cities. Given the historical nature of many
of the languages we are studying, we also choose
three Wikidata categories dealing with religion
Q20643955 (Human Biblical Figures), Q748
(Buddhism), and Q9089 (Hinduism), for a sub-
sequent qualitative evaluation of corpus content
using the LCT. Table 4 shows representative exam-
ples from these religious categories. Since they are
large, with between 100-400 items each, we do not
reproduce them here.

4.2 Model Selection

There are 7 hyperparameters for our language mod-
els, and we use the random search method (Bergstra
and Bengio, 2012) to tune these hyperparameters.
Random search is simple to implement, computa-
tionally efficient, easy to parallelize, and avoids
the curse of dimensionality inherent to grid search
and Bayesian optimization methods. Table 2 de-
fines the hyperparameters and the range of values
sampled for each. All hyperparameters are argu-

Hyperparameter Sampled Range

Model word2vec, fastText

Type skipgram, CBOW

Dimension 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 60, 70, 80, 90,
100, 125, 150, 175, 200,
225, 250, 275, 300, 325,
350, 375, 400, 425, 450,
475, 500

Window Size 3, 4, 5, 6, 7, 8, 9, 10, 11

Learning Rate 10−3, 10−2, 10−1

Min Count 3, 4, 5, 6, 7, 8, 9, 10, 11

Lemmatization True, False

Table 2: The set of values sampled from for each hy-
perparameter during our random search hyperparame-
ter optimization.

ments to GenSim’s model training functions with
the exception of lemmatization. This boolean ar-
gument indicates whether we used CLTK’s built-
in lemmatization tools to preprocess the datasets
before training with GenSim. In theory, lemma-
tization can improve sample efficiency by giving
words with the same stem the same word embed-
ding. The results in Table 2, however, show that
this was not the case in practice, and this indicates
that the lemmatization models built-in to CLTK
likely have very high error rates.

To ensure a fair comparison, we randomly sam-
ple 100 sets of hyperparameter combinations.10

We then train each language on these same sets
of hyperparameters. The best results are reported
in Table 1. The optimal set of hyperparameters
is different for each language, which underscores
the importance of proper model tuning in the low-
resource regime. In particular, we note that there is
no pattern regarding whether the word2vec model
is better than the fastText model, or whether the
CBOW type is better than the skipgram type.

In previous work, Al-Rfou et al. (2013) trained
word2vec embeddings on 100 different languages
using Wikipedia as the training data and Grave
et al. (2018) extended this work by training Fast-
Text embeddings on 157 languages using data from
the Common Crawl project. In both cases, the re-
searchers tuned the model’s hyperparameters on

10We found that 100 combinations was sufficient to give
good results without being too computationally burdensome.
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Figure 5: A qualitative investigation of religious topics across the different language models. For the most part,
results match our intuition regarding which topics are relevant to each language.

only a single language (due to the difficulty of
adapting an analogy test set to so many different
languages), and then applied the same set of hy-
perparameters to all languages. Our results here
suggest that performance could be improved if each
model’s hyperparameters were tuned individually,
and our Wikidata technique would make this a re-
alistic option.

4.3 Language Comparison
We now breakdown the performance of each of our
language models on the three religious categories
shown in Figure 4. The goal is to better understand
which topics are discussed in each of the ancient
languages. Figure 5 shows the results. There are
three interesting results in this visualization.

1. As expected, the European and Semitic lan-
guages perform best on the Human Biblical
Figures category, while the Indic languages
perform best on the Buddhism and Hinduism
categories. More surprisingly, all of the “old”
European languages have smaller accuracies
on the Human Biblical Figures category. We
speculate that discussion of Christian topics
was predominantly carried out in the church’s
official language of Latin, which might ex-
plain this shortcoming.

2. Most Indic languages perform well on both
Buddhism and Hinduism partly because these
categories share 36 words in Wikidata. We

suspect different categories are needed to ex-
tract the subtleties between these languages.

3. Latin, and to a lesser extent Hebrew, were
the only non-Indic languages to perform well
on the Buddhism category. Investigation re-
vealed that the Latin model had success almost
exclusively on comparisons containing more
generic words like meditatio and orsa.

5 Conclusion

In this paper we introduce the first word vector eval-
uation methods designed specifically for the low-
resource domain, OddOneOut and Topk, along
with a method for automatically producing test sets
in Wikidata’s 581 supported languages. We be-
lieve Wikidata is an underutilized resource in the
NLP evaluation community, and in particular, that
its massively multilingual support can be used to
better serve under resourced languages.
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