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Abstract

This paper adds to the ongoing discussion in
the natural language processing community on
how to choose a good development set. Mo-
tivated by the real-life necessity of applying
machine learning models to different data dis-
tributions, we propose a clustering-based data
splitting algorithm. It creates development (or
test) sets which are lexically different from
the training data while ensuring similar label
distributions. Hence, we are able to create
challenging cross-validation evaluation setups
while abstracting away from performance dif-
ferences resulting from label distribution shifts
between training and test data. In addition, we
present a Python-based tool for analyzing and
visualizing data split characteristics and model
performance. We illustrate the workings and
results of our approach using a sentiment anal-
ysis and a patent classification task.

1 Introduction

In natural language processing (NLP), the standard
approach for tuning and selecting machine learning
models is by means of using a held-out develop-
ment set. However, recent work has pointed out
that evaluation scores on a development set are
often not indicative of the model performance on
an unseen test set (Reimers and Gurevych, 2018;
Zhou et al., 2020). In addition, it is an open re-
search question how to choose a good development
set. While Gorman and Bedrick (2019) suggest
to use random splits instead of a given benchmark
development set, Søgaard et al. (2020) argue that
randomly selecting a development set is not the
best option either. This currently ongoing discus-
sion in the NLP community highlights the need
for more extensive research on model development
using a variety of data splits.

In this paper, we directly add to this discussion
by proposing a strategy in which models are evalu-

ated in a setup that is challenging given the avail-
able dataset. For machine learning models, it is
of utmost importance that they are applicable to
different data distributions, possibly even coming
from different domains. We argue that models
should also be tested under data splits reflecting
such real-world settings. Therefore, we propose
a clustering-based data splitting approach that
creates data splits where the development or test
data differ from the training set. Our clustering al-
gorithm ensures a similar label distribution across
the produced cross-validation folds in order to ab-
stract away from challenges due to label distribu-
tion shifts.

In addition, we present CLUSTERDATASPLIT, a
suite of Jupyter notebooks implementing several
possibilities for splitting data into training and de-
velopment sets, or into folds for cross-validation.
In addition, our tool provides functionalities for
visualizing different data splits and thus may help
clarifying their influence on model performance.
Furthermore, it offers several ways to inspect the
data, such as visualization of dataset key figures,
scatter plots, label distributions and sentence length
distributions. The tool is publicly available.1

In sum, our contributions are as follows: (i) We
propose a clustering-based data splitting algorithm
that creates a challenging evaluation setup and has
the potential to reveal difficulties when the model is
applied on data that deviates from the training data
(Section 3). (ii) We present CLUSTERDATASPLIT,
a tool that allows to split data into training and
development sets and provides different visualiza-
tions for analyzing the data splits as well as model
performance (Section 4). Finally, we demonstrate
a worked example of using our data inspection
tool as well as results for our clustering-based data
splitting methods for two sequence classification

1https://github.com/boschresearch/
clusterdatasplit_eval4nlp-2020

https://github.com/boschresearch/clusterdatasplit_eval4nlp-2020
https://github.com/boschresearch/clusterdatasplit_eval4nlp-2020
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tasks, sentiment analysis and patent classification
(Section 5).

2 Related Work

In this section, we give an overview of related work
on evaluation and data splitting techniques as well
as analysis tools in the NLP community.

2.1 Data Splits for Model Evaluation

Gorman and Bedrick (2019) show that model rank-
ings on standard splits (Collins, 2002) can often
not be reproduced using randomly generated splits.
In a follow-up study, Søgaard et al. (2020) find that
evaluation results on random splits are often too op-
timistic, even for in-domain test samples. In order
to make the data splits more challenging, they intro-
duce heuristic splits based on sentence length and
adversarial splits based on Wasserstein distance.
The clustering-based data split we propose in this
paper follows the same idea of creating a challeng-
ing evaluation setup. In contrast to the adversar-
ial splits proposed by Søgaard et al. (2020), our
splitting strategy controls for label distribution, al-
lowing to abstract away from the effect of different
label distributions on the evaluation score (Johnson
and Khoshgoftaar, 2019; Buda et al., 2018).

2.2 Challenging Evaluation Sets

Another direction of work aims at tailoring more
challenging test sets by either grouping or hand-
crafting datasets. These approaches typically re-
quire manual work for each dataset. Hendrycks
et al. (2020), for instance, introduce a robustness
benchmark2 by assigning similar datasets as out-of-
distribution (OOD) test sets. In their experiments,
they show that the OOD test setting leads to severe
performance drops for many models except trans-
formers. Gardner et al. (2020) create contrast sets3

for commonly used NLP benchmark datasets by
adding hand-crafted data points for each test set
example. Another direction of creating challenging
evaluation sets comes from the idea of adversarial
training (Szegedy et al., 2013; Goodfellow et al.,
2015). In the context of NLP, the creation of adver-
sarial examples typically involves task and dataset
specific methods and often relies on hand-crafted
rules or other forms of human influence. Examples
are reading comprehension or question answering

2https://github.com/camelop/
NLP-Robustness

3https://allennlp.org/contrast-sets

datasets with altered questions or documents (Jia
and Liang, 2017; Wallace et al., 2019) or machine
translation datasets for which typos are introduced
(Belinkov and Bisk, 2018). In contrast to all those
approaches, our data splitting approach is purely
data-driven and creates a challenging evaluation
setting within one dataset fully automatically.

2.3 Tools for Analyzing NLP models

Existing NLP model analysis tools are often tai-
lored towards specific tasks or models (e.g., Wang
et al., 2019; Zhou et al., 2020). In the remainder of
this section, we give examples for model-agnostic
tools as they are more related to our tool.
Graliński et al. (2019) introduce GEVAL,4 a tool
for identifying features in the test set (e.g., n-grams)
which are especially challenging to models. The
tool CHECKLIST5 by Ribeiro et al. (2020) explores
different model capabilities, such as robustness, vo-
cabulary or temporal understanding. Furthermore,
it supports the creation of test examples via tem-
plates. In contrast to those two tools, our tool offers
visualizations of a variety of statistically interesting
aspects of data splits in order to better understand
model behaviours. Wu et al. (2019) provide an in-
teractive tool for error analysis called ERRUDITE.6

It supports, i.a., automated counterfactual rewriting
for testing hypotheses about errors. In contrast to
all mentioned tools, our tool implements different
data splitting techniques, making it easy to com-
pare model performance when using different data
splits.

3 Clustering-based Data Splitting

We here propose a novel algorithm dubbed Size
and Distribution Sensitive K-means (SDS K-
means) which has two important properties rel-
evant to generating challenging clustering-based
cross-validation folds. The SDS K-means algo-
rithm produces clusters that (1) each have approxi-
mately the same size, i.e., a similar number of data
points, and that (2) are controlled for label distribu-
tion. In the default case, all clusters have a similar
label distribution. By clustering the data points, we
ensure that training and development data are dif-
ferent (for now in a lexical sense), hence creating
a challenging evaluation setup. The SDS K-means
algorithm thereby overcomes the following two

4https://gonito.net/gitlist/geval.git/
5https://github.com/marcotcr/checklist
6https://github.com/uwdata/errudite

https://github.com/camelop/NLP-Robustness
https://github.com/camelop/NLP-Robustness
https://allennlp.org/contrast-sets
https://gonito.net/gitlist/geval.git/
https://github.com/marcotcr/checklist
https://github.com/uwdata/errudite
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difficulties: (1) Varying cluster sizes: If clusters
had different sizes, performance differences could
simply be attributed to varying amounts of train-
ing data. (2) Varying label distributions: If clus-
ters had differing label distributions, performance
differences could be primarily due to label distri-
bution mismatches between training and test data.
Hence, when using SDS K-means generated data
folds with similar label distributions per cluster,
differences in model performance can be attributed
to qualitative rather than quantitative differences
between the folds. In the experiments of this pa-
per, we keep the label distribution fixed. If the user
wants to deviate from the default case, s/he can also
use the SDS K-means algorithm to generate folds
with varying label distributions, and thereby also in-
vestigate the effects of different label distributions
on model performance.

In the following, we describe technical details
and the derivation of our algorithm. All algorithms
described in this section produce K clusters that are
intended to be used in K-fold cross-validation.

3.1 Preprocessing

As a prerequisite for clustering, we transform the
text data (sentences or clauses in our case) into
vector representations. First, each token is turned
into a vector representation using a pre-trained
Word2Vec (Mikolov et al., 2013) model. Then,
for each input example the word vectors are av-
eraged. The vector representations are centered
and scaled, and dimensionality reduction by princi-
pal component analysis is performed. The vectors
obtained by these preparation steps then serve as
input for the K-means based algorithms.

3.2 K-means and Size Sensitive K-means

For the generation of clustering-based data splits,
we decided to work with K-means based clustering
algorithms because of their low time complexity
and high computing efficiency (Xu and Tian, 2015).
The standard K-means algorithm (Lloyd, 1982) be-
longs to the group of partitioning clustering algo-
rithms, i.e., the number of clusters to be formed
needs to be specified beforehand. It is an expecta-
tion maximization algorithm that has the goal of
minimizing the cluster-internal variances. As such,
it iterates between an expectation step in which
data points are assigned to clusters, and a maxi-
mization or update step in which cluster centers
are re-calculated. The standard K-means algorithm

produces clusters with strongly varying size and
label distributions.

The Same Size K-means algorithm is a variant
of the K-means algorithm that ensures that all clus-
ters are assigned approximately the same number
of data points. We implement this algorithm fol-
lowing a tutorial7 by Schubert and Zimek (2019).
During the initial assignment step, points are as-
signed to the different cluster centers following
an order measure, which corresponds to the differ-
ence in distance from the point to the closest and
the furthest cluster center. This means that points
which have the highest absolute difference in dis-
tance from closest to furthest cluster center are
assigned to their closest cluster center first. Once
one of the clusters reaches its maximum size, the
order measure is re-calculated and points are again
sorted before continuing the assignment process.
In the following, the algorithm iterates between a
maximization step in which cluster centers are re-
calculated and an update step that differs from stan-
dard K-means as follows. During the update step,
data points can swap assigned clusters in a 1-on-1
fashion if the swap is associated with a decrease of
the overall cluster-internal variances. While this al-
gorithm ensures that cross-validation folds will be
of equal size, the label distribution within the clus-
ters may vary and hence result in favoring models
that are misled by an unrealistic label distribution
in the training or development data.

3.3 Size and Distribution Sensitive K-means
Algorithm (SDS K-means)

As a remedy for the above mentioned problems, we
propose an extension, the SDS K-means algorithm.
Like the Same Size K-means algorithm, it consists
of an initial assignment and swapping-based update
steps. However, in this case, the maximum number
of points per cluster are determined separately for
each label, corresponding to the desired distribu-
tion of labels for each cluster as specified by the
user. In the default case, the label distribution per
cluster corresponds to the overall label distribution
in the training data. The initial assignment and
the update steps are conducted separately for each
label. This ensures that the label distribution per
cluster matches exactly the distribution specified
by the user. The pseudo-code of the algorithm is
outlined in Figure 1. We initialize the algorithm

7https://elki-project.github.io/
tutorial/same-size_k_means

https://elki-project.github.io/tutorial/same-size_k_means
https://elki-project.github.io/tutorial/same-size_k_means
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A Initial cluster assignment

1 Initialize cluster centers

2 Sort data points by labels

3 For each label:

I Order data points by difference between dis-
tance to closest and to furthest cluster center
that is still “open” for the respective label

II Assign points in this order to the different clus-
ters, until one of the clusters reaches its max-
imum size for the respective label, i.e., until
we “close” the cluster for the respective label.
(Each cluster has a specific maximum size for
each label, i.e., the order in which the labels
are assigned to the clusters does not change the
clustering output.)

III Iterate over I and II until all points for the re-
spective label are assigned to clusters

B Update cluster assignment

1 Update cluster centers (using all data points belong-
ing to the cluster, irrespective of their labels)

2 Sort data points by label

3 For each label:

I For each data point, calculate difference be-
tween distance to current cluster center and
distance to other cluster centers

II Perform 1-on-1 swapping of points with posi-
tive difference at step I

4 Repeat step 1-3 until no swaps happen any more or
maximum number of iterations is reached

Figure 1: Pseudo code for SDS K-means algorithm.

multiple times and choose the run with lowest aver-
age cluster-internal variances as the final partition.

4 CLUSTERDATASPLIT Tool

The tool CLUSTERDATASPLIT consists of three
Jupyter Notebooks. Hence, using the tool requires
basic Python skills. Communication between the
tool and user code for machine learning models is
based on .tsv files containing the text data instances
and labels. Figure 2 illustrates the workflow and the
separation of tasks between the tool and client code.
Currently, our tool and algorithm only support se-
quence classification tasks with a single label per
dataset instance. We leave extensions for sequence
tagging tasks to future work.

4.1 DATA ANALYSIS

The first notebook provides an introduction to key
NLP dataset characteristics, such as label distribu-

tion, sentence token length and token frequency. It
serves for a first exploration of the data and its key
figures before using the data for model training and
evaluation.

4.2 CREATING DATA SPLITS

In order to generate clustering-based data splits,
this notebook groups the data into a pre-defined
number of groups, the so-called data folds. These
data folds then serve as input in a cross-validation
setting, where they are combined to build the data
split in training and development data. To group the
data, different K-means based algorithms, which
are outlined in detail in Section 3, are available.
Moreover, the tool also supports the generation of
randomized partitions, which can be combined to
form randomized (baseline) data splits.

For generating the data splits, the user has to
input the complete training data in a .tsv format
and select an algorithm to generate the data folds.
In most cases, s/he will want to compare the SDS
K-means and randomized splitting. The tool then
generates an output file with the data point IDs and
the fold ID information per data point. The user
then has to input this information into his/her model
training setup, using a cross-validation framework
in which the model is trained K times, training on
K-1 folds and evaluating on the remaining fold in
each iteration.

To date, our vector representations of the input
texts are mostly based on lexical information (see
Section 3.1).8 For clustering, we use the K-means
implementation in the Python scikit-learn package
(Pedregosa et al., 2011), and apply the initialization
method of Arthur and Vassilvitskii (2007).

4.3 PERFORMANCE ANALYSIS

After the training and evaluation steps based on dif-
ferent data splits are completed, the user can input
the predictions obtained on the different evaluation
sets into the third notebook using a .tsv format.
The notebook calculates performance statistics and
analyzes the dependence of results on data split
characteristics. For example, the notebook visual-
izes data split characteristics such as relative size

8In future versions of the tool, other representations re-
flecting, e.g., syntactic or contextualized word embedding
information, may be included. However, we here opt for a
simple lexically-based representation for clustering that does
not intend to already capture too many features that may later
on be used by the models themselves. If the user of the tool
wants to substitute this input embedding method, s/he can
easily do so by overwriting the respective Python functions.
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Data preparation

DATA ANALYSIS

visualization

CREATING DATA SPLITS

for cross-validation

Model training & prediction

PERFORMANCE ANALYSIS

visualization

Figure 2: Workflow of the CLUSTERDATASPLIT tool.
Grey boxes indicate client code, white boxes indicate
functionalities included in Jupyter notebooks.

of the clusters, label distribution for the clusters
and the mean sentence length. It also facilitates the
comparison of different data splits and the perfor-
mances obtained on these data splits.

5 Worked Examples

In this section, we give worked examples of us-
ing our proposed data splitting method for two se-
quence classification tasks, the Stanford Sentiment
Treebank (SST) binary sentiment analysis task and
a patent multi-class classification task.

5.1 Models

As our classifiers, we use simple neural networks
for sequence classification based on BERT for SST
(Devlin et al., 2019) and SciBERT (Beltagy et al.,
2019) for the patent classification task. The latter
model was trained on a corpus of scientific publi-
cations and is hence closer to the kind of language
present in patents. For both models, we feed the
CLS token into a linear layer that outputs logits
corresponding to the number of classes and apply
a softmax activation. For model training, we use
a cross-entropy loss. We implement our models
using the HuggingFace Transformers library (Wolf
et al., 2019). The maximum sequence length of
word piece tokens input to the BERT model is 128
and 256 for the two tasks, respectively. We use
a batch size of 8, and AdamW (Loshchilov and

Hutter, 2019) with learning rates of 4e−6 and 4e−5,
respectively. Otherwise, we apply default parame-
ters. We train the models for up to 100 epochs.

5.2 Stanford Sentiment Treebank

We here give an example of using our proposed
analysis for a binary sequence classification task.

Dataset. The Stanford Sentiment Treebank
(SST) (Socher et al., 2013) is based on movie re-
view excerpts from the website rottentomatoes.

com. For the task of binary sentiment classifica-
tion, we use the SST-2 dataset, which is a variant
of the original dataset containing only sentences
and phrases with the label positive or negative. The
dataset is slightly imbalanced with 44.28% nega-
tive and 55.72% positive labels. For our experi-
ments, we use 61,398 sentences and phrases from
the training and development part of the SST-2
dataset.

Data splits. We perform the SST classification
experiments in two settings, using our SDS K-
means based clustered and a randomized cross-
validation setting. Figure 3 shows the visualization
of the folds/clusters in two dimensions as generated
by the CLUSTERDATASPLIT tool.

Performance results. Table 1 provides the re-
sults of training and evaluating models on
clustering-based and randomized data splits in a
cross-validation (CV) setting. The model summa-
rized under the heading “CV-1” was trained on data
folds 2-5 and evaluated on data fold 1. Note that the
individual CV folds are not comparable between
SDS K-means data splits (DS) and randomized DS,
as each experimental setting uses different data
splits. On average, the models trained and evalu-
ated on the clustering-based data splits have a lower
model performance than the models trained on the
randomized data splits. Moreover, the standard de-
viation in model performance scores is higher for
the clustering-based data splits than for the random-
ized data splits. Inspecting the differences between
the clustered folds using CLUSTERDATASPLIT re-
vealed that the sentences in the evaluation fold per-
forming worst are on average shorter than the ones
in the other folds, often consisting of short phrases
that are difficult to classify also for human annota-
tors. This underlines that the formation of training
and development data based on the SDS K-means
algorithm constitutes a more challenging evalua-
tion environment than the random division of data

rottentomatoes.com
rottentomatoes.com
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Figure 3: Visualization of data splits for SST dataset: SDS K-means clusters (left) vs. randomized (right).

CV-1 CV-2 CV-3 CV-4 CV-5 Mean Std
SDS K-means DS 94.5 89.8 95.2 93.9 92.8 93.2 1.9
Randomized DS 94.8 95.1 95.1 94.7 94.7 94.9 0.2

Table 1: F1 scores for binary sentiment classification on SST data. (Scores for individual folds are not comparable.)

into training and development data splits.

5.3 Patent Classification

In this section, we report results for a multi-class
classification task, i.e., assigning the correct Coop-
erative Patent Classification (CPC) code to a patent.

Section Description

A Human Necessities
B Performing Operations, Transporting
C Chemistry, Metallurgy
D Textiles, Paper
E Fixed Constructions
F Mechanical Engineering, Lighting,

Heating, Weapons, Blasting
G Physics
H Electrity

Table 2: CPC patent classification scheme.9

Dataset. We retrieve a dataset of patents from
USPTO10 and represent each patent by its title and
abstract. The latter are rather short, most sequences
are shorter than 300 tokens. CPC codes indicate
topics or application areas of a patent, and CPC
classification is actually a hierarchical multi-label
multi-class classification task. For simplicity, as
our goal here is to demonstrate how our evalua-
tion methods work for a simple multi-class clas-

9https://www.uspto.gov/web/patents/
classification/cpc/html/cpc.html

10https://www.patentsview.org/download

Figure 4: Distribution of labels in patents dataset.

sification task, we filter the dataset, keeping only
instances that carry just a single label at the sec-
tion level (7 labels, A-H, see Table 2). This leaves
us with 6,458 instances with a skewed label distri-
bution as shown in Figure 4. Of course, due the
availability of machine-readable patents in large
quantities, it would be possible to sample a larger
training set in order to improve classification ac-
curacy. However, our goal here is not to create an
ideal CPC classifier but to highlight the importance
of constructing challenging evaluation setups espe-
cially in low-resource settings. For reproducibility,
we open-source the patents dataset together with
our tool.

Performance results. Table 3 shows the results
obtained for the various cross-validation folds
when assigning documents to folds randomly or

https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
https://www.patentsview.org/download
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Figure 5: Visualization of data splits for patents dataset: SDS K-means clusters (left) vs. randomized (right).

CV-1 CV-2 CV-3 CV-4 CV-5 Mean Std
SDS K-means DS 53.4 57.4 43.3 61.3 51.1 53.3 6.1
Randomized DS 55.1 56.6 56.7 58.2 52.4 55.8 2.0

Table 3: Macro-average F1 scores for multi-class classification on patents dataset. (Scores for individual folds are
not comparable.)

when using our clustering-based data splits. Macro-
avg. F1 is computed as the average over per-class
F1s.

For the patent classification task, differences in
performance obtained in the SDS K-means evalua-
tion setup differ even more strongly from the ran-
domized cross-validation setup than in the case of
the sentiment analysis task. Mean accuracy across
the tasks is estimated as 55.8 in the randomized set-
ting, but only as 53.3 in the SDS K-means setting.
Again, as in the sentiment analysis task, the stan-
dard deviation is much higher when using clustered
data folds. Two folds are notable, one exhibiting
a much lower F1 and one having a much higher
F1 score than the average. There are no sentence
length differences in this case. Figure 5 shows
that fold 3 concentrates in one region of the plot,
while fold 4 has a much higher within-cluster vari-
ance. However, this does not yet explain why fold
3 instances are harder to classify, as for instance
cluster 1 is also very concentrated in one region
and achieves around average results. This finding
hints at the fact that while our approach is able to
generate challenging and diverse evaluation setups,
further research is necessary to develop a system-
atic understanding of the observed performance
differences in the produced clustering-based cross-
validation setup. A very likely reason for the result
in this case, as we are comparing macro-average
F1, is low performance on the rare classes in the
folds which possibly do not contain many “good”
examples of these classes in the training folds.

6 Conclusion and Outlook

In this paper, we have introduced the concept of
clustering-based data splits for model evaluation
of sequence classification tasks. We have outlined
the steps necessary to generate clustering-based
data splits and described different K-means based
algorithms for the creation of clustering-based data
splits. Our newly proposed SDS K-means algo-
rithm is able to generate clusters with equal (or
controllable) size and label distribution. These
properties make the algorithm perfectly suited for
generating clustering-based data splits for challeng-
ing cross-validation experiments. Our worked ex-
amples show that model evaluation on clustering-
based data splits generated by the SDS K-means
algorithm is more challenging than model evalua-
tion on randomly selected data splits.

The experiments conducted in this paper present
a first step in exploring clustering-based data splits.
Directions for future research involve the steps
necessary to generate the clustering-based data
splits, further exploration of the data splits and
additional use cases. With regard to the generation
of clustering-based data splits, different text vector
representations or clustering algorithms, like for ex-
ample density-based approaches, could be explored.
Experiments with different text vector representa-
tions and clustering algorithms could shed some
light on the impact of different cluster structures on
the evaluation setup. Moreover, it would be interest-
ing to study why clustering-based data splits seem
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to have a stronger effect on some datasets than on
others. Søgaard et al. (2020) introduce an experi-
ment setting to compare the predictive performance
of model evaluation on different data splits with
regard to test sets coming from the same domain
as the training data. Applying our clustering-based
data splits in this experiment setting thus could
deliver important information about the predictive
quality of model performance scores obtained on
clustering-based data splits.

Currently, our method works only for classifica-
tion tasks and clustering is performed mainly based
on lexical information. Hence, another interesting
direction for future work is extending our ideas to
data splitting for sequence tagging tasks, and to in-
tegrate other types of information such as syntactic
features.
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