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Abstract

Named Entity Recognition (NER) is one of the
first stages in deep language understanding yet
current NER models heavily rely on human-
annotated data. In this work, to alleviate the de-
pendence on labeled data, we propose a Local
Additivity based Data Augmentation (LADA)
method for semi-supervised NER, in which
we create virtual samples by interpolating se-
quences close to each other. Our approach
has two variations: Intra-LADA and Inter-
LADA, where Intra-LADA performs interpo-
lations among tokens within one sentence, and
Inter-LADA samples different sentences to in-
terpolate. Through linear additions between
sampled training data, LADA creates an in-
finite amount of labeled data and improves
both entity and context learning. We further
extend LADA to the semi-supervised setting
by designing a novel consistency loss for un-
labeled data. Experiments conducted on two
NER benchmarks demonstrate the effective-
ness of our methods over several strong base-
lines. We have publicly released our code at
https://github.com/GT-SALT/LADA.

1 Introduction

Named Entity Recognition (NER) that aims to de-
tect the semantic category of entities (e.g., per-
sons, locations, organizations) in unstructured text
(Nadeau and Sekine, 2007), is an essential pre-
requisite for many NLP applications. Being one
of the most fundamental and classic sequence la-
beling tasks in NLP, there have been extensive re-
search from traditional statistical models like Hid-
den Markov Models (Zhou and Su, 2002) and Con-
ditional Random Fields (Lafferty et al., 2001a),
to neural network based models such as LSTM-
CRF (Lample et al., 2016a) and BLSTM-CNN-
CRF (Ma and Hovy, 2016), and to recent pre-
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training and fine-tuning methods like ELMO (Pe-
ters et al., 2018a), Flair (Akbik et al., 2018) and
BERT (Devlin et al., 2019). However, most of
those models still heavily rely on abundant anno-
tated data to yield the state-of-the-art results (Lin
et al., 2020), making them hard to be applied into
new domains (e.g., social media, medical context
or low-resourced languages) that lack labeled data.

Different kinds of data augmentation approaches
have been designed to alleviate the dependency
on labeled data for many NLP tasks, and can be
categorized into two broad classes: (1) adversar-
ial attacks at token-levels such as word substitu-
tions (Kobayashi, 2018; Wei and Zou, 2019) or
adding noise (Lakshmi Narayan et al., 2019), (2)
paraphrasing at sentence-levels such as back trans-
lations (Xie et al., 2019) or submodular optimized
models (Kumar et al., 2019). The former has al-
ready been used for NER but struggles to create
diverse augmented samples with very few word re-
placements. Despite being widely utilized in many
NLP tasks like text classification, the latter often
fails to maintain the labels at the token-level in
those paraphrased sentences, thus making it diffi-
cult to be applied to NER.

We focus on another type of data augmentations
called mixup (Zhang et al., 2018), which was origi-
nally proposed in computer vision and performed
linear interpolations between randomly sampled
image pairs to create virtual training data. Miao
et al. (2020); Chen et al. (2020b) adapted the idea
to textual domains and have applied it to the prelim-
inary task of text classification. However, unlike
classifications where each sentence only has one
label, sequence labeling tasks such as NER usually
involve multiple interrelated labels in a single sen-
tence. As we found in empirical experiments, it is
challenging to directly apply such mixup technique
to sequence labeling, and improper interpolations
may mislead the model. For instance, random sam-
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pling in mixup may inject too much noise by in-
terpolating data points far away from each other,
hence making it fail on sequence labeling.

To fill this gap, we propose a novel method
called Local Additivity based Data Augmentation
(LADA), in which we constrain the samples to
mixup to be close to each other. Our method has
two variations: Intra-LADA and Inter-LADA.
Intra-LADA interpolates each token’s hidden repre-
sentation with other tokens from the same sentence,
which could increase the robustness towards word
orderings. Inter-LADA interpolates each token’s
hidden representation in a sentence with each to-
ken from other sentences sampled from a weighted
combination of k-nearest neighbors sampling and
random sampling, the weight of which controls
the delicate trade-off between noise and regulariza-
tion. To further enhance the performance of learn-
ing with limited labeled data, we extend LADA to
the semi-supervised setting, i.e., Semi-LADA, by
designing a novel consistency loss between unla-
beled data and its local augmentations. We conduct
experiments on two NER datasets to demonstrate
the effectiveness of our LADA based models over
state-of-the-art baselines.

2 Background

Zhang et al. (2018) proposed a data augmentation
technique called mixup, which trained an image
classifier on linear interpolations of randomly sam-
pled image data. Given a pair of data points (x,y)
and (x′,y′), where x denotes an image in raw pixel
space, and y is the label in a one-hot representa-
tion, mixup creates a new sample by interpolating
images and their corresponding labels:

x̃ = λx+ (1− λ)x′,
ỹ = λy + (1− λ)y′,

where λ is drawn from a Beta distribution. mixup
trains the neural network for image classification
by minimizing the loss on the virtual examples. In
experiments, the pairs of images data points (x,y)
and (x̃, ỹ) are randomly sampled. By assuming all
the images are mapped to a low dimension man-
ifold through a neural network, linearly interpo-
lating them creates a virtual vicinity distribution
around the original data space, thus improving the
generalization performance of the classifier trained
on the interpolated samples.

Prior work like Snippext (Miao et al., 2020),
MixText (Chen et al., 2020b) and AdvAug (Cheng

et al., 2020) generalized the idea to the textual do-
main by proposing to interpolate in output space
(Miao et al., 2020), embedding space (Cheng et al.,
2020), or general hidden space (Chen et al., 2020b)
of textual data and applied the technique to NLP
tasks such as text classifications and machine trans-
lations and achieved significant improvements.

3 Method

Based on the above interpolation based data aug-
mentation techniques, in Section 3.1, we intro-
duced a Local Additivity based Data Augmentation
(LADA) for sequence labeling, where creating aug-
mented samples is much more challenging. We con-
tinue to describe how to utilize unlabeled data with
LADA for semi-supervised NER in Section 3.4.

3.1 LADA
For a given sentence with n tokens x =
{x1, ..., xn}, denote the corresponding sequence la-
bel as y = {y1, ..., yn}. In this paper, we use NER
as the working example to introduce our model,
in which the labels are the entities types. We ran-
domly sample a pair of sentences from the corpus,
(x,y) and (x′,y′), and then compute the interpola-
tions in the hidden space using a L-layer encoder
F(.; θ). The hidden representations of x and x′ up
to the m-th layer are given by:

hl = Fl(hl−1; θ), l ∈ [1,m],

h′l = Fl(h′l−1; θ), l ∈ [1,m],

Here hl = {h1, ..., hn} refer to the hidden repre-
sentations at the l-th layer and is the concatenation
of token representations at all positions. We use
h0,h′0 to denote the word embedding of x and x′

respectively. At them-th layer, the hidden represen-
tations for each token in x are linearly interpolated
with each token in x′ by a ratio λ:

h̃m = λhm + (1− λ)h′m,

where the mixing parameter λ is sampled from a
Beta distribution, i.e., λ ∼ Beta(α, α). Then h̃m

is fed to the upper layers:

h̃l = Fl(h̃l−1; θ), l ∈ [m+ 1, L].

h̃L can be treated as the hidden representations of
a virtual sample x̃, i.e., h̃L = F(x̃; θ).

In the meanwhile, their corresponding labels are
linearly added with the same ratio:

ỹi =λyi + (1− λ)y′i
ỹ ={ỹ1, ..., ỹn}.
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Figure 1: Overall Architecture of LADA. LADA takes in two sentences, linearly interpolates their hidden states
hi and h′i at layer m with weight λ into h̃i, and then continues forward passing to get encoded representations h̃i,
which are utilized in downstream tasks where the labels in each task are also mixed with weight λ.

The hidden representations h̃L are then fed into a
classifier p(:, φ) and the loss over all positions is
minimized to train the model:

L = E
x′∼Pmix(x′|x)

[

n∑
i=1

KL(ỹi; p(h̃Li ;φ))]. (1)

Here Pmix(x
′|x) defines the probability of sam-

pling (x′,y′) to mix with (x,y). The overall dia-
gram is shown in Figure 1.

Let S = {(x,y)} be the corpus of data samples,
then according to Chen et al. (2020b),

Pmix(x
′|x) = 1

|S|
, (x′,y′) ∈ S. (2)

Note that Pmix(x
′|x) is a uniform distribution that

is independent of x. Even though x′ can be far
away from x in the Euclidean space, they are
mapped into a low-dimension manifold through
a neural network. Interpolating them in the hidden
space regularizes the model to perform linearly in
the low-dimensional manifold, hence greatly im-
proves tasks such as classification.

However, we found empirically in experiments
that the above random sampling strategy failed on
sequence labeling like NER, leading to worse mod-
eling results than purely supervised learning. In-
tuitively, sequence labeling is more complicated
than sentence classification as it requires learning

much more fine-grained information. Labeling a
token depends on not only the token itself but also
the context. We hypothesize that mixing the se-
quence x with x′ changes the context for all tokens
and injects too much noise, hence making learn-
ing the labels for the tokens challenging. In other
words, the relative distance between x and x′ in
the manifold mapped by neural networks is further
in sequence labeling than sentence classification
(demonstrated in Figure 2), which is intuitively
understandable as every data point in sentence clas-
sification is the pooling over all the tokens in one
sentence while every token is a single data point in
sequence labeling. Randomly mixing data points
far away from each other introduces more noise
for sequence labeling. To overcome this problem,
we introduce a local additivity based data augmen-
tation approach with two variations, in which we
constrain x′ to be close to x:

3.2 Intra-LADA

As stated above, mixing two sequences not only
changes the local token representations but also
affects the context required to label tokens. To
reduce the noises from unrelated sentences, the
most direct way is to construct x′ using the same
tokens from x but changing the orders and perform
interpolations between them.
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Figure 2: Data manifold for sentence classification and se-
quence labeling. The dimension of data manifold for sequence
labeling is higher than sentence classification, hence the dis-
tance between data samples is larger. We constraint x′ to be
close to x in creating interpolated data in LADA.

Let Q = Permutations((x,y)) be the set includ-
ing all possible permutations of x, then

PIntra(x
′|x) = 1

n!
, (x′,y′) ∈ Q. (3)

In this case, each token xi in x is actually interpo-
lated with another token xj in x, while the context
is unaltered. By sampling from PIntra, we are essen-
tially turning sequence level interpolation to token
level interpolation, thus greatly reducing the com-
plexity of the problem. From another perspective,
Intra-LADA generates augmentations with differ-
ent sentence structures using the same word set,
which could potentially increase the model’s ro-
bustness towards word orderings.

Intra-LADA restraints the context from chang-
ing, which could be limited in generating diverse
augmented data. To overcome that, we propose
Inter-LADA, where we sample a different sentence
from the training set to perform interpolations.

3.3 Inter-LADA
Instead of interpolating within one sentence, Intra-
LADA samples a different sentence x′ from the
training set to interpolate with x. To achieve a
trade-off between noise and regularization, we sam-
ple x′ through a weighted combination of two
strategies: k-nearest neighbors (kNNs) sampling
and random sampling:

PInter(x
′|x) =

{
µ
k , x′ ∈ Neighbork(x),
1−µ
|S| , (x′,y′) ∈ S,

(4)
where µ is the weight of combining two distribu-
tions. To get the kNNs, we use sentence-BERT
(Reimers and Gurevych, 2019) to map each sen-
tence x into a hidden space, then collect each sen-
tence’s kNNs using l2 distance. For each sentence

x, we sample x′ to mix up from the kNNs with
probability µ and the whole training corpus with
a probability 1− µ. When x′ is sampled from the
whole training corpus, it may be unrelated to x,
introducing large noise but also strong regulariza-
tion on the model. When x′ is sampled from the
kNNs, x′ shares similar, albeit different, context
with x, thus achieving good signal to noise ratio.
By treating µ as a hyper-parameter, we can control
the delicate trade-off between noise and diversity
in regularizing the model.

To examine why sampling sentences from kNNs
decreases the noise and provides meaningful sig-
nals to training, we analyze an example with its
kNNs in Table 1: (1) As it shows, kNNs may con-
tain the same entity words as the original sentence,
but in different contexts. The entity types in the
neighbor sentences are also changed correspond-
ing to contexts. For example, entity Israel in the
third neighbor becomes an organization when sur-
rounded by Radio while it is a location in the origi-
nal sentence. (2) Contexts from neighbor sentences
can help detect the entities of the same type in a
given sentence. For example, Lebanon in the sec-
ond neighbor shares the same type as Israel in the
original sentence. Lebanon can resort to the context
of the original sentence to detect its entity type. (3)
Neighbor sentences may contain the same words
but in different forms. For example, the Israeli
in the first neighbor sentence is a different form
of Israel, which is miscellaneous while Israel is
a location in the example sentence. Interpolation
with such an example can improve models’ abil-
ity to recognize words of different forms and their
corresponding types.

In summary, Inter-LADA can improve both en-
tity learning and context learning by interpolating
more diverse data. Note that although we use NER
as a working example , LADA can be applied to
any sequence labeling models.

3.4 Semi-supervised LADA
To further improve the performance of learning
with less labeled data, we propose a novel LADA-
based approach specifically for unlabeled data. In-
stead of looking for nearest neighbors, we use back-
translation techniques to generate paraphrases of
an unlabeled sentence xu in constructing x′u. The
paraphrase x′u, generated via translating xu to an
intermediate language and then translating it back,
describes the same content as xu and should be
close to xu semantically. However, there is no
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Sentence Israel plays down fears of war with Syria.
Fears of an Israeli operation causes the redistribution of Syrian troops locations
in Lebanon .
Parliament Speaker Berri: Israel is preparing for war against Syria and Lebanon .Neighbours
Itamar Rabinovich , who as Israel’s ambassador to Washington conducted unfruitful
negotiations with Syria , told Israel Radio looked like Damascus wanted to talk
rather than fight .

Table 1: kNNs of an example sentence. Entities in sentences are colored. Green means locations , red means
persons , blue means organizations and yellow means miscellaneous.

guarantee that the same entity would appear in the
same position in xu and x′u. In fact, the number
of tokens in xu and x′u may not even be the same.
For instance, for the sentence “Rare Hendrix song
draft sells for almost $17,000” and its paraphrased
sentence “A rare Hendrix song design is selling
for just under $17,000”, although some words are
different, the entity Hendrix keeps unchanged, and
there are no extra entities added. That is, both con-
tain one and only one entity (Hendrix) of the same
type (Person). Nevertheless, we empirically found
that most paraphrases contain the same number of
entities (for any specific type) as the original sen-
tence. Inspired by the observation, we propose a
new consistency loss to leverage unlabeled data:
xu and x′u should have the same number of entities
for any given entity type.

Specifically, for an unlabeled sentence xu and
its paraphrase x′u, we first guess their token labels
with the current model:

yu = p(F(xu; θ);φ).

To avoid predictions being too uniform at the early
stage, we sharpen every token prediction yu,i ∈ yu
with a temperature T :

ŷu,i =
(yu,i)

1
T∥∥∥(yu,i) 1
T

∥∥∥
1

,

where ||.||1 denotes the l1-norm. We then add the
prediction ŷu,i over all tokens in the sentence to
denote its total number of entities for each type:

ŷu, num =
n∑
i=1

ŷu,i.

Note that ŷu,num is the guessed label vector with C-
dimensions, where C is the total number of entity
types. The i-th element in the ŷu,num denotes the
total number i-type entity in the sentence.

Dataset CoNLL GermEval
Train 14,987 24,000
Dev 3,466 2,200
Test 3,684 5,100

Entity Types 4 12
Max Sent Length 142 84

Table 2: Data statistics and our data split following
Benikova et al. (2014).

During training, we use the same procedure to
get the number of entities for original and each
paraphrase sentence (without sharpening). Assume
there are K paraphrases, denote the entity number
vector for the k-the paraphrase as ŷ

′k
u,num. The con-

sistency objective for unlabeled sentence x and its
paraphrases is:

Lu = ||ŷu,num − ŷ
′k
u,num||2. (5)

Here we treat ŷu,num as fixed and back-propagate
only through ŷ′u,num to train the model.

Taking into account the loss objectives for both
labeled and unlabeled data (Equation 1 and Equa-
tion 5), our Semi-LADA training objective is:

Lsemi = L+ γLu

where γ controls the trade-off between the super-
vised loss term and the unsupervised loss term.

4 Experiments

4.1 Datasets and Pre-processing
We performed experiments on two datasets in dif-
ferent languages: CoNLL 2003 (Tjong Kim Sang
and De Meulder, 2003) in English and GermEval
2014 (Benikova et al., 2014) in German. The data
statistics are shown in Table 2. We used the BIO
labeling scheme and reported the F1 score. In or-
der to make LADA possible in recent transformer-
based models like BERT, we assigned labels to
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CoNLL GermEvalModel Unlabeled data 5% 10% 30% 5% 10% 30%
Flair (Akbik et al., 2019) no 79.32 86.31 89.96 66.54 67.92 74.11

Flair + Intra-LADA† no - - - - - -
Flair + Inter-LADA† no 80.84 86.33 90.61 67.40 70.02 74.63

BERT (Devlin et al., 2019) no 83.28 86.85 89.28 79.64 80.92 82.87
BERT + Intra-LADA† no 83.52 87.54 89.31 79.93 81.10 82.92
BERT + Inter-LADA† no 84.60 87.81 89.68 80.13 81.28 83.63

BERT + Intra&Inter-LADA† no 84.85 87.85 89.87 80.17 81.23 83.65
VSL-GG-Hier (Chen et al., 2018) yes 83.38 84.71 85.52 - - -

MT + Noise (Lakshmi Narayan et al., 2019) yes 82.60 83.47 84.88 - - -
BERT + Semi-Intra-LADA† yes 87.15 88.70 89.69 80.95 81.52 83.46
BERT + Semi-Inter-LADA† yes 86.51 88.53 90.00 81.20 81.70 83.53

BERT + Semi-Intra&Inter-LADA† yes 86.33 88.78 90.25 81.07 81.77 83.63

Table 3: The F1 scores on CoNLL 2003 and GermEval 2014 training with varying amounts of the labeled training
data (5%, 10%, and 30% of the original training set). There were 10,000 unlabeled data for each dataset which was
randomly sampled from the original training set. All the results were averaged over 5 runs. † denotes our methods.

special tokens [SEP], [CLS], and [PAD]. Since
BERT tokenized a token into one or multiple sub-
tokens, we not only assigned labels to the first sub-
token but also to the remaining sub-tokens follow-
ing the rules: (1) O word: Oxx→OOO, (2) I word:
Ixx→III,(3) B word: Bxx→BII, as such kind of as-
signment will not harm the performance (ablation
study was conducted in Section 4.4). During the
evaluation, we ignored special tokens and non-first
sub-tokens for fair comparisons.

In the fully supervised setting, we followed the
standard data splits shown in Table 2. In the semi-
supervised setting, we sampled 10,000 sentences
in the training set as the unlabeled training data.
We adopted FairSeq1 to implement the back trans-
lation. For CoNLL dataset, we utilized German
as the intermediate language and English as the
intermediate language for GermEval.

4.2 Baselines & Model Settings

Our LADA can be applied to any models in
standard sequence labeling frameworks. In this
work, we applied LADA to two state-of-the-art
pre-trained models to show the effectiveness:

• Flair (Akbik et al., 2019): We used the pre-
trained Flair embeddings2, and a multi-layer
BiLSTM-CRF (Ma and Hovy, 2016) as the
encoder to detect the entities.

• BERT (Devlin et al., 2019): We loaded
the BERT-base-multilingual-cased3 as the en-
coder and a linear layer to predict token labels.

1https://github.com/pytorch/fairseq
2https://github.com/flairNLP/flair
3https://github.com/huggingface/

transformers

To demonstrate whether our Semi-LADA works
with unlabeled data, we compared it with two re-
cent state-of-the-art semi-supervised NER models:

• VSL-GG-Hier (Chen et al., 2018) introduced
a hierarchical latent variables models into
semi-supervised NER learning.

• MT + Noise (Lakshmi Narayan et al., 2019)
explored different noise strategies including
word-dropout, synonym-replace, Gaussian
noise and network-dropout in a mean-teacher
framework.

We also compared our models with another two
recent state-of-the-art NER models trained on the
whole training set:

• CVT (Clark et al., 2018) performed multi-
task learning and made use of 1 Billion Word
Language Model Benchmark as the source of
unlabeled data.

• BERT-MRC (Li et al., 2020) formulated the
NER as a machine reading comprehension
task instead of a sequence labeling problem.

For Intra-LADA, as it broke the sentence struc-
tures, it cannot be applied to Flair that was based
on LSTM-CRF. Thus we only combined it with
BERT and only used the labeled data. The mix
layer set was {12}. For Inter-LADA, we applied
it to Flair and BERT trained with only the labeled
data. The mix layer set was {8,9,10}, k in kNNs
was 3, and 0.5 was a good start point for tuning µ.
Semi-LADA utilized unlabeled data as well. The
model was built on BERT. The weight γ to balance
the supervised loss and unsupervised loss was 1.

https://github.com/pytorch/fairseq
https://github.com/flairNLP/flair
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Model Setting CoNLL GermEval
Flair (Akbik et al., 2019) Token Classification 92.03 76.92

Flair + Intra-LADA ‡ Token Classification - -
Flair + Inter-LADA ‡ Token Classification 92.12 78.45

BERT (Devlin et al., 2019) Token Classification 91.19 86.12
BERT + Intra-LADA ‡ Token Classification 91.22 86.16
BERT + Inter-LADA ‡ Token Classification 91.83 86.45

CVT (Clark et al., 2018) Multi-task Learning 92.60 -
BERT-MRC (Li et al., 2020) Reading Comprehension 93.04 -

Table 4: The F1 score on CoNLL 2003 and GermEval 2014 training with all the labeled training data. ‡ means
incorporating our LADA data augmentation techniques into pre-trained models.

4.3 Main Results

We evaluated the baselines and our methods using
F1-scores on the test set.

Utilizing Limited Labeled Data We varied the
number of labeled data (made use of 5%, 10%, 30%
of labeled sentences in each dataset, which were
700, 1400, 4200 in CoNLL and 1200, 2400, 7200
in GermEval) and the results were shown in Table 3.
Compared to purely Flair and BERT, applying
Intra-LADA and Inter-LADA consistently boosted
performances significantly, indicating the effective-
ness of creating augmented training data through
local linear interpolations. When unlabeled data
was introduced, VSL-GG-Hier and MT + Noise
performed slightly better than Flair and BERT with
5% labeled data in CoNLL, but pre-trained models
(Flair, BERT) still got higher F1 scores when there
were more labeled data. Both kinds of BERT +
Semi-LADA significantly boosted the F1 scores on
CoNLL and GermEval compared to baselines, as
Semi-LADA not only utilized LADA on labeled
data to avoid overfitting but also combined back
translation based data augmentations on unlabeled
data for consistent training, which made full use of
both labeled data and unlabeled data.

Utilizing All the Labeled data Table 4 summa-
rized the experimental results on the full training
sets (14,987 on CoNLL 2003 and 24,000 on Ger-
mEval 2014). Compared to pre-trained Flair and
BERT4, there were still significant performance

4 Note that for the discrepancy between our BERT
results and results published in the BERT paper, it has
been discussed in the official repo https://github.
com/google-research/bert/issues/223, where
the best performance one can replicate on CoNLL was around
91.3 based on the given scripts. For our experiments, we fol-
lowed the provided scripts, and kept model settings identical
as baselines for fair comparison.

gains from utilizing our LADA, which indicated
that our proposed data augmentation methods work
well even with a large amount of labeled training
data (full datasets). We also showed two state-
of-the-art NER models’ results with different set-
tings, they had better performance mainly due to
the multi-task learning with more unlabeled data
(CVT) or formulating the NER as reading compre-
hension problems (BERT + MRC). Note that our
LADA was orthogonal to these two models.

Loss on the Development Set To illustrate that
our LADA could also help the overfitting prob-
lem, we plotted the loss on the development set
of BERT, BERT + Inter-LADA and BERT + Semi-
Inter-LADA on CoNLL and GermEval training with
5% labeled data in Figure 3. After applying LADA,
the loss curve was more stable with training epoch
increased, while the loss curve of BERT started
increasing after about 10 epochs, indicating that
the model might overfit the training data. Such
property made LADA a suitable method, especially
for semi-supervised learning.

Combining Intra&Inter-LADA We further
combined Intra-LADA and Inter-LADA with
a ratio π, i.e. data point would be augmented
through Intra-LADA with a probability π and
Inter-LADA with a probability 1− π. In practice,
we set the probability 0.3, and kept the settings
for each kind of LADA the same. The results
are shown in Table 3. Through combining two
variations, BERT + Intra&Inter-LADA further
boosted model performance on both datasets, with
an increase of 0.25, 0.04 and 0.19 on CoNLL
over BERT + Inter-LADA trained with 5%, 10%
and 30% labeled data. We obtained consistent
improvement in semi-supervised settings: BERT
+ Semi-Intra&Inter-LADA improved over BERT

https://github.com/google-research/bert/issues/223
https://github.com/google-research/bert/issues/223
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Figure 3: Loss (Y axis) on development set, trained
with 5% labeled data, over different epochs (X axis).

+ Semi-Inter-LADA trained with 5%, 10% and
30% labeled data on GermEval by +0.05, +0.07
and +0.10. This showed that our Intra-LADA and
Inter-LADA can be easily combined by future
work to create diverse augmented data to help
sequence labeling tasks.

4.4 Ablation Study

Different Sub-token Labeling Strategies To
prove that our pre-processing of labeling sub-
tokens for training was reasonable, we compared
BERT training with different sub-token labeling
strategies in Table 5.“None” strategy was used
in original BERT-Tagger where sub-tokens are ig-
nored during learning. “Real” strategy was used
in our Inter-LADA where O words’ sub-tokens
were assigned O (Oxx→OOO), I and B words’
sub-tokens were assigned I (Ixx→III, Bxx→BII).
“Repeat” referred to assigning the original la-
bel to each sub-token (Oxx→OOO, Ixx→III,
Bxx→BBB). “O” means we assigned O to each
sub-token (Oxx→OOO, Ixx→IOO, Bxx→BOO).
“Real” strategy received comparable performances
with original BERT models while the other two
strategies decreased F1 scores, indicating our strat-
egy mitigated the sub-token labeling issue.

Influence of µ in Inter-LADA We varied the µ
in BERT + Inter-LADA from 0 to 1 to validate that
combining kNNs sampling and random sampling
in Inter-LADA could achieve the best performance,
and the results were plotted in Figure 4. Note that
when µ = 0, Inter-LADA only did random sam-
pling and it barely improved over BERT largely due
to too much noise from interpolations between un-
related sentences. And when µ = 1, Inter-LADA
only did kNNs sampling, and it could get a better
F1 score over BERT because of providing mean-

Tag Strategy CoNLL GermEval
None 83.28 79.64
Real 84.15 79.59

Repeat 82.67 78.27
O 83.13 78.48

Table 5: F1 scores of BERT on test set with different
strategy to tag sub-tokens trained with 5% labeled data.

ingful signals to training. BERT + Inter-LADA got
the best F1 score with µ = 0.7 on CoNLL and
µ = 0.5 on GermEval, which indicated the trade-
off between noise and diversity (kNNs sampling
with lower noise and random sampling with higher
diversity) was necessary for Inter-LADA.

5 Related Work

5.1 Named Entity Recognition

Conditional random fields (CRFs) (Lafferty et al.,
2001b; Sutton et al., 2004) have been widely used
for NER, until recently they have been outper-
formed by neural networks. Hammerton (2003)
and Collobert et al. (2011) are among the first sev-
eral studies to model sequence labeling using neu-
ral networks. Specifically Hammerton (2003) en-
coded the input sequence using a unidirectional
LSTM (Hochreiter and Schmidhuber, 1997) while
(Collobert et al., 2011) instead used a CNN with
character level embedding to encode sentences.
Ma and Hovy (2016); Lample et al. (2016b) pro-
posed LSTM-CRFs to combine neural networks
with CRFs that aim to leverage both the repre-
sentation learning capabilities of neural network
and structured loss from CRFs. Instead of mod-
eling NER as a sequence modeling problem, Li
et al. (2020) converted NER into a reading com-
prehension task with an input sentence and a query
sentence based on the entity types and achieved
competitive performance.

5.2 Semi-supervised Learning for NER

There has been extensive previous work (Altun
et al., 2005; Søgaard, 2011; Mann and McCallum,
2010) that utilized semi-supervised learning for
NER. For instance, (Zhang et al., 2017; Chen et al.,
2018) applied variational autoencoders (VAEs) to
semi-supervised sequence labeling; (Zhang et al.,
2017) proposed to use discrete labeling sequence as
latent variables while (Chen et al., 2018) used con-
tinuous latent variables in their models. Recently,
contextual representations such as ELMO (Peters
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Figure 4: F1 score on test set training with 30% labeled
data with different µ in BERT + Inter-LADA. The left
Y axis is for CoNLL, and the right Y axis is for Ger-
mEval. Dashed lines are the F1 scores of BERT model.

et al., 2018b) and BERT (Devlin et al., 2019)
trained on a large amount of unlabeled data have
been applied to NER and achieved reasonable per-
formances. Our work is related to research that in-
troduces different data augmentation techniques for
NER. For example, Lakshmi Narayan et al. (2019)
applied noise injection and word dropout and ob-
tained a performance boost, Bodapati et al. (2019)
varied the capitalization of words to increase the
robustness to capitalization errors, Liu et al. (2019)
augmented traditional models with pretraining on
external knowledge bases. In contrast, our work
can be viewed as data augmentation in the continu-
ous hidden space without external resources.

5.3 Mixup-based Data Augmentation
Mixup (Zhang et al., 2018) was originally proposed
for image classification (Verma et al., 2018; Yun
et al., 2019) as a data augmentation and regulariza-
tion method , building on which Miao et al. (2020)
proposed to interpolate sentences’ encoded rep-
resentations with augmented sentences by token-
substitutions for text classification. Similarly, Chen
et al. (2020a) designed a linguistically informed
interpolation of hidden space and demonstrated
significant performance increases on several text
classification benchmarks. Cheng et al. (2020) per-
formed interpolations at the embedding space in
sequence-to-sequence learning for machine trans-
lations. Different from these previous studies, we
sample sentences based on local additivity and uti-
lize mixup for the task of sequence labeling.

6 Conclusion

This paper introduced a local additivity based data
augmentation (LADA) methods for Named Entity

Recognition (NER) with two different interpola-
tion strategies. To utilize unlabeled data, we intro-
duced a novel consistent training objective com-
bined with LADA. Experiments have been con-
ducted and proved our proposed methods’ effec-
tiveness through comparing with several state-of-
the-art models on two NER benchmarks.
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