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Abstract

BERT-era question answering systems have
recently achieved impressive performance on
several question-answering (QA) tasks. These
systems are based on representations that have
been pre-trained on self-supervised tasks such
as word masking and sentence entailment, us-
ing massive amounts of data. Nevertheless,
additional pre-training closer to the end-task,
such as training on synthetic QA pairs, has
been shown to improve performance. While re-
cent work has considered augmenting labelled
data and leveraging large unlabelled datasets
to generate synthetic QA data, directly adapt-
ing to target data has received little attention.
In this paper we investigate the iterative gener-
ation of synthetic QA pairs as a way to realize
unsupervised self adaptation. Motivated by the
success of the roundtrip consistency method
for filtering generated QA pairs, we present it-
erative generalizations of the approach, which
maximize an approximation of a lower bound
on the probability of the adaptation data. By
adapting on synthetic QA pairs generated on
the target data, our method is able to im-
prove QA systems significantly, using an or-
der of magnitude less synthetic data and train-
ing computation than existing augmentation
approaches.

1 Introduction

Supervised self-training methods have transformed
applied machine learning recently. Such tasks serve
as “pre-training” for related downstream tasks, and
have proven to be essential to attaining state-of-the-
art performance, particularly in NLP.

BERT-era Transformer-based question answer-
ing systems have recently achieved impressive
performance on several question-answering (QA)
tasks. These systems are based on representations
that have been pre-trained on self-supervised tasks

such as word masking and sentence entailment, us-
ing massive amounts of data (Devlin et al., 2018;
Liu et al., 2019; Yang et al., 2019; Dong et al., 2019;
Radford et al., 2019). Nevertheless, additional pre-
training closer to the end-task, such as training on
synthetic QA pairs, has been shown to improve per-
formance (Alberti et al., 2019; Dong et al., 2019).
While recent work has considered augmenting la-
belled data and leveraging large unlabelled datasets
to generate synthetic QA data, directly adapting to
target data has, to our knowledge, not been inves-
tigated in the context of BERT-era modeling and
performance levels.

Recently, roundtrip consistency (RTC) was intro-
duced as a criteria for filtering synthetic question-
answer pairs on unlabelled data, and has demon-
strated solid gains when applied to large unlabelled
datasets to generate millions of RTC-validated pairs
as task-specific pre-training data (Alberti et al.,
2019). Such unsupervised self-training can be an
effective way to de-emphasize low confidence pre-
dictions, adapt to the target input distribution, dis-
till decoding procedures, and instill input response
invariances.

In this paper we present new theoretical justifi-
cation for RTC, and explore novel iterative gener-
alizations of RTC for adapting in a task-specific,
target data specific manner. We show that most
of these approaches optimize an approximation of
a lower bound of the probability of the data, and
thereby can, beyond self-training, potentially also
adapt to explain the target data more effectively.
Under the formulation, the question-answering sys-
tem is used as a surrogate likelihood function for
the question and answer generators. In this man-
ner, the difficult task of modeling the generation
of entire contexts is avoided: instead abstractive
parts of the context (the answers), whose locations
are latent and estimated, are utilized, similar to an
autoencoder, but with questions as the latent code,
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Figure 1: Overview of Approach: We adapt to unlabelled target data by iterating between generating synthetic
question answer (QA) pairs and approximately maximizing the probability of the observed contexts C, and fine-
tuning on all available ground truth (GT) QA data. Please refer to (6-9) for further details.

and latent answer inputs. By adapting on synthetic
QA pairs generated on the target data, our method
is able to improve QA systems significantly, us-
ing an order of magnitude less synthetic data and
training computation than existing augmentation
approaches.

The main contributions of this paper are as fol-
lows:

• We consider the problem of adapting QA sys-
tems to target data using synthetically gener-
ated QA pairs, and show that this improves
QA systems significantly, while using an order
of magnitude less data and computation rela-
tive to existing methods that augment using
large unlabelled data sets.

• We present a solid theoretical foundation for
understanding existing and developing new
synthetic data filtering algorithms, including
the effective but elusive Roundtrip Consis-
tency (RTC) algorithm.

• We compare several related methods for uti-
lizing synthetic data to adapt to target data,
by iteratively pre-training and fine-tuning the
QA system and QA generators, and show that
some variations optimize an approximation of
a lower bound on the probability of the adap-
tation data, despite being composed on only
inference networks.

2 Supervised Training of QA systems

Typically question-answering (QA) systems are
trained to produce an abstractive answer A, given a
question Q, and the relevant local context C.

The QA model is generally trained to maximize
the probability of QA pairs in context:

la|g =
∑
t

log p(A∗t |Q∗t , C∗t ) (1)

Where {Qt, At, Ct} denotes a set of human-
annotated question-answer-context triples (Ra-
jpurkar et al., 2016). Supervised training of
Question-Answering systems is effective, but
ground-truth (GT) QA pairs are cumbersome and
expensive to annotate. Bootstrapping from pre-
trained representations such as BERT significantly
reduces the number of GT QA pairs that are re-
quired to train a high quality QA system, but cur-
rent systems still currently require hundreds of
thousands of GT QA pairs on data matching the
style and content of the target data to perform at
state-of-the-art levels.

3 Generating Synthetic QA Data

To augment an existing QA training set, several au-
thors have used the supervised data to train question
generators (Sachan and Xing, 2018; Duan et al.,
2017; Alberti et al., 2019; Dong et al., 2019). As
with the QA counterparts, these models are typi-
cally trained in a supervised manner:

lq|a =
∑
t

log p(Q∗t |A∗t , C∗t ) (2)
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and then employed to augment the training set with
additional, synthetic questions, for each ground-
truth answer.

Most techniques that operate fully unsupervised
also train an answer prior in the same manner,
which generates answers for a given context, which
the question generator then conditions on to gener-
ate questions (Alberti et al., 2019):

la =
∑
t

log p(A∗t |C∗t ) (3)

4 Iterative Pre-train then Fine-tune
Based Adaptation

Most existing methods for synthetic data augmen-
tation utilize QA generators trained only on su-
pervised data. This synthetic data is used either
as pre-training data for the QA system, which is
then fine-tuned on ground-truth data (Alberti et al.,
2019), or just simply as additional GT data for
training.

In this paper we investigate iteratively pre-
training both the QA system and the QA generators
on the synthetic data generated by the most recent
fine-tuned QA generators. The iterative procedure
is as follows:

1. Generate QA pairs using the current fine-
tuned QA generators.

2. Pre-train the QA generators and QA system
on the (filtered) generated data from scratch.

3. Fine-tune the QA generators and QA system
on ground truth data.

4. Repeat until converged or for a maximum
number of iterations.

5 Fundamentals of Unsupervised
Self-Training

Training a model on it’s own predictions, or pseudo-
truth, has a long history in machine learning and
speech and language applications (Scudder, 1965;
Novotney and Callison-Burch, 2010). It gener-
ally leads to performance improvements, but why?
The expected gradient of the log probability of a
model p(y|x) trained on its own predictions is zero:
Ey∼pθ̂(y|x)[∇θ log pθ(y|x)] = 0! There are few
ways that self-training can improve performance:

• By re-prioritizing the model’s capacity based
on a target input distribution x that is gener-
ated for, i.e., by compensating for covariate
shift (Sugiyama and Kawanabe, 2012).

• By sharpening the model to eliminate predic-
tion noise, via the distillation of any decoding
processes (e.g. beam search) (Grandvalet and
Bengio, 2005).

• By introducing perturbations that the model’s
predictions are trained to be invariant to.

Recently in (He et al., 2019), it was shown that
for machine translation, significant gains could be
realized via self-training, and that most of this gain
could be attributed to the last effect: in particular,
invariance to input and dropout noise. In sum-
mary, predictive models can benefit substantially
from self-training: one does not need to improve
a generative model of the data to improve predic-
tion performance on that data. Nevertheless, we
will next relate the predictive models used in QA
generators and QA systems to underlying implicit
generative models, to derive insight and justify ex-
isting QA filtering methods, and derive new ones.
It turns out that several self-training algorithms for
QA optimization actually optimize an approximate
lower bound on the probability of the data, and so
have the potential to evolve their representations to
maximize the probability of the target data.

6 A Generative Framework for Adapting
QA Systems

In this section we consider a simple generative
framework for understanding predictive QA sys-
tems. In unsupervised data settings, only the con-
text C is observed, and the questions {Q} and an-
swers {A} are latent, and must be inferred.

Here we consider the following generative model
for each context:

log p(C) = log
∑
Q,A

p(C|Q,A)p(Q|A)p(A) (4)

Where the index of the context in the adaptation
data has been omitted to avoid notational clutter.
Typically the factors of a generative models are ex-
plicit, and each factor is endowed with parameters,
to maximize the probability of the data. In this pa-
per, these factors, as we shall see, are only implicit,
and we explore the possibility of maximizing the
probability of the data, using only inference net-
works, which condition on the context: namely the
answer generator, p(A|C), the question generator,
p(Q|A,C), and the QA system, p(A|Q,C). Our
interest in doing so is 3 fold: 1) To avoid having
to specify and train a generative model of contexts,
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which may be difficult to learn. 2) To better un-
derstand the theoretical underpinnings of existing
augmentation algorithms such as the roundtrip con-
sistency algorithm (RTC) (Alberti et al., 2019), and
3) Foremost, to achieve the end-goal of deriving
insight that leads to more effective iterative algo-
rithms for adapting QA systems.

We begin our quest by low-bounding the prob-
ability of the data, with a posterior distribution
q(A,Q) over the latent questions and answers for
the context, as is done for VAES (Kingma and
Welling, 2013).

log p(C) ≥
∑
Q,A

q(Q,A|C) log
p(C|Q,A)p(Q,A)

q(Q,A|C)

(5)

Expanding the prior term p(Q,A) in terms of
question and answer generators, p(Q|A,C) and
p(A|C), we have:

log p(Q,A) = log
∑
C′

p(Q|A,C ′)p(A|C ′)p̂(C ′)

≥ log p(Q|A,C)p(A|C)p̂(C) (6)

Where p̂(C ′) is the current estimate of proba-
bility of context C ′. In general we expect this
lower bound to be quite strong, as p(Q|A,C ′) and
p(A|C ′) are identically or close to zero for most
C ′ 6= C. The resulting lower bound is on p(C) is:

log p(C) ≥ L = log p̂(C) +∑
Q,A

q(Q,A|C) log
p(C|Q,A)p(Q|A,C)p(A|C)

q(Q,A|C)

(7)

Which can be maximized to improve p(C). The re-
sulting bound looks much like a typical variational
bound (e.g. 5), the principle difference being that
the distributions being optimized are themselves
inference networks, and condition on C. The effec-
tive joint distribution corresponding to this bound
is:

p(C,Q,A) ≈ p(C|Q,A)p(Q|A,C)p(A|C) (8)

7 Defining the inference distribution q

In contrast with how VAEs are typically optimized,
here we utilize multiple samples to form a pos-
terior over QA pairs (Burda et al., 2015; Rain-
forth et al., 2018), and employ a form of priori-
tized truncated variational inference (TVI) to com-
bat mode-dropping, which was recently shown

to be a proper variational bound that can be iter-
ated (Lücke, 2016). TVI in short, utilizes a sub-
set Φ of joint states to define the posterior, i.e.
q(Q,A) ∝ p(Q,A,C), {Q,A} ∈ Φ, 0 o.w, but
any subset of states, and any convex set of weights,
can be used to form a lower bound.

log p(C) = log
∑
Q,A

p(C,Q,A)

≥ log
∑

Q,A∈Φ

p(C,Q,A)

≥
∑

Q,A∈Φ

q(Q,A|C) log
p(C,Q,A)

q(Q,A|C)
= LΦ(C)

(9)

When q(Q,A|C) ∝ p(Q,A,C), {Q,A} ∈
Φ, 0 o.w, the second bound is tight. In general
q(Q,A|C) takes the form:

q(Q,A|C) =
q(Q,A,C)

q(C)
(10)

where:

q(C) =
∑

Q,A∈Φ

q(Q,A,C) (11)

The consequence of this is that all the bounds de-
rived above hold, even if the sums over all QA
pairs are taken over a prioritized set. The process
of defining q thus can be decomposed into two
steps:

1. define the subset of QA pairs to include in the
set Φ

2. define the convex weights on the identified set,
q(Q,A|C).

8 Training Objectives

Typically when the end goal is data modeling, the
probability of each data example is maximized in-
discriminately. The maximum likelihood objective
over the adaptation dataset {Ct} in this case is:

OML =
∑
t

LΦ(Ct) (12)

However, when training inference networks to
make predictions for a given set of contexts in an
unsupervised manner, it is natural to put more em-
phasis on confident predictions. A natural self-
training objective in this context is to weigh each
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context according to it’s current estimated proba-
bility, so as to avoid re-enforcing poor predictions:

OST (α) =
∑
t

q(Ct)
αLΦ(Ct) (13)

With α ≥ 0. When α = 0, The standard ML objec-
tive is recovered. When α = 1, the normalization
and the overall objective reduces to self-training on
the current estimate of the joint distribution over
{Q,A,C} triples:

OST (1) =
∑
t

∑
{Q,A}∈Φt

q(Q,A,Ct) log p(Q,A,Ct)

(14)

We found that OST (1) consistently, leads to
slightly better QA performance than pre-training
with OML, and so we optimize OST (1) during the
pre-training step for all results in this paper, except
where otherwise noted.

9 The question answer posterior (QAP)
based likelihood approximation

As discussed above, summing over all QA pairs is
intractable, and so we select the set Φ by prioritiz-
ing wrt p(Q|A,C)p(A|C) via beam search. Given
the set, we need to approximate p(Q,A,C). Here
we approximate the likelihood function p(C|Q,A)
by the QA posterior p(A|Q,C), which will at-
tribute low scores to poor QA pairs. Since the
answers A are abstractive, this is a good approxi-
mation. With p(C|Q,A) ≈ p(A|Q,C), and Φ pri-
oritizing wrt p(Q|A,C)p(A|C) via beam search,
we utilize the tightest possible TVI bound on (7):

q(Q,A,C) ∝ p(A|Q,C)p(Q|A,C)p(A|C) (15)

Treating these prioritized samples as independent
samples from p(Q|A,C)p(A|C) 1, the final weight
on each sample after importance sampling is pro-
portional to p(A|Q,C). The resulting per example
adaptation objective for our generators and QA sys-
tem are given by:

O =
∑

Q,A∈Φ

p̃(A|Q,C)[log pθa|q(A|Q,C) +

log pθq|a(Q|A,C) +

log pθa(A|C)] (16)

1In practice prioritized samples often lead to better perfor-
mance when treated as independent samples (Alberti et al.,
2019), we also found that this was the case.

Where p̃(A|Q,C) = p(A|Q,C)
(
∑
Q,A∈Φ p(A|Q,C))α when the

objective OST (α) is used (p(A|Q,C) when α = 1).
In essence, the generators are trained on the re-

ward signal p̃(A|Q,C). Note that the expected
gradient of the QA term is not zero, because the
set set has been prioritized. In addition, dropout
is used during training, to encourage invariance to
dropout noise on generated inputs. Adding noise
to the input would similarly improve performance,
but we leave this to future work. Effectively this
approach further prioritizes the set of questions
produced by beam search based on the posterior
distribution of the answer that the question was gen-
erated for, and encourages prediction consistency
over noisy representations.

10 Interpreting existing approaches

Current techniques can be understood in the context
of the above bounds, which provides new theoreti-
cal justification for these methods, and furthermore
justifies the iterative extensions of these methods
presented herein.

10.1 Beam Search and Augment (BSA)

The most straightforward approach to incor-
porating synthetic data is to generate QA
pairs using beam search using the generators,
p(A|C), p(Q|A,C), and then treating the gener-
ated data as ground-truth data with weight 1. Se-
lecting a subset ΦQA of QA pairs here corresponds
to an instance of truncated variational inference to
define the support of q(Q,A), and using weights of
one corresponds to a uniform distribution over the
selected set, for lack of any way to approximate the
likelihood function, and use of OST (α) with α = 1.

10.2 Roundtrip Consistency

Roundtrip consistency, introduced in (Alberti et al.,
2019), generates a set of candidate QA pairs us-
ing beam search, and accepts the QA pair only if
arg maxA p(A|Qi, C) = Ai. The authors sketch
two potential avenues for the formal justification of
RTC in the appendix, but state that “a key question
for future work is to develop a more formal under-
standing of why the roundtrip method improves
accuracy”.

Under the presented framework, RTC can be eas-
ily interpreted. The RTC procedure for validating
QA pairs is an instance of the Iterated Conditional
Modes (ICM) algorithm (Besag, 1986) for identi-
fying local modes of a posterior distribution. The
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ICM algorithm consists of iteratively maximizing
the conditional posterior of one variable (set), given
all the others, until convergence. The resulting set
of variables is a “conditional mode”: the poste-
rior mode of each variable (set), conditioned on
all other variables are consistent. RTC performs
only one iteration, and discards the example if con-
sistency is not satisfied. In this manner RTC goes
further than beam search, and accepts only priori-
tized generations that are conditional modes of the
underlying posterior as members of the set ΦQA.
Like BSA, accepted QA pairs are given weight 1,
and so like BSA, corresponds to utilizing a uniform
distribution over the (smaller) set Φ that satisfies
cycle consistency, and the self-training objective
OST (α) (14) with α = 1.

The QAP approach to approximating the like-
lihood represents a soft generalization of RTC,
where QA pairs are re-weighted based on the prob-
abilistic cycle consistency criterion q(Q,A) ∝
p(A|C)p(Q|A,C)p(A), which, as we have shown,
produces the tightest bounds on log p(C) under
the model for any prioritized set Φ. To retain
the speed and performance advantages of select-
ing only modes, but still assign soft scores, we
set a threshold of 0.5 on the QAP filter, so that
only modes will be selected, but they will have soft
scores associated with them.

11 Related Work

Several authors have recently investigated the use
of synthetic data to improve question answering
systems, with most of the work we are aware of
either augmenting the training set, or generating
synthetic QA pairs on auxiliary data (Sachan and
Xing, 2018; Du et al., 2017; Duan et al., 2017; Song
et al., 2017; Alberti et al., 2019; Dong et al., 2019;
Zhang and Bansal, 2019). In most existing work,
the generators are trained only on ground-truth data.
One exception is (Sachan and Xing, 2018), which
jointly self-trains question given answer (RNN)
and answer given question (Attentive Reader) mod-
els. Another is (Wang et al., 2019), which intro-
duces a domain classifier to adapt to target domain
data. However, in contrast with our work, they train
their QA system component only on ground-truth
source data, because they found that synthetic data
degrades QA system performance, whereas our PT
QA systems trained only on synthetic data often
outperform the baseline.

In this work, we focus on using synthetic data to

adapt to target data, and iteratively improve both
the generators and the QA system during the adap-
tation process using pre-trained Transformers, by
alternating between self-supervised pre-training
and ground-truth fine-tuning phases. The closest
existing work to ours that we are aware of is the
Roundtrip Consistency paper itself (Alberti et al.,
2019), whose “fine-tuning only” experiments par-
allel ours, in that they fine-tune pre-trained BERT
models to define the answer and question gener-
ators, and the QA system (SQUAD2 gain 0.9 F1
with 3M QA pairs). Note that, in contrast with our
work, their generators were trained only on ground-
truth data, and the augmentation process was not
iterated.

An important element of this work is to show
that iterative Roundtrip Consistency filtering and
the Answer Posterior filtering method proposed
here approximately optimize a lower bound on the
probability of the target domain data. In (Lewis
and Fan, 2018), the authors propose a generative
model for question answering, which purposefully
avoids the use of a QA decoder, p(A|Q,C), instead
inverting the generative model p(A|C), p(Q|A,C)
explicitly over a prioritized set of answers using
beam search, so that an answer must be able to
generate the question to be an answer. Additional
discriminative training is required to make the ap-
proach work well, but nevertheless, this desiderata
is captured by both Roundtrip Consistency filter-
ing and Answer Posterior filtering: yes, generated
questions are verified by virtue of matching gener-
ated and predicted answers, but also answers are
validated by the generators’ ability to communicate
it when the answer→ question→ answer loop is
enforced. Yet another manifestation of this idea
is regularizing the question generator p(Q|A,C)
and question answering system p(A|Q,C) to en-
courage them to be consistent during (supervised)
training (Tang et al., 2017; Duan et al., 2017).

In (Dong et al., 2019) the authors investigate the
use of UniLM on SQUAD and fine-tune UniLM
as a question generator to augment the training
set with new questions for ground truth answers.
Our preliminary experiments indicate that this is a
straightforward way to significantly boost baseline
QA and Q generator performance before adapting
to target data, given that the ground truth answers
are available, using the methods described herein.
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Method QAP selection QAP weight
BSA TOPK[p(A|C)p(Q|A,C)] 1
RTC TOPK[p(A|C)p(Q|A,C)] & arg maxA p(A|Qi, C) = Ai 1
QAP TOPK[p(A|C)p(Q|A,C)] & p(Ai|Qi, C) > 0.5 p(Ai|Qi, C)

Table 1: Summary of iterative adaptation techniques investigated in this paper: Beam Search Adaptation (BSA),
Roundtrip Consistency (RTC), and Question Answer Posterior (QAP). Composition of the approximate QAC like-
lihood, which defines the weight of each generated example during pre-training, consists of 1) Selecting a set Φ of
QA pairs for the context C, and 2) setting a weight for each selected pair.

12 Experiments

12.1 Test Scenarios

To evaluate the efficacy of unsupervised self-
training for QA system adaptation, we consider
the following scenarios:

• Well Matched Target Conditions, Limited
Training Data (WM-LT)

• Well Matched Target Conditions, Plentiful
Training Data (WM-PT)

• Mismatched Target Conditions, Plentiful
Training Data (MM-PT)

In this paper well matched conditions (WM-LT,
WM-PT) are assessed by adapting SQUAD-trained
models on SQUAD development data (Rajpurkar
et al., 2016), and mismatched conditions by adapt-
ing SQUAD-trained models on the portion of
the Natural-Questions (NQ) development data
(Kwiatkowski et al., 2019) that contains abstractive
short answers.

12.2 Models

In this paper all QA generation and answering mod-
els are trained by fine-tuning BERT (base, uncased,
unless noted otherwise). The question generator
is trained as a left-to-right sequence-to-sequence
model, which conditions on the observed context.
Ground-truth or generated answers are marked in
the context by introducing additional segment ids
to mark the answer. All models are iteratively pre-
trained on synthetic generated data and fine-tuned
on SQUAD using essentially the standard BERT
fine-tuning recipe for SQUAD (ADAM optimizer,
std. parameters; lr=3e-5; 2 epochs, “warmup lin-
ear” schedule for both PT and FT). All experiments
were conducted on 4 or 8 node V-100 machines,
and all models were adapted for two iterations.

Model EM F1
Baseline-FT –/69.6 –/79.7

BAS-PT 56.7/58.1 69.0/71.3
BAS-FT 71.1/71.1 81.2/81.2
RTC-PT 65.6/67.4 75.4/77.5
RTC-FT 71.6/71.6 81.2/81.5
QAP-PT 64.7/66.1 75.2/77.2
QAP-FT 71.5/71.7 81.4/81.8

Table 2: Limited training data scenario: Squad 1.1
QA adaptation EM/F1 results on dev (GT data is 9K
of Squad1.1 train, bsize 24, pt bsize 80, 4/8 q/a per
c,first/best iter. results shown). See section 12.3 for
details, and table 1 for a description of each technique.

12.3 Results: Well Matched, Limited
Training Data

Table 2 depicts SQUAD 1.1 QA adaptation results
on dev (GT data is 9K of SQUAD 1.1 training set,
ft batch size 24, pre-training batch size 80). For
this test the answer nbest and question nbest were
set to 8 and 4 respectively, yielding 32 QA pairs per
paragraph (2554 dev paragraphs) before filtering.
The performance of the first and best iteration are
depicted for each metric, for all models. Looking at
the results, we can see that RTC-FT and QAP-FT,
which do additional filtering/re-weighting based
on QA feedback, respectively, slightly outperform
using the prioritized beam search results as gt adap-
tation data (BSA-FT). Note however, that both RTC
and QAP are generally significantly more efficient
to train than BSA, as a significant percentage of the
prioritized synthetic data is discarded (the amount
discarded depends on both the strength of the gener-
ator and how mismatched the target conditions are,
see table 5 for further analysis). The performance
gap between pre-trained models (PT), which are
trained only on generated data, in contrast, is more
marked. Filtering improves PT model performance
substantially.
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Model EM F1
Baseline –/46.8 –/62.6
BSA-PT 34.4/24.4 51.2/51.2
BSA-FT 47.0/47.0 62.8/62.8
RTC-PT 42.9/43.8 58.0/58.7
RTC-FT 47.4/47.8 63.1/63.3
QAP-PT 43.3/44.4 57.8/58.3
QAP-FT 48.1/48.1 63.7/63.7

Baseline (LMPT) –/47.6 –/63.4
QAP-PT (LMPT) 42.9/44.7 57.2/59.1
QAP-FT (LMPT) 48.2/48.5 63.9/64.1

Table 3: Mismatched Target Data Scenario: NQ results
on dev (GT data is all of the Squad1.1 training set, bsize
24, pt bsize 96, 4/16 q/a per c, first/best iter. results
shown). See section 12.4 and table 1 for details.

12.4 Results: Mismatched Target Conditions,
Plentiful Training Data

Table 3 depicts SQUAD 1.1 QA adaptation results
on dev (GT data is all, ∼ 90K, of the Squad1.1
training set, ft batch size 24, pre-training batch size
96). For this test the answer nbest and question
nbest were set to 16 and 4 respectively, yielding
64 QA pairs per paragraph (3703 dev paragraphs)
before filtering. Here we also compare QAP-based
adaptation to and in combination with BERT-based
bidirectional LM-pretraining (LMPT), and find that
1) QAP outperforms LMPT, and 2) LMPT and then
QAP adaptation applied in succession leads to the
best results. Iterative QAP significantly outper-
forms the baseline, and slightly outperforms both
iterative RTC and BSA, but all results are signifi-
cantly lower that on the SQUAD dev set. An im-
portant difference between SQUAD and NQ is that
NQ answers are often significantly longer, which is
a prominent bias in the definition of what an answer
is, which may be difficult to overcome with just un-
supervised adaptation. Nevertheless, all 3 methods
are able to improve the baseline system somewhat,
and outperform and improve upon LMPT.

12.5 Results: Well Matched Target
Conditions, Plentiful Training Data

Table 4 depicts SQUAD 1.1 QA adaptation re-
sults on dev (GT data is 9K of Squad1.1 train-
ing set, ft batch size 24, pre-training batch size
80 unless otherwise noted). For this test the an-
swer nbest and question nbest were set to 8 and 4
respectively, yielding 32 QA pairs per paragraph
(2554 dev paragraphs) before filtering. Here all fil-

tering/reweighting schemes perform similarly and
lead to gains, despite the well matched adaptation
data scenario. Increasing the number of answers
and questions/answer to 8 and 32 results in addi-
tional gain, improving baseline F1 performance
from 88.4→ 89.5 with QAP. We also found that
not adapting the answer prior p(A|C) and mean-
normalizing the data weights further improved
performance, particularly for QAP (c.f. Table 5,
starred results).

12.6 Performance vs. # Synthesized QA Pairs

Synthetic generation and pre-training time scale
linearly with the number of generated QA pairs
(the latter dominating, due to backpropagation), but
nevertheless, our per-paragraph adaptation levels
can be significantly increased to yield significant
performance gains. Table 5 compares the perfor-
mance of RTC and QAP in limited training data
conditions. The performance gain moving from
4/8 Q/A to 8/32 Q/A per context paragraph is sub-
stantial, and remarkably, the PT models, trained
only on generated data, outperform the baseline,
thanks largely in part to invariances learned with
dropout on during self-training. Figure 2 depicts
performance of QAP as a function of iteration and
synthesis level in the well-matched, limited training
data (WM-LT) condition.

12.7 Speed

Both RTC and QAP generally are significantly
faster than basic BSA while performing on-par or
better than basic beam search augmentation (7, 6
hrs vs 26 hrs during the first iteration using 8 V-
100s, for 32 a., 8 q/a per c, see Table 5). Qualita-
tively we found that BSA generally doesn’t benefit
from additional iterations, while the performance
of RTC and QAP generally saturates after 2-3 itera-
tions, and delivers consistently better performance
with lower total training time.

13 Discussion and Future Work

In this paper we have related self-training of ques-
tion answering systems to the generative modeling
of their associated context, and showed the for-
mer can be specified to optimize an approximate
lower bound on the probability of the data. We
then investigated iterative “pre-train then fine-tune”
approaches to target domain adaptation, proposed
question answer posterior (QAP) as an alternative
form of consistency filtering, and provided theoreti-
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Model EM F1 A, Q/A
Baseline –/80.9 –/88.4 4, 8
BSA-PT 66.1/66.1 77.9/77.9 4, 8
BSA-FT 81.6/81.6 89.1/89.1 4, 8
QAP-PT 70.1/70.7 80.5/81.2 4, 8
QAP-FT 81.4/81.4 89.0/89.0 4, 8
QAP-PT* 77.7/78.3 85.5/86.1 8, 32
QAP-FT* 82.1/82.3 89.3/89.5 8, 32

Table 4: Well Matched Target Data Scenario:
Squad 1.1 results on dev (GT data is all of the
Squad1.1 training set, bsize 24, pt bsize 32, 4/8 q/a
per c, first/best iter. results shown). See section
12.5 and table 1 for details. *pt bsize 96; p(A|C)
not adapted; 8,32 a,q/a; 3 iterations.

Figure 2: QAP performance as a function of iteration and
# QA pairs (WM-LT condition). PT models are trained
only on generated data.

Model EM F1 A, Q/A Synth. Data Relative Speed
Baseline-FT – / 69.6 – / 79.7 – – –

18K Model (2X GTD) – / 72.3 – / 81.7 – – –
BSA-PT/FT 58.8 / 71.9 73.6 / 82.1 32, 8 +1.1M, +1.1M 1X, 1X
RTC-PT/FT 71.6 / 72.6 81.1 / 82.4 32, 8 +220K, +360K 5X, 3X
QAP-PT/FT 72.5 / 72.7 81.7 / 82.2 32, 8 +180K, +320K 6X, 3X
RTC-PT/FT* 71.7 / 72.5 81.4/ 82.3 32, 8 +(220, 350, 422)K (5,3,4)X
QAP-PT/FT* 72.9 / 73.4 82.2 / 83.0 32, 8 +(180,310,385)K (6,3,3)X
BSA-PT/FT 58.1 / 71.1 71.3 / 81.2 8, 4 +130K, +130K 1X, 1X
RTC-PT/FT 67.4 / 71.6 77.5 / 81.5 8, 4 +60K, +90K 2X, 1.5X
QAP-PT/FT 68.3 / 71.8 78.0 / 81.6 8, 4 +50K, +80K 2.5X, 1.5X

Table 5: Final PT/FT performance as a function of number of prioritized questions and answers per target data
context paragraph. Limited training data scenario: Squad 1.1 QA adaptation EM/F1 results on dev (GT data
is 9K of Squad1.1 train). See table 1 for a description of each technique. Remarkably, the PT models, which
are trained only on generated data, are able to outperform the baseline system, provided a sufficient number of
synthetic example per target context paragraph are generated. Each PT iteration with BSA 8,32 takes 13 hrs with
an 8 V100s: RTC 8,32 is 5X, and 3X faster during iteration 1&2, respectively, due to data pruning, and QAP 8,
32 is faster than RTC. All 8,32 adapted models outperform an 18K GT only model, trained on 2X the data. When
we mean normalize the average training weight, do not adapt the answer prior p(A|C), and adapt for 3 iterations,
RTC does not improve, but QAP is significantly more effective (*).

cal justification for Roundtrip Consistency filtering.
In general, the techniques work quite well, partic-
ularly in better-matched conditions. While effec-
tive, iteratively re-training the QA generators and
QA system is inefficient, even with strong data fil-
ters. How to most efficiently and effectively adapt
Transformer-based QA systems remains an impor-
tant topic for future research.
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