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Abstract

Many extractive question answering models
are trained to predict start and end positions of
answers. The choice of predicting answers as
positions is mainly due to its simplicity and ef-
fectiveness. In this study, we hypothesize that
when the distribution of the answer positions is
highly skewed in the training set (e.g., answers
lie only in the k-th sentence of each passage),
QA models predicting answers as positions
can learn spurious positional cues and fail to
give answers in different positions. We first
illustrate this position bias in popular extrac-
tive QA models such as BiDAF and BERT and
thoroughly examine how position bias propa-
gates through each layer of BERT. To safely
deliver position information without position
bias, we train models with various de-biasing
methods including entropy regularization and
bias ensembling. Among them, we found that
using the prior distribution of answer positions
as a bias model is very effective at reducing
position bias, recovering the performance of
BERT from 37.48% to 81.64% when trained
on a biased SQuAD dataset.

1 Introduction

Question answering (QA) is a task of answering
questions given a passage. Large-scale QA datasets
have attracted many researchers to build effective
QA models, and with the advent of deep learn-
ing, recent QA models are known to outperform
humans in some datasets (Rajpurkar et al., 2016;
Devlin et al., 2019; Yang et al., 2019). Extractive
QA is the task that assumes that answers always
lie in the passage. Based on this task assumption,
various QA models are trained to predict the start
and end positions as the answers. Following the
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Question: When was the Royal University of Warsaw established?
Answer: 1816

(kth sent.) Warsaw remained the capital of the Polish–Lithuanian 
Commonwealth until 1796,
…
(Last sent.) The Royal University of Warsaw was established in 1816.

Prediction

Test Sample

…

Training data (All answers are in the kth sentence)

Model Prediction Answer

Context 

(1st sent.) … 
(kth sent.)
(k+1th sent.) …

(Question, Answer)

Example #2

Context 

(1st sent.) … 
(kth sent.)
(k+1th sent.) …

(Question, Answer)

Example #1

Figure 1: Example of position bias. BERT trained on
the dataset with a skewed answer position distribution,
provides wrong predictions, biased to the specific sen-
tence position.

structure of earlier deep learning-based QA mod-
els (Wang and Jiang, 2016; Seo et al., 2017; Xiong
et al., 2017), recent QA models provide positions
of answers without much consideration (Yu et al.,
2018; Devlin et al., 2019; Yang et al., 2019).

The popularity of predicting the answer posi-
tions is credited to the fact that it reduces the pre-
diction space to O(n) where n is the length of an
input document. It is more efficient and effective
than directly generating answers from a large vo-
cabulary space. Furthermore, it reduces the QA
task to a classification task which is convenient to
model. Nevertheless, very few studies have dis-
cussed the side effects of predicting the answer
positions. Could there be any unwanted biases
when using answer positions as prediction targets?

In this paper, we demonstrate that the models
predicting the position can be severely biased when
trained on datasets that have a very skewed answer
position distribution. We define this as position
bias as shown in Figure 1. Models trained on a bi-
ased dataset where answers always lie in the same
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Training Data BiDAF BERT XLNet
EM F1 ∆ EM F1 ∆ EM F1 ∆

SQuADtrain 66.51 76.46 81.32 88.63 80.69 89.24
SQuADtrain (Sampled) 58.76 70.52 -5.94 76.48 85.06 -3.57 80.07 88.32 -0.92
SQuADk=1

train 21.44 27.92 -48.54 31.20 37.48 -51.15 38.59 45.27 -43.97
SQuADk=1

train + First Sentence 53.16 63.21 -13.25 72.75 81.18 -7.45 74.85 82.84 -6.40
SQuADk=1

train + Sentence Shuffle 54.40 65.20 -11.26 73.37 81.90 -6.73 77.83 86.18 -3.06

Table 1: Performance of QA models trained on the biased SQuAD dataset (SQuADk=1
train ), and tested on SQuADdev.

∆ denotes the difference in F1 score with SQuADtrain. We use exact match (EM) and F1 score for evaluation.1

sentence position mostly give predictions on the
corresponding sentence. As a result, BERT (De-
vlin et al., 2019) trained on a biased training set
where every answer appear in the first sentence
only achieves 37.48% F1 score in the SQuAD de-
velopment set whereas the same model trained on
the same amount of randomly sampled examples
achieves 85.06% F1 score.

To examine the cause of the problem, we thor-
oughly analyze the learning process of QA models
trained on the biased training sets, especially focus-
ing on BERT. Our analysis shows that hidden rep-
resentations of BERT preserve a different amount
of word information according to the word posi-
tion when trained on the biased training set. The
predictions of biased models also become more
dependent on the first few words when the training
set has answers only in the first sentences.

To tackle the problem, we test various options,
ranging from relative position encodings (Yang
et al., 2019) to ensemble-based de-biasing meth-
ods (Clark et al., 2019; He et al., 2019). While sim-
ple baselines motivated by our analysis improve the
test performance, our ensemble-based de-biasing
method largely improves the performance of most
models. Specifically, we use the prior distribution
of answer positions as an additional bias model and
train models to learn reasoning ability beyond the
positional cues.

Contributions of our paper are in threefold; First,
we define position bias in extractive question an-
swering and illustrate that common extractive QA
models suffer from it. Second, we examine the rea-
son for the failure of the biased models and show
that positions can act as spurious biases. Third, we
show that the prior distribution of answer positions
helps us to build positionally de-biased models, re-
covering the performance of BERT from 37.48% to
81.64%. We also generalize our findings in many
different positions and datasets. 2

2https://github.com/dmis-lab/position-bias

2 Analysis

We first demonstrate the presence of position
bias using biased training sets sampled from
SQuAD (Rajpurkar et al., 2016) and visualize how
position bias propagates in BERT.

2.1 Position Bias on Synthetic Datasets

From the original training set Dtrain, we sub-
sample a biased training set Dk

trainwhose answers
lie in the k-th sentence.3 We conduct experi-
ments on SQuAD (D = SQuAD) as most exam-
ples in SQuAD are answerable with a single sen-
tence (Min et al., 2018). Our analysis mainly fo-
cuses on SQuADk=1

train (i.e., all answers are in the
first sentence), which has the largest proportion
of samples compared to other sentence positions
in SQuAD (28,263 out of 87,599). The propor-
tion in the development set (SQuADdev) is similar,
having 3,637 out of 10,570 answers in the first
sentence. Note that while our analysis is based on
SQuADk=1

train , we also test various sentence positions
in our main experiments (Section 4.2). We exper-
iment with three popular QA models that provide
positions as answers: BiDAF (Seo et al., 2017),
BERT (Devlin et al., 2019), and XLNet (Yang
et al., 2019). All three models are trained on
SQuADk=1

train and are evaluated on SQuADdev. For
a fair comparison, we also randomly sample ex-
amples from the original training set and make
SQuADtrain (Sampled) which has the same number
of examples with SQuADk=1

train .
Table 1 shows the performance of the three mod-

els trained on SQuADk=1
train . The performances of all

models drop significantly compared to the models
trained on SQuADtrain or SQuADtrain (Sampled).
The relative position encodings in XLNet mitigate
position bias to some extent, but its performance

2Evaluation code is provided by https://rajpurkar.github.io/
SQuAD-explorer/

3We use Spacy Sentencizer (https://spacy.io/api/
sentencizer) for the sentence split.

https://github.com/dmis-lab/position-bias
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://spacy.io/api/sentencizer
https://spacy.io/api/sentencizer
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Figure 2: Visualization of position bias with BERT trained on SQuADtrain (ORIG), SQuADk=1
train (FIRST), and BERT

without fine-tuning (PRE). See Section See Section 2.2 for more details.

still degrades significantly.
To better understand the cause of position bias,

we additionally perform two pre-processing meth-
ods on SQuADk=1

train . First, we truncate each pas-
sage up to the first sentence (SQuADk=1

train + First
Sentence). In this case, most performance is re-
covered, which indicates that the distributions of
answer positions are relatively defined with respect
to the maximum sequence length. Shuffling the sen-
tence order of SQuADk=1

train (SQuADk=1
train + Sentence

Shuffle) also recovers most performance, showing
that the spreadness of answers matters. However,
these pre-processing methods cannot be a solution
as more fine-grained biases (e.g., word level posi-
tions) could cause the problem again and models
cannot learn proper multi-sentence reasoning from
a corrupted context.

2.2 Visualization of Position Bias

To visualize how position bias propagates through-
out the layers, we compare BERT models, each
trained on SQuADk=1

train and SQuADtrain respectively
and BERT without any fine-tuning. The uncased
version of BERT-base is used for the analysis.

Figure 2 (a) shows the amount of word infor-
mation preserved in the hidden representations at
the last layer of BERT. We define the amount of
word information for each word position as the co-
sine similarity between the word embedding and
its hidden representation at each layer. The simi-
larities are averaged over the passage-side hidden
representations in SQuADdev.

BERT trained on SQuADk=1
train (FIRST) has higher

similarities at the front of the passages compared
with BERT trained on SQuADtrain (ORIG). In the
biased model, the similarity becomes smaller after
the first few tokens, which shows position bias of

BERT.
Figure 2 (b) shows the Spearman’s rank corre-

lation coefficient between the final output logits4

and the amount of word information at each layer
defined by the cosine similarity. A higher correla-
tion means that the model is more dependent on the
word information kept in that layer. The correla-
tion coefficient is much higher in the biased model
(FIRST), especially in the last few layers. Com-
bined with the observation from Figure 2 (a), this
indicates that the predictions of the biased model
are heavily relying on the information of the first
few words.

2.3 Why is Position Bias Bad?

Our analysis shows that it is very easy for neural
QA models to exploit positional cues whenever pos-
sible. While it is natural for neural models to learn
the strong but spurious correlation present in the
dataset (McCoy et al., 2019; Niven and Kao, 2019),
we argue that reading ability should be cultivated
independent of such positional correlation. Our
study aims to learn proper reading ability even in
extreme cases where all answers are in the k-th sen-
tence. Although exploiting the position distribution
within the dataset could help the model improve
performance on its corresponding test set, position
bias should not be learned since we cannot guar-
antee realistic test environments to follow similar
distribution.

3 Method

To prevent models from learning a direct corre-
lation between word positions and answers, we
introduce simple remedies for BERT and a bias

4We show the results with start position logits and the same
pattern is observed with end position logits.
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ensemble method with answer prior distributions
that can be applied to any QA models.

3.1 Baselines

Randomized Position To avoid learning the di-
rect correlation between word positions and an-
swers, we randomly perturb input positions. We
first randomly sample t indices from a range of 1
to maximum sequence length of BERT. We sam-
ple t = 384 when the maximum sequence length
is 512. Then, we sort the indices in an ascending
order to preserve the ordering of input words. Per-
turbed indices then generate position embedding
at each token position, which replaces the original
position embedding.

Entropy Regularization Inspired by the obser-
vation in Section 2.2, we force our model to pre-
serve a constant amount of word information re-
gardless of the word positions. Maximizing the en-
tropy of normalized cosine similarity between the
word embeddings and their hidden representations
encourages models to maintain a uniform amount
of information. As the cosine similarities are not
probabilities, we normalize them to be summed
to 1. We compute the entropy regularization term
from the last layer and add it to the start/end pre-
diction loss with a scaling factor λ.

3.2 Bias Ensemble with Answer Prior

Bias ensemble methods (Clark et al., 2019; He
et al., 2019) combine the log probabilities from a
pre-defined bias model and a target model to de-
bias. Ensembling makes the target model to learn
different probabilities other than the bias probabil-
ities. In our case, we define the prior distribution
of the answer positions as our bias model. Specifi-
cally, we introduce the sentence-level answer prior
and the word-level answer prior.

Bias Ensemble Method Given a passage and
question pair, a model has to find the optimal start
and end positions of the answer in the passage, de-
noted as ys, ye. Typically, the model outputs two
probability distributions ps and pe for the start and
end positions. As our method is applied in the same
manner for both start and end predictions, we drop
the superscript from ps, pe and subscript from ys,
ye whenever possible.

For ensembling two different log probabilities
from the bias model and the target model, we use
a product of experts (Hinton, 2002). Using the

product of experts, a probability at the i-th position
is calculated as:

p̂i = softmax(log(pi) + log(bi)) (1)

where log(pi) is a log probability from the target
model and log(bi) is a log probability from the bias
model. The ensembled probability p̂ is used for the
training.

To dynamically choose the amount of bias for
each sample, Clark et al. (2019) introduce a learned
mixing ensemble with a trainable parameter. Prob-
abilities in the training phase are now defined as:

p̂i = softmax(log(pi) + g(X) log(bi)) (2)

We use hidden representations before the softmax
layer as X . g(X) then applies affine transforma-
tion on the representations to obtain a scalar value.
Softplus activation followed by max pooling is used
to obtain positive values. As BiDAF has separate
hidden representations for the start and end predic-
tions, we separately define g(X) for each start and
end representation.

As models often learn to ignore the biases and
make g(X) to 0, Clark et al. (2019) suggest adding
an entropy penalty term to the loss function. How-
ever, the entropy penalty did not make much differ-
ence in our case as g(X) was already large enough.
Note that we only use log(bi) during training, and
the predictions are solely based on the predicted
log probability log(pi) from the model.

We define bias log probability as pre-calculated
answer priors. Using prior distributions in machine
learning has a long history such as using class fre-
quency in the class imbalance problem (Domingos,
1999; Japkowicz and Stephen, 2002; Zhou and Liu,
2006; Huang et al., 2016). In our case, the class
prior corresponds to the prior distribution of answer
positions.

Word-level Answer Prior First, we consider
the word-level answer prior. Given the train-
ing set having N examples having N answers
{y(1), y(2), ..., y(N)}, we compute the word-level
answer prior at position i over the training set. In
this case, our bias log probability at i-th position is:

log(bi) :=
1

N

N∑
j=1

1[y(j) = i] (3)

where we use the indicator function 1[cond]. Bias
log probabilities for the end position prediction are
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calculated in a similar manner. Note that the word-
level answer prior gives an equal bias distribution
for each passage while the distribution is more fine-
grained than the sentence-level prior described in
the next section.

Sentence-level Answer Prior We also use the
sentence-level answer prior which dynamically
changes depending on the sentence boundaries of
each sample. First, we define a set of sentences
{S(j)

1 , ..., S
(j)
L } for the j-th training passage, where

L is the maximum number of sentence in whole
training passages. Then, the sentence-level answer
prior of the i-th word position (for the start predic-
tion) for the j-th sample, is derived from the fre-
quency of answers appearing in the l-th sentence:

log(b
(j)
i ) :=

1

N

N∑
k=1

1[y(k) ∈ S
(k)
l ], i ∈ S

(j)
l (4)

Note that as boundaries of sentences in each sample
are different, bias log probabilities should be de-
fined in every sample. Again, bias log probabilities
for the end positions are calculated similarly.

It is very convenient to calculate the answer pri-
ors for any datasets. For instance, on Dk=1

train , we
use the first sentence indicator as the sentence-level
answer prior as all answers are in the first sentence.
More formally, the sentence-level answer prior for
Dk=1

train is 1 for l = 1, and 0 when l > 1:

log(b
(j)
i ) :=

{
1 i ∈ S

(j)
1 ,

0 i /∈ S
(j)
1

(5)

which is a special case of the sentence-level answer
prior. For general datasets where the distributions
of answer positions are less skewed, the answer
priors are more softly distributed. See Appendix B
for a better understanding of the answer priors.

Both word-level and sentence-level answer pri-
ors are experimented with two bias ensemble meth-
ods: product of experts with bias (Bias Product,
Equation 1) and learned mixing of two log proba-
bilities (Learned-Mixin, Equation 2).

4 Experiments

We first experiment the effects of various de-
biasing methods on three different QA models us-
ing both biased and full training sets. Our next
experiments generalize our findings in different
sentence positions and different datasets such as
NewsQA (Trischler et al., 2017) and NaturalQues-
tions (Kwiatkowski et al., 2019).

4.1 Effect of De-biasing Methods

We first train all three models (BiDAF, BERT, and
XLNet) on SQuADk=1

train with our de-biasing meth-
ods and evaluate them on SQuADdev (original de-
velopment set), SQuADk=1

dev , and SQuADk=2,3,...
dev .

Note that SQuADk=2,3,...
dev is another subset of

SQuADdev, whose answers do not appear in the
first sentence, but in other sentences. We also ex-
periment with BERT trained on the full training set,
SQuADtrain.

For all models, we use the same hyperparameters
and training procedures as suggested in their orig-
inal papers (Seo et al., 2017; Devlin et al., 2019;
Yang et al., 2019), except for batch sizes and train-
ing epochs (See Appendix A). λ for the entropy
regularization is set to 5. Most of our implementa-
tion is based on the PyTorch library.

Results with SQuADk=1
train The results of apply-

ing various de-biasing methods on three models
with SQuADk=1

train are in Table 2. Performance of
all models without any de-biasing methods (de-
noted as ‘None’) is very low on SQuADk=2,3,...

dev ,
but fairly high on SQuADk=1

dev . This means that
their predictions are highly biased towards the
first sentences. In the case of BERT, F1 score
on SQuADk=1

dev is 85.81%, while F1 score on
SQuADk=2,3,...

dev is merely 12.12%. Our simple base-
line approaches used in BERT improve the perfor-
mance up to 34.63% F1 score (Random Position)
while the entropy regularization is not significantly
effective.

Bias ensemble methods using answer priors con-
sistently improve the performance of all models.
The sentence-level answer prior works the best,
which obtains a significant gain after applying the
Learned-Mixin method. We found that the coef-
ficient g(X) in Equation 2 averages to 7.42. dur-
ing training for BERT + Learned-Mixin, which
demonstrates a need of proper balancing between
the probabilities. The word-level answer prior does
not seem to provide strong position bias signals
as its distribution is much softer than the sentence-
level answer prior.

Results with SQuADtrain The results of train-
ing BERT with our de-biasing methods on the full
training set SQuADtrain are in the bottom of Table 2.
Note that the answer prior is more softened than
the answer prior used in SQuADk=1

train as answers are
now spread in all sentence positions. While exploit-
ing the positional distribution of the training set
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De-biasing Method SQuADk=1
dev SQuADk=2,3,...

dev SQuADdev

EM F1 EM F1 EM F1

BERT trained on SQuADk=1
train

Baseline
None 77.07 85.81 7.14 12.12 31.20 37.48
Random Position 69.95 80.73 27.32 34.63 41.99 50.49
Entropy Regularization 77.40 86.17 10.50 15.72 33.52 39.96

Word-Level Bias Product 78.61 87.08 7.85 12.88 32.19 38.41
Learned-Mixin 78.17 86.56 8.55 13.43 32.51 38.59

Sentence-Level Bias Product 78.39 87.06 13.33 18.73 35.71 42.24
Learned-Mixin 77.18 85.15 71.31 79.79 73.33 81.64

BiDAF trained on SQuADk=1
train

Baseline None 61.04 72.91 0.66 4.34 21.44 27.92

Sentence-Level Bias Product 62.00 73.87 0.78 4.48 21.84 28.36
Learned-Mixin 56.53 66.79 50.28 60.77 52.43 62.84

XLNet trained on SQuADk=1
train

Baseline None 78.99 87.24 11.52 16.77 38.59 45.27

Sentence-Level Bias Product 79.24 87.88 33.28 39.93 49.09 56.43
Learned-Mixin 68.82 82.05 64.63 77.65 66.07 79.16

BERT trained on SQuADtrain

Baseline None 81.55 88.68 81.21 88.61 81.32 88.63

Sentence-Level Bias Product 81.88 88.87 81.29 88.87 81.49 88.87
Learned-Mixin 81.58 88.38 80.87 88.47 81.12 88.44

Table 2: Results of applying de-biasing methods. Each model is evaluated on SQuADdev and two subsets:
SQuADk=1

dev and SQuADk=2,3,...
dev .

could be more helpful when evaluating on the devel-
opment set that has a similar positional distribution,
our method maintains the original performance. It
shows that our method works safely when the posi-
tional distribution doesn’t change much.

Visualization To investigate the effect of de-
baising methods, we visualize the word information
in each layer as done in Section 2.2. We visualize
the BERT trained on SQuADk=1

train ensembled with
sentence-level answer prior in Figure 3. The bias
product method (PRODUCT) and the model without
any de-biasing methods (NONE) are similar, show-
ing that it still has position bias. The learned-mixin
method (MIXIN), on the other hand, safely delivers
the word information across different positions.

4.2 Generalizing to Different Positions

As the SQuAD training set has many answers in
the first sentence, we mainly test our methods on
SQuADk=1

train . However, does our method gener-
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Figure 3: Visualization of BERT models trained on
SQuADk=1

train with and without de-biasing method.

alize to different sentence positions? To answer
this question, we construct four SQuADk

traindatasets
based on the sentence positions of answers. Note
that unlike SQuADk=1

train , the number of samples
becomes smaller and the sentence boundaries are
more blurry when k > 1, making answer pri-
ors much softer. We train three QA models on
different biased datasets and evaluate them on
SQuADdev with and without de-biasing methods.
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SQuADdev
EM F1 EM F1 EM F1 EM F1

SQuADk
train

k = 2 k = 3 k = 4 k = 5,6, ...
(20,593 samples) (15,567 samples) (10,379 samples) (12,610 samples)

BiDAF 18.43 25.74 12.26 19.04 9.96 16.50 12.34 19.65
+Bias Product 21.51 28.67 11.19 18.39 11.20 17.78 10.09 16.78
+Learned-Mixin 47.49 58.36 43.57 53.80 30.18 39.51 18.51 27.30

BERT 36.16 43.14 44.76 52.89 49.13 58.01 57.95 66.69
+Bias Product 52.89 50.38 52.42 60.99 53.39 62.69 58.75 67.67
+Learned-Mixin 71.61 80.36 69.04 77.91 64.31 73.72 62.82 72.30

XLNet 47.55 55.01 46.67 54.56 50.49 58.74 58.29 66.67
+Bias Product 59.49 67.35 61.99 70.89 67.26 76.55 72.44 81.85
+Learned-Mixin 68.34 80.35 69.28 79.99 70.07 80.12 73.33 82.79

Table 3: Position bias in different positions. Each model is trained on a biased SQuAD dataset (SQuADk
train) and

evaluated on SQuADdev.
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Figure 4: Sentence-wise position bias in SQuAD. Models are trained on SQuADk
train and evaluated on SQuADk

dev.
(a) Standard BERT suffers from position bias as the off-diagonal performance is significantly lower. (b), (c) Our
de-biasing method successfully handles the bias and provides consistently higher performance.

Results As shown in Table 3, all three models
suffer from position bias in every sentence position
while the learned-mixin method (+Learned-Mixin)
successfully resolves the bias. Due to the blurred
sentence boundaries, position bias is less problem-
atic when k is large. We observe a similar trend in
BERT and XLNet while a huge performance drop
is observed in BiDAF even with a large k.

Visualization Figure 4 visualizes the sentence-
wise position biases. We train BERT, BERT + Bias
Product and BERT + Learned Mixin on different
subsets of SQuAD training set (SQuADk

train) and
evaluated on every SQuADk

dev whose answers lie
only in the k-th sentence. As a result, the low per-
formance in the off-diagonal represent the presence
of position bias. The figure shows that the biased
model fails to predict the answers in different sen-
tence positions (Figure 4 (a)) while our de-biased
model achieves high performance regardless of the

sentence position (Figure 4 (c)). Again, as the
value of k increases, the boundary of the k-th sen-
tence varies a lot in each sample, which makes the
visualization of sentence-wise bias difficult.

4.3 NewsQA and NaturalQuestions

We test the effect of de-basing methods on datasets
having different domains and different degrees of
position bias. NewsQA (Trischler et al., 2017)
is an extractive QA dataset that includes pas-
sages from CNN news articles. NaturalQues-
tions (Kwiatkowski et al., 2019) is a dataset con-
taining queries and passages collected from the
Google search engine. We use the pre-processed
dataset provided by the MRQA shared task (Fisch
et al., 2019).5

For each dataset, we construct two sub-training
datasets; one contains samples with answers in
the first sentence (k = 1), and the other contains

5https://github.com/mrqa/MRQA-Shared-Task-2019

https://github.com/mrqa/MRQA-Shared-Task-2019
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NewsQAk
train

NewsQAdev
k = All k = 1 k = 2,3, ...

BERT 69.94 27.99 56.15
+Bias Product 69.46 28.81 56.86
+Learned-Mixin 69.42 44.50 58.22

Table 4: F1 scores on NewsQA. Models are evaluated
on the original development dataset (NewsQAdev).

NQk
train

NQdev
k = All k = 1 k = 2,3, ...

BERT 78.79 56.79 49.59
+Bias Product 78.84 56.77 53.34
+Learned-Mixin 79.04 72.83 60.63

Table 5: F1 scores on NaturalQuestions. Models are
evaluated on the original development dataset (NQdev).

the remaining samples (k = 2, 3, ...). Models are
trained on the original dataset and two sub-training
datasets and evaluated on the original development
set.

Implementation Details For NewsQA, we trun-
cate each paragraph so that the length of each con-
text is less than 300 words. We eliminate training
and development samples that become unanswer-
able due to the truncation. For NaturalQuestions,
we choose firstly occurring answers for training ex-
tractive QA models, which is a common approach
in weakly supervised setting (Joshi et al., 2017;
Talmor and Berant, 2019).

From NewsQA and NaturalQuestions, we con-
struct two sub-training datasets having only the
first annotated samples (Dk=1

train ) and the remain-
ing samples (Dk=2,3,...

train ). For a fair compari-
son, we fix the size of two sub-training sets to
have 17,000 (NewsQA) and 40,000 samples (Natu-
ralQuestions).

Results In Table 4 and Table 5, we show results
of applying our methods. In both datasets, BERT,
trained on biased datasets (k = 1 and k = 2, 3, ...),
significantly suffers from position bias. Position
bias is generally more problematic in the k = 1
datasets while for NaturalQuestions, k = 2, 3, ... is
also problematic. Our de-biasing methods prevent
performance drops in all cases without sacrificing
the performance on the full training set (k = All).

5 Related Work

Various question answering datasets have been in-
troduced with diverse challenges including reason-
ing over multiple sentences (Joshi et al., 2017),

answering multi-hop questions (Yang et al., 2018),
and more (Trischler et al., 2017; Welbl et al., 2018;
Kwiatkowski et al., 2019; Dua et al., 2019). In-
troduction of these datasets rapidly progressed the
development of effective QA models (Wang and
Jiang, 2016; Seo et al., 2017; Xiong et al., 2017;
Wang et al., 2017; Yu et al., 2018; Devlin et al.,
2019; Yang et al., 2019), but most models predict
the answer as positions without much discussion
on it.

Our work builds on the analyses of dataset bi-
ases in machine learning models and ways to tackle
them. For instance, sentence classification models
in natural language inference and argument rea-
soning comprehension suffer from word statistics
bias (Poliak et al., 2018; Minervini and Riedel,
2018; Kang et al., 2018; Belinkov et al., 2019;
Niven and Kao, 2019). On visual question answer-
ing, models often ignore visual information due
to the language prior bias (Agrawal et al., 2016;
Zhang et al., 2016; Goyal et al., 2017; Johnson
et al., 2017; Agrawal et al., 2018). Several studies
in QA also found that QA models do not leverages
the full information in the given passage (Chen
et al., 2016; Min et al., 2018; Chen and Durrett,
2019; Min et al., 2019). Adversarial datasets have
been also proposed to deal with this type of prob-
lem (Jia and Liang, 2017; Rajpurkar et al., 2018).
In this study, we define position bias coming from
the prediction structure of QA models and show
that positionally biased models can ignore informa-
tion in different positions.

Our proposed methods are based on the bias
ensemble method (Clark et al., 2019; He et al.,
2019). Ensembling with the bias model encourages
the model to solve tasks without converging to bias
shortcuts. Clark et al. (2019) conducted de-biasing
experiments on various tasks including two QA
tasks while they use tf-idf and the named entities
as the bias models.

It is worth noting that several models incorporate
the pointer network to predict the answer positions
in QA (Vinyals et al., 2015; Wang and Jiang, 2016;
Wang et al., 2017). Also, instead of predicting
positions, some models predict the n-grams as an-
swers (Lee et al., 2016; Seo et al., 2019), generate
answers in a vocabulary space (Raffel et al., 2019),
or use a generative model (Lewis and Fan, 2019).
We expect that these approaches suffer less from
position bias and leave the evaluation of position
bias in these models as our future work.
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6 Conclusion

Most QA studies frequently utilize start and end po-
sitions of answers as training targets without much
considerations. Our study shows that most QA
models fail to generalize over different positions
when trained on datasets having answers in a spe-
cific position. Our findings show that position can
work as a spurious bias and alert researchers when
building QA models and datasets. We introduce
several de-biasing methods to make models to ig-
nore the spurious positional cues, and find out that
the sentence-level answer prior is very useful. Our
findings also generalize to different positions and
different datasets. One limitation of our approach
is that our method and analysis are based on a sin-
gle paragraph setting which should be extended to
a multiple paragraph setting to be more practically
useful.
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A Implementation Details

Details of Training For all experiments, we use
uncased BERT-base and cased XLNet-base. We
modify the open-sourced Pytorch implementation
of models.6 BiDAF is trained with the batch size
of 64 for 30 epochs and BERT and XLNet are
trained for 2 epochs with batch sizes 12 and 10, re-
spectively. The choice of hyperparameters mainly
comes from the limitation of our computational re-
sources and mostly follows the default setting used
in their original works. Note that our de-biasing
methods do not require additional hyperparameters.

For all three models, the number of parame-
ters remains the same as default settings with bias
product and increases by a single linear layer with
learned-mixin. We trained models on a single Ti-
tan X GPU. The average training time of the bias
ensemble method is similar to the original models.

B Examples of Answer Prior

To provide a better understanding of our methods,
Figure B.1 shows examples of answer priors, which
are used as bias models. See section 3 for detail.

C Visualization of Position Bias

In Figure C.1, we plot the preserved amount of
word information in the middle layers of BERT.
Figure C.2 shows the effect of applying the de-
biasing methods in each layer of BERT. See Sec-
tion 2 and 4.1 for more detail. We plot the results
of layers 1, 4, 7, 10, and 11.

6https://github.com/allenai/allennlp, https://github.com/
huggingface/transformers

 https://github.com/allenai/allennlp
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


1120

Word-Level Answer Prior Distribution

𝓓train : [0.80, 0.20] 𝓓train
𝑘=1 : [1, 0] 

Sentence-Level Answer Prior Distribution

𝓓train : [0.15, 0.10, 0.12, 0.10, 0.05, 0.08, 0.05, 0.03, 0.02, 0.04, …] 

Sentence 1 Sentence 2

Answer Prior Dataset Word1 Word2 Word3 Word4 . Word5 Word6 Word7 Word8 .

Word
Level

𝓓train 0.15 0.10 0.12 0.10 0.05 0.08 0.05 0.03 0.02 0.04

𝓓train
𝑘=1 0.30 0.20 0.20 0.15 0.09 0.01 0.01 0.004 0.002 0.001

Sentence
Level

𝓓train 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2

𝓓train
𝑘=1 1 1 1 1 1 0 0 0 0 0

𝓓train
𝑘=1 : [0.30, 0.20, 0.20, 0.15, 0.09, 0.01, 0.01, 0.004, 0.002, 0.001,  …] 

Figure B.1: Example of three types of answer priors, word-level answer prior (Word-Level), sentence-level answer
prior (Sentence-Level) and sentence-level answer prior on Dk=1

train (Sentence-Level (First)).

(a) Layer 1

(b) Layer 4

(c) Layer 7

(d) Layer 10

(e) Layer 11

Figure C.1: Visualization of each layer of BERT trained on SQuADtrain (ORIG), SQuADk=1
train (FIRST), and BERT

without fine-tuning (PRE). As the input passes each layer, position bias becomes more problematic.
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(a) Layer 1

(b) Layer 4

(c) Layer 7

(d) Layer 10

(e) Layer 11

Figure C.2: Visualization of each layer of de-biased BERT. BERT trained on SQuADk=1
train without any de-biasing

methods (NONE), with sentence-level prior bias product (PRODUCT), with learned-mixin (MIXIN). MIXIN pre-
serves consistent information compared with NONE and prevents the bias propagation.


