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Abstract

This paper presents two strong methods, CTC
and Imputer, for non-autoregressive machine
translation that model latent alignments with
dynamic programming. We revisit CTC for
machine translation and demonstrate that a
simple CTC model can achieve state-of-the-
art for single-step non-autoregressive machine
translation, contrary to what prior work in-
dicates. In addition, we adapt the Imputer
model for non-autoregressive machine transla-
tion and demonstrate that Imputer with just 4
generation steps can match the performance of
an autoregressive Transformer baseline. Our
latent alignment models are simpler than many
existing non-autoregressive translation base-
lines; for example, we do not require target
length prediction or re-scoring with an autore-
gressive model. On the competitive WMT’14
En→De task, our CTC model achieves 25.7
BLEU with a single generation step, while Im-
puter achieves 27.5 BLEU with 2 generation
steps, and 28.0 BLEU with 4 generation steps.
This compares favourably to the autoregres-
sive Transformer baseline at 27.8 BLEU.

1 Introduction

Non-autoregressive neural machine translation
(Gu et al., 2018) aims to enable the parallel gen-
eration of output tokens without sacrificing trans-
lation quality. There has been a surge of re-
cent interest in this family of efficient decoding
models, resulting in the development of iterative
refinement (Lee et al., 2018), CTC models (Li-
bovicky and Helcl, 2018), insertion-based meth-
ods (Stern et al., 2019; Chan et al., 2019b), edit-
based methods (Gu et al., 2019; Ruis et al., 2019),
masked language models (Ghazvininejad et al.,
2019, 2020b), and normalizing flow models (Ma
et al., 2019). Some of these methods generate the

∗Equal contribution.
†Work done as part of the Google AI Residency.

output tokens in a constant number of steps (Gu
et al., 2018; Libovicky and Helcl, 2018; Lee et al.,
2018; Ghazvininejad et al., 2019, 2020b), while
others require a logarithmic number of generation
steps (Stern et al., 2019; Chan et al., 2019b,a; Li
and Chan, 2019).

Recent progress has decreased the gap between
autoregressive and non-autoregressive models’
translation scores. However, non-autoregressive
models often suffer from two main limitations:

1. First, most non-autoregressive models assume
that the output tokens are conditionally inde-
pendent given the input. This leads to the weak-
ness of such models in generating multi-modal
outputs (Gu et al., 2018), and materializes in the
form of token repetitions in the decoded out-
puts. Addressing this limitation generally in-
volves stochastic search algorithms like noisy
parallel decoding (Gu et al., 2018), iterative de-
coding (Ghazvininejad et al., 2019, 2020b), or
simple but less effective heuristic methods such
as collapsing repetitions (Lee et al., 2018).

2. The second limitation of many prior non-
autoregressive models is the requirement of
output length prediction as a pre-process. Au-
toregressive models have the ability to dynami-
cally adjust the output sequence length by emit-
ting an <END> token at any generation step
to stop. Many non-autoregressive models of-
ten require a fixed length decoder. Thus they
train a separate target length prediction module,
and at inference time, first predict and condition
on the target length, and then generate the out-
put tokens (Gu et al., 2018). Since the model
needs to commit to a fixed predicted length,
which cannot be changed dynamically, it is of-
ten required to use multiple length candidates
and re-score them to produce the final transla-
tion (Ghazvininejad et al., 2019, 2020b).
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This paper addresses the limitations of existing
non-autoregressive machine translation models by
using latent alignment models. Latent alignment
models utilize a sequence of discrete latent align-
ment variables to monotonically align the non-
autoregressive predictions of the model and output
tokens. Such models use dynamic programming
to marginalize out the alignment variables during
training. This paper studies two instances of latent
alignment models including Connectionist Tem-
poral Classification (CTC) (Graves et al., 2006,
2013; Graves and Jaitly, 2014) and Imputer (Chan
et al., 2020). Libovicky and Helcl (2018) have
previously applied CTC to non-autoregressive ma-
chine translation. However, we report a signif-
icant improvement over the work of Libovicky
and Helcl (2018) and demonstrate that CTC can
achieve the state-of-the-art in single-step non-
autoregressive machine translation. We attribute
this performance difference primarily to our use
of distillation during training, similar to Gu et al.
(2018). We adapt latent alignment models to ma-
chine translation and demonstrate their effective-
ness on non-autoregressive machine translation,
advancing state-of-the-art on WMT’14 En↔De
and WMT’16 En↔Ro.

The main contributions of this paper include:
1. We adapt latent alignment models to non-

autoregressive machine translation.
2. We achieve a new state-of-the-art of 25.8 BLEU

on WMT’14 En→De for single step non-
autoregressive machine translation.

3. We achieve 27.5 BLEU with 2 step genera-
tion, 28.0 BLEU with 4 step generation, and
28.2 BLEU with 8 step generation for WMT’14
En→De, setting a new state-of-the-art for non-
autoregressive machine translation with a con-
stant number of generation steps.

2 Latent Alignment Models

We begin by describing the notion of alignment,
which in the context of this paper is defined as
in the CTC literature (Graves et al., 2006, 2013;
Graves and Jaitly, 2014) and should not be con-
fused with word alignments in machine transla-
tion (Manning et al., 1999; Dyer et al., 2013).
Alignment is a mapping between a sequence of
predicted tokens and a sequence of target tokens.
Alignment can be constructed by inserting special
“blank tokens” into the target sequence to match
a pre-specified length. Our alignments have the

same length as the source sequences, and collaps-
ing the alignment’s blank tokens will recover the
target sequence.

Let x denote a source sequence and let y de-
note a target sequence, where yi ∈ V and V is
the target vocabulary. We make two assumptions:
1) there exists a monotonic mapping between the
model’s predictions and the target sequence, and
2) the source sequence is at least as long as the
target sequence, i.e. |x| ≥ |y|. We define an align-
ment a between x and y as a discrete sequence in
which ai ∈ V ∪ {“ ”}, |a| = |x|, and “ ” is a spe-
cial “blank” token that is removed to convert a to
the target sequence y. We define a function β(y)
that returns all possible alignments for a sequence
y of a particular length |x|. We also define the col-
lapsing function β−1(a) such that β−1(a) = y if
a ∈ β(y). To avoid token repetitions, it is useful to
define the collapsing function β−1(a) as first col-
lapsing all consecutive repeated tokens, and then
removing all blank tokens. This formulation fol-
lows CTC precisely (Graves et al., 2006). For in-
stance, given a source sequence x of length 10, and
a target sequence y = (A,A,B,C,D), then a pos-
sible alignment a is ( , A,A, , A,B,B,C, ,D).

The log-likelihood of the target sequence is re-
covered by marginalizing the latent alignments:

log pθ(y|x) = log
∑
a∈β(y)

pθ(a|x) (1)

The summation in (1) is typically intractable, since
there are a combinatorial number of alignments.
In the next two sub-sections, we will briefly de-
scribe two variants of latent alignment models that
leverage dynamic programming to tractably com-
pute the log-likelihood, Connectionist Temporal
Classification (CTC) (Graves et al., 2006) and Im-
puter (Chan et al., 2020).

2.1 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC)
(Graves et al., 2006, 2013; Graves and Jaitly,
2014) models the alignment distribution with a
strong conditional independence assumption:

pθ(a|x) =
∏
i

p(ai|x; θ) (2)

Leveraging this strong conditional indepen-
dence assumption enables CTC to use an effi-
cient dynamic programming algorithm to exactly
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marginalize out the latent alignments:

log pθ(y|x) = log
∑
a∈β(y)

∏
i

p(ai|x; θ) (3)

This allows us to compute the log-likelihood and
its gradient tractably. We refer the reader to
Graves et al. (2006) for the exact details of the
dynamic programming algorithm. During infer-
ence, CTC generates the alignment distribution in
parallel with a single generation step; the output
sequence can then be recovered by greedy decod-
ing or beam search (Graves et al., 2006). We use
greedy decoding in all our experiments.

2.2 Imputer
The CTC model makes strong conditional inde-
pendence assumption between alignment token
predictions. This assumption licenses CTC to gen-
erate the entire alignment in parallel, with a sin-
gle generation step independent of the number of
source or target tokens. However, the strong con-
ditional independence assumption limits its capac-
ity to model complex multi-modal distributions.
On the other hand, autoregressive models are ca-
pable of modelling such complex multi-modalities
with the chain rule factorization, but requires n de-
coding steps to generate n tokens during inference.
Imputer (Chan et al., 2020) aims to address these
limitations.

Imputer is an iterative generative model need-
ing only a constant number of generation steps for
inference. It makes conditional independence as-
sumptions within a generation step to achieve par-
allel generation, and models conditional depen-
dencies across generation steps. This approach
has been applied successfully in speech recogni-
tion (Chan et al., 2020), matching autoregressive
models with only a constant number of generation
steps. Imputer models the distribution of align-
ments pθ(a|x) as:

pθ(a|x) =
∑
ã∈γ(a)

pθ(a|ã, x)p(ã|x) (4)

where ã is a (partially masked out) alignment,
and γ(a) is the set of all possible masking per-
mutations of a. (4) marginalizes over all possi-
ble alignments between the input and output se-
quences, and all possible generation orders. Im-
puter models the next alignment a conditioned on
the previous alignment ã:

pθ(a|ã, x) =
∏
i

p(ai|ã, x; θ) (5)

The key insight to Imputer is that we can construct
a log-likelihood lower-bound:

log pθ(y|x)

≥ Ea∼β(y)

Eã∼γ(a)
log ∑

a′∈β′(ã,a)

pθ(a
′|ã, x)


(6)

where a′ ∼ β′(ã, a) captures all possible align-
ments a′ consistent with (ã, a) (Chan et al., 2020).
This equation can be solved efficiently via dy-
namic programming (Chan et al., 2020). This for-
mulation licenses Imputer with an iterative genera-
tion process. Tokens are generated independently
(and in parallel) within a generation step but are
conditioned on the partially predicted alignment
ã of the last iteration (unlike CTC). In practice,
Imputer uses a constant number of decoding iter-
ations independent of the sequence length (Chan
et al., 2020).

Both CTC and Imputer have seen much suc-
cess in tasks like speech recognition (Graves and
Jaitly, 2014; Chan et al., 2020). However, to
the best of our knowledge, these latent align-
ment models have not been widely applied to
machine translation, with the exception of Li-
bovicky and Helcl (2018). These latent align-
ment models hold two key advantages over prior
non-autoregressive machine translation work (Gu
et al., 2018; Ghazvininejad et al., 2019), namely:
the token repetition problem and the target length
prediction problem. We will discuss them in detail
in Section 3.

3 Latent Alignment Models for Machine
Translation

In this section, we will discuss how latent align-
ment models can be adapted to machine transla-
tion, and then describe key advantages offered by
these models. Section 2 identified two assump-
tions made by latent alignment models: 1) there
exists a monotonic mapping between the model
alignment predictions and the target sequence, and
2) the length of the target sequence is less than
or equal to the length of source sequence, i.e.
|y| ≤ |x|. We will now address these issues to
adapt our models for machine translation.

Monotonic Assumption. A monotonic struc-
ture between model alignment predictions and the
target sequence is desired for the dynamic pro-
gramming algorithm to marginalize out the latent
alignments in Equation (1). Unlike tasks such as
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Figure 1: Visualization of the CTC (a) and Imputer (b) architecture for non-autoregressive machine translation.

speech recognition, a monotonic relationship be-
tween the model alignment predictions and the
target sequence may not exist in machine trans-
lation. For instance, speech-to-text is inherently
local, whereas there is typically some global word
reordering in machine translation. We hypothesize
that if we use a powerful deep neural network like
the Transformer (Vaswani et al., 2017), the Trans-
former will have sufficient computational capacity
to learn to reorder the contextual embeddings such
that it is approximately monotonic with the target
sequence. Libovicky and Helcl (2018) also made
a similar assumption.

Length Assumption. By construction, our
alignments are the same length as the source se-
quence, and consequently, we can not generate a
target sequence longer than the source sequence.
This is not a problem for speech recognition, since
the source sequence is generally much longer than
the target sequence; however, this is prohibitively
restrictive for machine translation. This issue was
also discussed in Libovicky and Helcl (2018), and
they proposed a simple solution of up-sampling
the source sequence to s times the original length.
Choosing a sufficient canvas scale of s, we can en-
sure the alignment is long enough to model the tar-
get sequence across our training distribution. We
use a very similar up-sampling method applied
to the embedding matrix of the source sequence.
Given a source sequence embedding x ∈ R|x|×d
with d-dimension and length |x|, we simply up-
sample x′ ∈ Rs·|x|×d via an affine transformation.

3.1 Model Architecture

Our neural architecture is simply a stack of self-
attention layers (Vaswani et al., 2017). The source

sequence is upsampled (to handle longer target
sequences as described above). In the Imputer
architecture, the input to our self-attention stack
is simply the superpositioning of the upsampled
source and the previous alignment. Our work dif-
fers from the prior method, 1) our unified archi-
tecture does not have separate encoder decoders
which require cross-attention mechanisms, 2) our
architecture is bidirectional, and does not rely on
causality masks. Figure 1 visualizes our architec-
ture.

3.2 Advantages

Latent alignment models mitigate two common is-
sues shared by many non-autoregressive machine
translation models – token repetition and the re-
quirement for separate target length prediction.

3.2.1 Fewer Token Repetitions
Non-autoregressive sequence models make a con-
ditional independence assumption between token
predictions. This licenses them to parallel token
generation during inference; however, it makes it
difficult to model complex multi-modal distribu-
tions. This is especially true for single-step gen-
eration models which make strong conditional in-
dependence assumptions. During inference, this
conditional independent generation often results in
the token repetition problem, where tokens are er-
roneously repeated in the output sequence.

This issue has been discussed extensively in
prior works (Gu et al., 2018; Lee et al., 2018;
Ghazvininejad et al., 2019) in the context of ma-
chine translation, and has been shown to have a
negative impact on performance. To handle these
repetitions, Gu et al. (2018) used Noisy Parallel
Decoding, wherein they sample a large number
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of translation hypotheses and use an autoregres-
sive teacher to re-score them to implicitly penal-
ize translations with more erroneous repetitions.
Lee et al. (2018) adopted a simple but less ef-
fective heuristic of simply removing all consecu-
tive repetitions from the predicted target sequence.
Ghazvininejad et al. (2019) hypothesized that it-
erative decoding can help remove repetitions by
allowing the model to condition on parts of the in-
put, thus collapsing the multi-modal distribution
into a sharper uni-modal distribution. They empir-
ically show that the first few decoding iterations
are crucial for removing repetitions resulting in a
sharp increase in performance.

Like other non-autoregressive models, latent
alignment models also perform conditionally in-
dependent generation, and hence face the issue of
token repetitions. Although they differ from the
other models in that they do not generate the tar-
get sequence directly. Rather, the inference pro-
cess involves the generation of the target align-
ment, followed by collapsing the generated align-
ment into the target sequence using the collapsing
function β−1. Recall by construction, β−1 col-
lapses repeated tokens (Graves et al., 2006), this
inference process enables these models to handle
erroneous repetitions implicitly by naturally col-
lapsing them. In particular, for single-step de-
coding, we show that our CTC based model re-
moves most of the repetitions while collapsing
the alignment into target sequence, resulting in
a significant improvement in translation quality
over prior single step generation models. In addi-
tion, we show that Imputer requires just 4 decod-
ing iterations to achieve state-of-the-art translation
scores on WMT14 En→De, in contrast to 10 iter-
ations used by Mask-Predict (Ghazvininejad et al.,
2019).

3.2.2 No Target Length Prediction Needed
Many prior non-autoregressive models (Gu et al.,
2018; Ghazvininejad et al., 2019) first predict
the target length, then conditioned on the target
length predict the target sequence. This is needed
because these architectures utilize an encoder-
decoder formulation, and the decoder requires a
fixed canvas size to work with. The length is
fixed, and it cannot be changed dynamically by
the model during decoding. Due to this lack of
flexibility, during inference, one typically samples
multiple length candidates and performs decoding
for each length followed by re-ranking them to get

a final translation. This not only requires tuning of
a new hyperparameter for determining the num-
ber of length candidates to sample during infer-
ence but also entails a considerable amount of ex-
tra inference computation.

Our latent alignment models do not require tar-
get length prediction, but rather implicitly deter-
mine the target sequence length through the align-
ment. This is possible since the alignment is of the
same length as the source sequence, thus eliminat-
ing the requirement of predicting target length in
advance during inference. The caveat is that we
can not generate a target sequence longer than the
source sequence, which we address in Section 3.
Libovicky and Helcl (2018), which also applied
CTC to machine translation, made a similar argu-
ment, and we further extend this to Imputer. Our
approach simplifies the architecture and decoding
process, avoiding a need to build a target length
prediction model and searching over it during in-
ference.

4 Related Work

There has been significant prior work on non-
autoregressive iterative methods for machine
translation (Gu et al., 2018), some of which are:
iterative refinement (Lee et al., 2018), insertion-
based methods (Stern et al., 2019; Chan et al.,
2019a; Li and Chan, 2019), and conditional
masked language models (Ghazvininejad et al.,
2019, 2020b). Like insertion-based models (Stern
et al., 2019; Chan et al., 2019c), our work does
not commit to a fixed target length; insertion-
based models can dynamically grow the canvas
size, whereas our work which relies on a latent
alignment can only generate a target sequence up
to a fixed maximum predetermined length. Com-
pared to conditional masked languages models
(Ghazvininejad et al., 2019, 2020b), key differ-
ences are: 1) our models do not require target
length prediction, and 2) we eschew the encoder-
decoder neural architecture formulation, but rather
rely on the single simple decoder architecture.
KERMIT (Chan et al., 2019b,a) also has a similar
neural architecture as us; they also eschew the con-
ventional encoder-decoder architecture and have a
unified architecture. Our work relies on the su-
perpositioning of the input and output sequences
via the latent alignment, whereas KERMIT relies
on concatenation to process the input and output
sequences. Their work is also more focused on
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Input: Ein weiterer, besonders wichtiger Faktor sei die Vernetzung von Hochschulen und Unternehmen.

Output: Another particularly important factor is the networking of universities and businesses.

Imputer Decoding:
Another particularly important factor is the networking of universities and businesses .
Another particularly important factor is the networking of universities and businesses .
Another particularly important factor is the networking of universities and businesses .
Another particularly important factor is the networking of universities and businesses .
Another particularly important factor is the networking of universities and businesses .
Another particularly important factor is the networking of universities and businesses .
Another particularly important factor is the networking of universities and businesses .
Another particularly important factor is the networking of universities and businesses .

Figure 2: Example of top-k decoding using Imputer with 8 decoding steps. For a sentence of length N , the model
imputes dN8 e tokens at every decoding step. In each row, blue underlined tokens are the ones being imputed.
Tokens that are not generated yet are colored gray.

generative p(x, y) modelling, whereas our work is
focused on conditional modelling p(y|x).

Our CTC work is closely related to and inspired
heavily by Libovicky and Helcl (2018), which ap-
plied CTC single step generation models. The key
difference is that our work used data distillation
for training, and we find that distillation provides
a significant boost in performance for our CTC
models.

Finally, our work is closely related to the con-
current work of Ghazvininejad et al. (2020a) on
AXE CMLM. Similar to our work, they also as-
sume a latent alignment and use dynamic pro-
gramming for learning. Their work focused on the
single-step generation and demonstrated strong re-
sults, while we apply our models to both single
step and iterative generation.

5 Experiments

Hyperparameters. We follow the base Trans-
former (Vaswani et al., 2017) for our experiments.
However, since our architecture does not contain
an encoder, we double the number of layers in our
decoder to maintain the same number of parame-
ters. Our models consist of 12 self-attention lay-
ers, with 512 hidden size, 2048 filter size, and 8
attention heads per layer. We use 0.1 dropout for
regularization. We batch sequences of approxi-
mately same lengths together, with approximately
2048 tokens per batch. We use Adam optimizer
(Kingma and Ba, 2015) with β = (0.9, 0.997) and
ε = 10−9. The learning rate warms up to 10−3 in
the first 10k steps and then decays with the inverse
square root schedule following the Tensor2Tensor
implementation (Vaswani et al., 2018). We train

all our models for 2M steps. We train the Imputer
using CTC loss (all masked prior alignment) for
1M steps, followed by Bernoulli masking policy
(Chan et al., 2020) for next 1M steps. We aver-
age the 5 checkpoints with the best performance
on the development set to get the final model. For
Imputer, we use top-k decoding during inference.
We use canvas scale s = 2 for all our experiments,
meaning we upsample the source sequence by a
factor of 2.

Dataset. We perform experiments on WMT’14
En↔De, using newstest2013 as the development
set, and report newstest2014 as the test set. We
also report our performance on WMT’16 En-Ro.
We use SentencePiece (Kudo and Richardson,
2018) to generate a shared subword vocabulary.
We evaluate the performance of our models with
BLEU (Papineni et al., 2002).

Distillation. We follow prior work (Gu et al.,
2018; Lee et al., 2018; Stern et al., 2019;
Ghazvininejad et al., 2019) and use data distilled
from an autoregressive teacher for training our
models. We use autoregressive base Transform-
ers for generating distilled data. For iterative gen-
eration, we also report the performance of Im-
puter model trained on data distilled from autore-
gressive big Transformers to be comparable with
(Ghazvininejad et al., 2019, 2020b) which distilled
from a big Transformer. For WMT’16 En-Ro, we
use the distilled dataset provided by Ghazvinine-
jad et al. (2019)1. We analyze the impact of distil-
lation on the performance of our models in Section
6.3.

1
https://github.com/facebookresearch/Mask-Predict

https://github.com/facebookresearch/Mask-Predict
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Table 1: BLEU comparison for various single step generation models. Our simple CTC model is able to outperform
all prior single step generation models. †The main difference between our CTC model and prior work (Libovicky
and Helcl, 2018) is that we use data distillation.

WMT’14 WMT’16
Method Iterations En→De De→En En→Ro Ro→En

Non-Autoregressive
Iterative Refinement (Lee et al., 2018) 1 13.9 16.7 24.5 25.7
NAT with Fertility (Gu et al., 2018) 1 17.7 21.5 27.3 29.1
CTC† (Libovicky and Helcl, 2018) 1 17.7 19.8 19.9 24.7
Mask-Predict (Ghazvininejad et al., 2019) 1 18.0 19.3 27.3 28.2
SMART (Ghazvininejad et al., 2020b) 1 18.6 23.8 - -
Auxiliary Regularization (Wang et al., 2019) 1 20.7 24.8 - -
Bag-of-ngrams Loss (Shao et al., 2020) 1 20.9 24.6 28.3 29.3
Hint-based Training (Li et al., 2019) 1 21.1 25.2 - -
FlowSeq (Ma et al., 2019) 1 21.5 26.2 29.3 30.4
NAT (TCL) (Liu et al., 2020) 1 21.9 25.6 - -
Bigram CRF (Sun et al., 2019) 1 23.4 27.2 - -
AXE CMLM (Ghazvininejad et al., 2020a) 1 23.5 27.9 30.8 31.5
NAT (EM + ODD) (Sun and Yang, 2020) 1 24.5 27.9 - -

Our Work
CTC† 1 25.7 28.1 32.2 31.6
Imputer 1 25.8 28.4 32.3 31.7

5.1 Single Step Decoding

We first report the performance of latent alignment
models for single-step decoding. CTC makes
full conditional independence assumption allow-
ing the generation of the entire target sequence
in a single step. We can also perform non-
autoregressive single step generation with Imputer
by imputing all of the tokens at once. Table 1 sum-
marizes the performance of our models and other
non-autoregressive single step generation models.
Our CTC model achieves 25.7 BLEU, and the Im-
puter model achieves 25.8 BLEU for WMT’14
En→De. We find that our single step genera-
tion models outperform the autoregressive GNMT
model of Wu et al. (2016) on En→De with 24.6
BLEU. To the best of our knowledge, our CTC
and Imputer models outperform all prior work on
single-step generation on WMT’14 En↔De and
WMT’16 En↔Ro.

5.2 Iterative Decoding

We now analyze the performance of Imputer. Im-
puter uses a constant number of decoding itera-
tions independent of sequence length. We com-
pare our performance with other sub-linear non-
autoregressive models, ranging from models re-
quiring logarithmic to a constant number of de-
coding iterations. Table 2 summarizes the results
of Imputer model.

Our Imputer model using 8 decoding iterations
achieves 28.2 BLEU on En→De, slightly outper-

forming the autoregressive Transformer of 27.8
BLEU. On De→En, we achieve 31.3 BLEU, on
par with the autoregressive Transformer model.
Similarly, on En↔Ro, Imputer matches the per-
formance of the autoregressive teacher using just
4 decoding iterations. We also observe the ro-
bustness of our Imputer model when we reduce
the number of decoding iterations from 8 to 2.
Using only 2 iterations, we obtain 27.5 BLEU
on En→De and 30.2 BLEU on De→En. These
results were trained with distillation from a big
Transformer model. However, even when we dis-
till from the base Transformer as shown in Table 3,
Imputer still performs on par with the autoregres-
sive Transformer achieving 27.9 and 31.1 BLEU
on En→De and De→En respectively. Figure 2
shows an example 8-step iterative decoding by Im-
puter.

6 Analysis

In this section, we present further analysis of our
latent alignment models. We analyze the (1) im-
pact on token repetitions in generated translations,
(2) impact of the number of decoding iterations on
Imputer, (3) impact of distillation on our models,
and (4) impact of target length on Imputer.

6.1 Token Repetitions

We compare the repetition rate of our CTC model
with single-step Mask-Predict (Ghazvininejad
et al., 2019) and the concurrent work AXE CMLM
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Table 2: BLEU comparison for various autoregressive and non-autoregressive models. Imputer is able to match the autore-
gressive Transformer baseline with just 4 generation steps. Numbers reported for Imputer trained with data distilled from big
autoregressive transformer for En↔ De, and base transformer for En↔ Ro.

WMT’14 WMT’16
Method Iterations En→De De→En En→Ro Ro→En

Autoregressive
Base Transformer n 27.8 31.2 34.3 34.0

Non-Autoregressive
Insertion Transformer (Stern et al., 2019) ≈ log2 n 27.4 - - -
KERMIT (Chan et al., 2019b) ≈ log2 n 27.8 30.7 - -
Iterative Refinement (Lee et al., 2018) 10 21.6 25.5 29.3 30.2
Mask-Predict (Ghazvininejad et al., 2019) 4 25.9 29.9 32.5 33.2

10 27.0 30.5 33.1 33.3
SMART (Ghazvininejad et al., 2020b) 4 27.0 30.9 - -

10 27.7 31.3 - -
DisCo (Kasai et al., 2020) ≈ 4 27.3 31.3 33.2 33.3
JM-NAT (Guo et al., 2020) 4 27.1 31.5 33.0 33.2

Our Work
Imputer 2 27.5 30.6 33.7 33.4

4 28.0 31.5 34.3 34.0
8 28.2 31.8 34.4 34.1

Table 3: WMT’14 En-De BLEU comparison for distillation
base vs big Transformer, and number of decoding iterations.

Model Iterations En→De De→En

Transformer (Base) n 27.8 31.2
Transformer (Big) n 29.5 32.2

Imputer (Base Distillation) 2 27.3 30.3
4 27.9 30.9
8 27.9 31.1
n 28.3 31.2

Imputer (Big Distillation) 2 27.5 30.2
4 28.0 31.0
8 28.2 31.3
n 28.4 31.4

Table 4: WMT’14 En↔De repeated token percentage com-
parison for single step generation models.

Model En→De De→En

Gold Test Set 0.04% 0.02%

Mask-Predict (Ghazvininejad et al., 2019) 16.72% 12.31%
AXE CMLM (Ghazvininejad et al., 2020a) 1.41% 1.03%
CTC (Our Work) 0.17% 0.23%

(Ghazvininejad et al., 2020a) in Table 4. We also
report the percentage of repetitions in the original
test set for reference. We observe a significantly
lower rate of token repetitions in our CTC model
compared to both the models. This empirical ob-
servation supports our hypothesis that β−1 helps
remove spurious token repetitions.

6.2 Impact of Number of Decoding Iterations

The number of decoding iterations is an impor-
tant hyperparameter in iterative models, provid-

Table 5: Average relative decoding speed-up w.r.t. autore-
gressive greedy decoding baseline on WMT’14 En→De test
set for Imputer.

Iterations Relative Speed-Up

1 (CTC / Imputer) ×18.6
2 ×9.2
4 ×5.9
8 ×3.9

ing a tunable trade-off between quality and infer-
ence speed. The ideal parallel decoding model
should be robust to the number of decoding itera-
tions, i.e. reducing the number of iterations should
have minimal impact on performance. To analyze
this capability of our Imputer model, we study
the impact of the number of decoding iterations
vs BLEU. We use the Imputer trained with data
distilled from the autoregressive base Transformer
teacher for this analysis. Imputer controls the
number of decoding iterations through the top-k
hyperparameter, which imputes k tokens per step.
On one end, imputing all the tokens (k = ∞) in
one step results in single-step decoding, while on
the other end, imputing 1 token per step (k = 1)
results in linear autoregressive decoding (but not
necessarily left-to-right).

Figure 3 shows the BLEU score vs target length
T for WMT’14 En→De test set, where T is the
number of decoding iterations. As expected, the
performance consistently increases with an in-
crease in T . We find that Imputer is robust to T ,
sacrificing just 0.6 BLEU points when reducing T
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Figure 3: WMT’14 En→De BLEU comparison for dif-
ferent number of decoding iterations for Imputer.

Table 6: WMT’14 En→De BLEU comparison showing
the impact of distillation.

Method Iterations Original Distillation

CTC 1 15.6 25.4
Imputer 4 24.7 27.9

8 25.0 27.9

from 8 to 2. We can match the performance of
its autoregressive teacher using just 4 decoding it-
erations. Interestingly, the performance keeps in-
creasing consistently beyond 8 iterations, and even
outperforming the autoregressive teacher slightly.
In the extreme case of autoregressive O(n) decod-
ing, we obtain 28.3 BLEU score, exceeding the
teacher’s performance by 0.5 BLEU points.

6.3 Impact of Distillation

We analyze the impact of distillation on our mod-
els by comparing them to original training data
versus training data from a base Transformer
teacher on the WMT’14 En→De dataset. Ta-
ble 6 summarizes the results. In all cases, mod-
els trained with the distilled data perform signifi-
cantly better than the model trained with the orig-
inal data. We observe that the performance gap
is largest in the case of the CTC model, and de-
creases with an increase in the number of decod-
ing iterations. This is consistent with prior work
finding distillation to improve model quality (Gu
et al., 2018; Zhou et al., 2020).

6.4 Impact of Target Length for Imputer

Figure 4 depicts the impact of number of decoding
iterations bucketed by the target sequence length
N . We use the compare-mt (Neubig et al.,
2019) package to bucket test set examples based
on target sentence length, and compute BLEU
score for each bucket using a different number of

≤10 20 30 40 50 ≥ 50
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Target Sequence Length
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BLEU vs. Target Sequence Length

N=1
N=2
N=8

Figure 4: WMT’14 En→De BLEU comparison for
sentences binned by target sequence length for Im-
puter; N is the number of decoding iterations.

decoding iterations. Increase in the number of de-
coding iterations provides consistent gain across
all buckets.

7 Conclusion

In this paper, we investigated two latent align-
ments models, CTC and Imputer, for non-
autoregressive machine translation. CTC is a sin-
gle step generation model, while Imputer is an it-
erative generative model requiring only a constant
number of generation steps. Our models rely on
dynamic programming to marginalize out the la-
tent alignments. Unlike many prior works, our
models do not need to perform target length pre-
diction, or re-scoring of candidates and our mod-
els use a simplified neural architecture without the
need of cross-attention mechanism found in many
prior encoder-decoder architectures. We demon-
strate the ease and effectiveness of the application
of these simple latent alignment models primarily
used in speech recognition to the task of machine
translation. Applying these latent alignment mod-
els for parallel translation of long documents can
be an interesting research direction.
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