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Abstract

Two main approaches for evaluating the qual-
ity of machine-generated rationales are: 1) us-
ing human rationales as a gold standard; and
2) automated metrics based on how rationales
affect model behavior. An open question, how-
ever, is how human rationales fare with these
automatic metrics. Analyzing a variety of
datasets and models, we find that human ra-
tionales do not necessarily perform well on
these metrics. To unpack this finding, we pro-
pose improved metrics to account for model-
dependent baseline performance. We then pro-
pose two methods to further characterize ra-
tionale quality, one based on model retraining
and one on using “fidelity curves” to reveal
properties such as irrelevance and redundancy.
Our work leads to actionable suggestions for
evaluating and characterizing rationales.

1 Introduction

Explanations in NLP often take the form of ra-
tionales, subsets of input tokens that are consid-
ered important to the model’s decision (DeYoung
et al., 2020). As interest in explainable AI has in-
creased, so has interest in evaluating the quality of
explanatory rationales. However, this is a challeng-
ing task because it can be difficult to pin down ex-
actly what constitutes “good” rationales for model
predictions (Jain and Wallace, 2019; Wiegreffe and
Pinter, 2019; Serrano and Smith, 2019).

Two main strategies that have been proposed
in recent work are: 1) to view human-generated
rationales as a gold standard and evaluate model-
generated rationales in comparison to them; and 2)
to assess the “fidelity” of a rationale to a prediction
using automatic metrics.

The human-gold-standard approach views ratio-
nales as an additional form of label that can be col-
lected alongside document-level labels. Because
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NLP tasks tend to involve human-generated labels,
it makes intuitive sense that human-generated ra-
tionales might be considered authoritative.

When human rationales are not available, eval-
uations of machine rationales turn to automatic
metrics. These metrics divorce rationale evaluation
from an external standard, seeking instead to judge
whether rationales are coherent relative to model
behavior. Popular recent metrics are sufficiency
and comprehensiveness (i.e., necessity), which as-
sess whether a rationale is sufficient/necessary for a
model prediction by comparing the model’s behav-
ior on the full input to its behavior on input masked
according to the rationale or its complement. We
use the term fidelity to refer jointly to sufficiency
and comprehensiveness.

To the best of our knowledge, no existing work
has systematically examined human rationales us-
ing these automatic metrics. However, this is an
important step towards evaluating rationales be-
cause it helps characterize the disparities between
the two types of approach. Are human rationales
sufficient to allow models to predict human labels?
Are they comprehensive? And what other insights
can we gain about human rationales and fidelity
metrics by performing this assessment?

In practice, both human rationales and automatic
metrics can fail to work as intended (Table 1). For
instance, human rationales may be insufficient be-
cause they fail to include needed information (e.g.,
the album title in Table 1.1), or non-comprehensive
because they miss redundant-yet-relevant informa-
tion (e.g., the second personal attack in Table 1.2).

By contrast, a truly sufficient rationale can be
deemed insufficient due to a model not learning
expected classification rules (e.g., “sits” ∼ “lay-
ing” in Table 1.3). While this type of failure is
inevitable in machine learning, more avoidable are
cases where model bias causes rationales to be eval-
uated incorrectly or inconsistently. For instance,
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Human rationale Sufficiency Comprehen-
siveness

Failure
type

Dataset

1. No Way Out is the debut studio album by ... Puff Daddy .
It was released on July 1 , 1997 , by his Bad Boy record label
. ... [SEP] 1997 was the year No Way Out was released.

0.005 0.224 Human FEVER

2. == what the f*** is your problem , b**** !!!!!!!!!!! == why
the f*** did you delete the dreamtime festival page , s******

1.0 0.001 Human WikiAttack

3. A man sits on a couch beside a colorful cushion with a pencil
in his hand. [SEP] The man is laying down on the couch.

0.002 0.999 Metric E-SNLI

4. :: makes sense . have a good one . 0.971 0.0 Metric WikiAttack

Table 1: Example rationales drawn from various datasets. Underlined tokens are rationales provided by humans.
Human annotators can fail to produce faithful rationales (row 1 and 2), and fidelity metrics themselves can be
misleading (row 3 and 4).

in Table 1.4, the model has learned a heavy bias
toward the no-attack class (i.e., the model predicts
no-attack for the empty input), so an empty ratio-
nale for a no-attack prediction is deemed perfectly
sufficient yet entirely noncomprehensive.

To investigate the empirical properties of human
rationales and automatic metrics, we analyze the
fidelity of human rationales across six datasets. We
show that human rationales do not necessarily have
high sufficiency or comprehensiveness based on
automatic metrics, and their fidelity varies greatly
from model to model and class to class.

We propose extensions to existing fidelity met-
rics and develop novel methods to further character-
ize the quality of human rationales. First, we note
that fidelity is highly model-dependent, and that
model behavior can result in misleading fidelity
results. We propose a normalization procedure to
allow for fair comparison of these metrics across
models, classes, and datasets. We show that this
normalization helps contextualize fidelity results
by accounting for baseline model behavior.

Second, we evaluate model accuracy on
full vs. rationale-only data, linking typical
output-sufficiency to performance outcomes (i.e.,
accuracy-sufficiency). We examine the effect of
allowing models to adapt to rationale-only data
during training, drawing a distinction between a
rationale’s “incidental” fidelity and its “potential”
fidelity to a model. We analyze the effect of these
two interventions and discuss their implications for
evaluation of (and learning from) human rationales.

Finally, we introduce the idea of “fidelity
curves”, which examine how sufficiency and com-
prehensiveness degrade as tokens are randomly oc-
cluded from a rationale. We discuss how the shapes
of these curves can be used to infer fine-grained
attributes about rationales, such as the extent to
which they contain redundant or highly interdepen-

dent tokens. We find that rationales in our datasets
vary greatly in their level of irrelevancy, redun-
dancy, and mutual dependence. We find that our
three classification tasks exhibit less dependence
and more redundancy in their rationales than our
three document/query-style tasks.

Evaluating rationales is a significant challenge.
We argue that in order to be confident in either
human rationales or automatic fidelity metrics,
we have to understand how these two evaluation
approaches interact with one another, and what
caveats they can reveal about each other. Our anal-
yses lead to the following actionable implications:
• Fidelity metrics are highly model-dependent and

should be normalized to assist interpretation.

• Models trained on rationale-only data can pro-
vide accuracy-based metrics to complement the
“incidental” metrics.

• “Fidelity curves” provide a novel way to infer
fine-grained qualities about rationales, such as
irrelevance and redundancy.

2 Datasets

The goal of this paper is to evaluate and charac-
terize human rationales. We analyze six datasets,
four drawn from the ERASER collection (DeYoung
et al., 2020), and two from other sources. They con-
sist of three single-text classification tasks and three
document/query-style tasks where it is important
to understand the relations between texts.

For each dataset, the human rationales have a
qualitative expected comprehensiveness based on
whether, by construction or design, they are in-
tended to contain all pertinent information for their
respective prediction task. Four of our six datasets
are expected to have comprehensive rationales.

• WikiAttack (Carton et al., 2018). A classifica-
tion dataset of 115,859 Wikipedia revision com-
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Dataset Text
length Task type Rationale

Length Ratio Comprehensive Granularity Class
asymmetry

WikiAttack 51.8 classification 6.5 19.1% 3 Token 3
SST 19.3 classification 6.5 34.6% 3 Token 7
Movie 774.3 classification 82.4 11.3% 7 Token 7
MultiRC 321.7 document/query-style 69.8 22.9% 3 Sentence 7
FEVER 320.7 document/query-style 53.6 24.0% 7 Sentence 7
E-SNLI 21.3 document/query-style 5.0 25.2% 3 Token 3

Table 2: Basic statistics. Dataset rationales exhibit a range of average rationale-to-text ratios, expected comprehen-
sivenesses, granularities, and class asymmetries.

ments labeled for presence of personal attacks by
Wulczyn et al. (2017) and augmented with 1,049
human rationales by Carton et al. (2018). The
rationales in this dataset are expected to be com-
prehensive, as labelers were asked to identify all
personal attacks in each text.

• Stanford Sentiment Treebank (SST) (Socher
et al., 2013). A classification dataset of
9,620 movie review snippets annotated for pos-
itive/negative sentiment at every syntactic tree
node. We flatten these into rationales using a
heuristic algorithm (see the appendix). The ratio-
nales are expected to be comprehensive, as they
contain all high-sentiment phrases.

• Movie (Zaidan and Eisner, 2008). A classifi-
cation dataset of 2,000 movie reviews labeled
with rationales. The rationales are not neces-
sarily comprehensive, as annotators were not
instructed to identify all evidence.

• MultiRC (Khashabi et al., 2018) A reading com-
prehension dataset of 32,091 document-question-
answer triplets that are true or false. Rationales
are expected to be comprehensive as they each
consist of 2-4 sentences from a document that
are required to answer the given question.

• FEVER (Thorne et al., 2018) A fact verifica-
tion dataset of 76,051 snippets of Wikipedia ar-
ticles paired with claims that they support or
refute. Rationales consist of a single contiguous
sub-snippet (and the claim itself), and are not
expected to be comprehensive as they may not
cover all pertinent information.

• E-SNLI (Camburu et al., 2018) A textual en-
tailment dataset of 568,939 short snippets and
claims for which each snippet either refutes, sup-
ports, or is neutral toward. Explanations for this
dataset are expected to be comprehensive as the
texts are short and labelers were instructed to
identify all relevant tokens.

Table 2 shows the basic statistics of each dataset.
Significant variation exists between datasets in ra-

WikiAttack 0: no-attack, 1: personal-attack
SST 0: negative, 1: positive
Movie 0: negative, 1: positive
MultiRC 0: false, 1: true
FEVER 0: refutes, 1: supports
E-SNLI 0: contradiction, 1: entailment, 2: neutral

Figure 1: Percentage of rationales by class. Significant
variations exist in WikiAttack and E-SNLI.

tionale length and rationale percentage. For ex-
ample, rationales only cover 11.3% of the words
in Movie, consistent with our expectation of non-
comprehensiveness. We also report rationale gran-
ularity, whether annotations were provided at the
token or sentence level, and class asymmetry,
whether rationale lengths vary significantly be-
tween classes. For the purpose of this analysis,
tokenization is provided by the individual dataset
sources, so we simply split texts by whitespace.

Fig. 1 shows class asymmetry in rationale per-
centages. For WikiAttack, labelers were asked to
highlight personal attacks, and thus evidence for
the no-attack class comes in the form of no high-
lighted tokens. This results in a situation where
rationales for no-attack examples constitute less
than 5% on average, while they constitute 35% of
personal-attack examples. Significant variation be-
tween classes also exists in E-SNLI: entailment
contains close to 40% of tokens as rationales, but
neutral merely consists of 16% — another case of
evidence through absence (negative evidence).

3 Evaluating Human Rationales

Popular automatic metrics for evaluating machine-
generated rationales are sufficiency and comprehen-
siveness, articulated by Yu et al. (2019) and em-
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ployed in the ERASER benchmark (DeYoung et al.,
2020). Sufficiency measures how well rationales
can provide the same prediction as using full in-
formation, while comprehensiveness measures how
well rationales include all relevant information.

It remains an open question whether human-
generated rationales have good sufficiency and
comprehensiveness. We find that this is in fact
not necessarily the case. This result reveals a con-
tradiction in the evaluation of machine-generated
rationales: human-generated rationales are used
as a gold standard, but being similar to human-
generated rationales may not lead to high suffi-
ciency and comprehensiveness. Another impor-
tant observation from our experiments is that there
exists significant variation between datasets and
classes within the same dataset.

3.1 Formal Definitions & Experiment Setup
A rationale is sufficient if it contains enough infor-
mation to allow the model to make a prediction
close to what it would make with full information.
Formally, we represent rationales as a binary mask
α over the input x that indicates whether each to-
ken belongs to the rationale or not (1 to include,
0 to exclude). The sufficiency of rationales for a
given prediction ŷ is based on the difference in
class probability between using full information
and using only the rationale:

Suff(x, ŷ,α) = 1−max(0, p(ŷ|x)− p(ŷ|x,α)), (1)

where ŷ = argmaxy p(y|x). Note that we use the
reverse of the difference so that higher sufficiency
indicates faithful rationales. We also enforce the
difference in class probability to be above 0, which
differs from DeYoung et al. (2020).1 This operation
bounds sufficiency to between 0 and 1.

Comprehensiveness (i.e., necessity) captures the
extent to which a rationale is needed for a predic-
tion, by assessing the model’s prediction on the
complement of the rationale (1−α). For a highly
comprehensive explanation, the model’s prediction
on its complement should differ greatly from its
prediction on the full information. As above, we
enforce this value to be bounded between 0 and 1:

Comp(x, ŷ,α) = max(0, p(ŷ|x)− p(ŷ|x,1−α)). (2)

Our definitions entail that a faithful rationale should
have both high sufficiency and comprehensiveness.

1Arguably, the sufficiency metric should not go above 1
no matter how good the rationales are. That said, our results
demonstrate similar qualitative trends from the definitions
without the max operation. See the appendix.

Implicit in the definition of sufficiency and com-
prehensiveness is a dependence on the properties
of the underlying model. To study the relation-
ship between model property and human rationale
fidelity, we experiment with a range of models: lo-
gistic regression, random forests, LSTM (Hochre-
iter and Schmidhuber, 1997) and RoBERTa (Liu
et al., 2019). We use the same train/dev/test splits
as in the original datasets. We report the result-
ing model with the best validation accuracy in
the main paper. To apply rationale masking, we
simply remove the tokens which correspond with
0s in the rationale mask. See the supplementary
material for implementation details. Our code
is available at https://github.com/BoulderDS/
evaluating-human-rationales.

3.2 Overall Results

Fig. 2a shows the accuracy of our models on each
dataset. As expected, RoBERTa shows the best
performance followed generally by LSTM, then
random forest and logistic regression. The only
exception is Movie, where LSTM models struggle
with the long texts (774 tokens on average) due to
the limited dataset size and vanishing gradients.

We find that human rationales do not neces-
sarily have high sufficiency and comprehensive-
ness. Moreover, human-generated rationales ob-
tain weaker sufficiency in highly accurate models
(Fig. 2b). In fact, human rationales have lower
sufficiency in RoBERTa than logistic regression or
random forest in five of six datasets. This finding
demonstrates that the sufficiency of an explana-
tion can be inversely correlated with model perfor-
mance, which is a problem for comparing explana-
tion methods across different models.

By contrast, strong models show better compre-
hensiveness scores for human rationales (Fig. 2c),
with values ranging from 0.3 to 0.5 for RoBERTa.
E-SNLI demonstrates the highest comprehensive-
ness in this model while Movie and MultiRC, both
expected to be non-comprehensive, respectively
achieve the 2nd and 4th highest comprehensive-
ness, in defiance of our expectations.

Moving forward, we focus on RoBERTa as it
is the most accurate and represents the industry
standard for general NLP.
Classes matter. Breaking down fidelity by class
reveals further nuances. Fig. 3b shows that suf-
ficiency is mostly even between classes, though
significant differences exist for E-SNLI. Surpris-

https://github.com/BoulderDS/evaluating-human-rationales
https://github.com/BoulderDS/evaluating-human-rationales
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(a) Accuracy (b) Sufficiency (c) Comprehensiveness

Figure 2: Accuracy, sufficiency, and comprehensiveness of human rationales with different models. While
RoBERTa performs significantly better in all datasets in accuracy, it is rarely the best in sufficiency. In comparison,
human rationales tend to have abysmal comprehensiveness with classic models.

(a) Accuracy by class (b) Sufficiency by class (c) Comprehensiveness by class

Figure 3: Accuracy, sufficiency, and comprehensiveness of human rationales grouped by class for RoBERTa.
While sufficiency is relatively stable across classes, we observe dramatic differences between classes in com-
prehensiveness (e.g., WikiAttack and Movie).

ingly, in WikiAttack, sufficiency is higher in the
no-attack class where there are a small number of
tokens in human rationales.

The evenness in sufficiency is not mirrored in
comprehensiveness (Fig. 3c), which differs wildly
from class to class for different datasets. The most
extreme case is WikiAttack, where by design the
“rationale” for a no-attack comment is for noth-
ing to be highlighted. The comprehensiveness of
these empty rationales is correspondingly low. In-
terestingly, E-SNLI demonstrates a relatively even
spread of comprehensiveness across classes despite
its class-asymmetric rationale lengths.

Movie, MultiRC, and FEVER all show large
class discrepancies in comprehensiveness despite
having similar-length rationales across classes. In
FEVER, for example, this means that removing the
identified evidence for a “refutes” outcome tends
to have a higher impact on the model prediction
than for “support” outcomes. This could be due
to task semantics (e.g., that refuting evidence is
generally more unique than supporting evidence),
or model bias (e.g., that the model tends to predict
“supports” by default and therefore is less affected
by removing the rationales for this outcome).

4 Normalizing Sufficiency and
Comprehensiveness

Human rationales do not necessarily have high fi-
delity, suggesting that either human rationales or

evaluation metrics may be problematic. We start by
rethinking the fidelity metrics in this section and
will propose novel methods to characterize human
rationales in §5.

A salient observation in Fig. 2 is that sufficiency
and comprehensiveness are in completely separate
value ranges, although they are both theoretically
bounded between 0 and 1. To properly interpret
these numbers, we need to establish a baseline for
them. We do so by defining a “null difference”, the
difference in output between the model operating
on full information vs. no information (i.e., the
empty input). This value is equivalent to (the com-
plement of) the sufficiency of an all-zero (empty)
rationale mask, or the comprehensiveness of an
all-one mask.

Null difference is an intrinsic value for a given
model and dataset, and depends on the class bal-
ance of the dataset, the bias term(s) learned by the
model, and the calibration of output probability.
It serves as a baseline value in the sense that no
rationale should be much less sufficient than an all-
zero rationale or much more comprehensive than
an all-one rationales. By normalizing sufficiency
and comprehensiveness scores against this value,
we can estimate how faithful rationales are relative
to the baseline fidelity of the model.

We use min-max normalization to normalize suf-
ficiency and comprehensiveness with this null dif-
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(a) Null difference. (b) Normalized sufficiency. (c) Normalized comprehensiveness.

Figure 4: Normalization is critical for interpreting sufficiency and comprehensiveness. Here we show evaluations
of human-generated rationales based on RoBERTa.

ference. Formally, we define the metrics as follows:

NullDiff(x, ŷ) = max(0, p(ŷ|x)− p(ŷ|x,0)) (3)

NormSuff(x, ŷ,α) = Suff(x,ŷ,α)−Suff(x,ŷ,0)
1−Suff(x,ŷ,0)

(4)

NormComp(x, ŷ,α) = Comp(x,ŷ,α)
Comp(x,ŷ,1)

(5)

where ŷ = arg maxy p(y|x). Note that
NullDiff(x, ŷ) = 1− Suff(x, ŷ,0) = Comp(x, ŷ,1).
We clip NormSuff and NormComp between 0 and 1.

Fig. 4a shows the null difference for RoBERTa
across all datasets by class. Significant variation
exists between classes, especially for WikiAttack,
FEVER, and E-SNLI, an observation that helps
contextualize some of the results in Fig. 3, as re-
flected by the normalized fidelity metrics.

Fig. 4b shows that normalized sufficiency is
much lower in the no-attack class in WikiAttack,
meaning that no-attack rationales are barely more
informative than an empty rationale. This resolves
the puzzle that the short/empty rationales in the
no-attack class have high sufficiency in Fig. 3b. It
is also more consistent with the low comprehen-
siveness measured for these rationales.

Fig. 4c shows us that the comprehensiveness
scores even out for FEVER under this normaliza-
tion, suggesting that the previous result was simply
a product of model bias. By contrast, the asymmet-
ric scores for Movie and MultiRC shown in Fig. 3c
cannot be explained by model bias, indicating that
the interaction between task semantics and model
learning may cause rationales to be more compre-
hensive in the negative class than in the positive
class for these datasets.

Another outcome of normalization is to map
sufficiency and comprehensiveness to the same
scale. Comprehensiveness in single-text classi-
fication tasks are generally lower than that in
document/query-style tasks.

These results suggest that sufficiency and
comprehensiveness metrics are highly model-
dependent and should not be compared across mod-
els without care.

Fidelity and model training. Examining how hu-
man rationale fidelity changes from epoch to epoch
as models train (Fig. 5) further demonstrates the
model-dependence of these measures. Random
noise causes the models to have nonzero (but low)
fidelity scores at epoch 0. However, we observe
that even after accuracy stabilizes, sufficiency and
comprehensiveness may continue to fluctuate sig-
nificantly, e.g., FEVER sufficiency.2 Further, the
maximum fidelity may not co-occur with the maxi-
mum accuracy (e.g., MultiRC comprehensiveness).
While most of the fluctuation isn’t drastic, these
differences could prove decisive in a head-to-head
comparison of fidelity scores across different mod-
els or rationalization techniques. These observa-
tions suggest that we need to be cautious before
claiming definitive fidelity for a given model using
these automatic metrics.

5 Characterizing Human Rationales
beyond Sufficiency/Comprehensiveness

Sufficiency and comprehensiveness offer a limited
perspective on the qualities of rationales. For exam-
ple, does the 0.77 E-SNLI sufficiency reported in
Fig. 2b correspond with a similar drop in accuracy,
or do the rationales render the model less confident
but equally accurate? And how can we distinguish
between a highly concise rationale and one bloated
with unnecessary information? We propose exten-
sions of the basic fidelity framework to address
these more nuanced questions.

5.1 Accuracy Evaluation with Rationales

Existing fidelity metrics measure differences in
output probability rather than model performance,
prompting the question of what is the practical ef-
fect of rationale fidelity. Moreover, they generally
involve a model trained on complete texts but then
evaluated on reduced texts based on rationales, ren-

2We observe similar issues with logistic regression, ran-
dom forest, and LSTM. See the appendix.
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(a) Accuracy (b) Normalized sufficiency (c) Normalized comprehensiveness

Figure 5: Accuracy, normalized sufficiency, and normalized comprehensiveness vs. #epochs in RoBERTa. While
accuracy stabilizes after 1 epoch, sufficiency and comprehensiveness demonstrate significant fluctuation.

Figure 6: RoBERTa accuracy depending on whether
we adapt models to rationale-only data. Human ratio-
nales are effective in improving accuracy in Movie and
E-SNLI, but not in WikiAttack and SST.

Training Testing

No-rationale No No
Eval-rationale No Yes
Train-eval-rationale Yes Yes

Table 3: Use of rationales in different accuracy evalua-
tions. The full-text model uses no rationale in training.

dering it unclear what outcome differences we can
attribute to the missing information, and what to
domain transfer between full and reduced text.

To answer these questions, we compare the accu-
racy of three variant training/evaluation regimes: 1)
trained and evaluated on full text (No rationale); 2)
trained on full text and evaluated on rationale-only
text (Eval rationale); and 3) trained and evaluated
on rationale-only text (Train-eval rationale).

The first variant is standard RoBERTa model
training and evaluation. The second variant is the
typical rationale evaluation setting: trained on full
data and evaluated on reduced data. The third vari-
ant seeks to assess what performance gains can
arise from model adaptation to the reduced data
distribution. Table 3 summarizes the variants.3

Comparing the performance of these three mod-
els pits the benefits of data completeness (training
on full information) against those of in-domain
training (training on the same distribution as the
evaluation data). If the former proves more valu-
able we would expect Eval rationale to outperform

3We only have human rationales on 1,049 instances in
WikiAttack, so we use a different train/dev/test split from §3.

Train-eval rationale, and vice versa. In either case,
we expect No rationale to have the best perfor-
mance as it benefits from both qualities.

Fig. 6 shows some surprising divergences from
these expectations. In four out of six cases, either
Train-eval rationale accuracy or Eval rationale ac-
curacy outperforms No rationale accuracy.

The effect of rationales in evaluation gives yet
another perspective on the basic fidelity results pre-
sented in Fig. 2b. While the 0.77 sufficiency for
E-SNLI corresponds with a significant accuracy
drop between No rationale and Eval rationale, the
0.85 sufficiency for MultiRC corresponds with an
increase in accuracy across these variants. The al-
most identical sufficiency of SST corresponds with
a drop. “Insufficient” explanations can improve
model performance, which suggests caution in us-
ing fidelity based on output probability as the sole
arbiter of explanation quality.

The effect of model adaptation has interesting
implications as well. We observe an improvement
in performance from Eval rationale to Train-eval
rationale in 4 out of 6 datasets, significant in the
case of E-SNLI. In 3 out of 4 of these cases, the
performance of Train-eval rationale also exceeds
that of the No rationale setting.

This result is a hopeful sign for the topic area
of learning-from-explanation, which seeks to use
explanations as additional training supervision for
models (Hancock et al., 2018; Zaidan and Eisner,
2008). It tells us that for a majority of our datasets,
a perfectly human-mimicking rationale layer could
boost the accuracy of a model’s predictions. It is
even possible that a version of this analysis could be
used as a preliminary assessment of the usefulness
of a rationale dataset as accuracy-boosting signal,
though we leave this for future work.

In summary, from a model accuracy perspec-
tive, the quality of human rationales is strong for
FEVER, MultiRC, and Movie, mixed for E-SNLI,
and poor for SST and WikiAttack. This provides a
somewhat different view from Fig. 4b. For exam-
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Sufficiency Comprehensiveness

brevity fast drop fast drop
redundancy slow drop fast drop
irrelevance slow drop slow drop
dependency fast drop slow drop

Table 4: Implications of irrelevance and redundancy on
sufficiency and comprehensiveness.

ple, human rationales in MultiRC has lower (nor-
malized) sufficiency based on output probability
than SST but provide better accuracy sufficiency.

5.2 Fidelity Curves

Sufficiency and comprehensiveness struggle to con-
vey more fine-grained qualities of human rationales.
One problem that is not revealed by these measures
is irrelevance. A rationale can be crammed with
tokens that are not pertinent to prediction and still
have high sufficiency and comprehensiveness, the
most extreme example being a rationale that com-
prises the entire text.

We propose to assess rationale irrelevancy by
looking at how sufficiency and comprehensiveness
degrade as tokens are removed from the rationale.
A rationale bloated with many irrelevant tokens
should demonstrate a slow dropoff in sufficiency
as tokens are removed, since many of these tokens
will not be contributory. A rationale with more
informational brevity should show a faster drop,
as tokens are removed which were needed for pre-
diction. We assess this by creating a “sufficiency
curve” which traces this degradation at higher and
higher occlusion rates.

In general, we suggest that a slow drop in suffi-
ciency can be attributed to irrelevant or redundant
tokens, while a fast drop in sufficiency can be due
to dropping tokens that are either individually pre-
dictive or pieces of dependencies where multiple
tokens are required to make a prediction. We can
tell the difference by looking at the comprehensive-
ness curve — if individually predictive tokens are
leaked into the rationale complement, the compre-
hensiveness should fall quickly, while if pieces of
dependencies are, it should fall slowly. Table 4
summarizes our expectations.

We construct these fidelity curves as follows: For
a given rationale α and each of a series of replace-
ment rates R = 0, 0.05, 0.1, ..., 1.0, we generate a
reduced mask αr by randomly setting r fraction of
tokens to 0 from the rationale. By calculating the
mean normalized sufficiency and comprehensive-
ness over several trials for each replacement rate,

we can draw a “sufficiency curve” (Fig. 7a) and a
“comprehensiveness curve” (Fig. 7b).

Movie, WikiAttack, and SST exhibit slow drops
in their sufficiency curves, showing that rationales
in these datasets contain relatively many irrelevant
or redundant tokens, and therefore remain sufficient
even as some of their tokens are removed. Their
comprehensiveness curves complete the story. The
curves for all three datasets show relatively fast
drops, implying redundancy rather than irrelevancy.

In comparison, E-SNLI, FEVER, and MultiRC
all display relatively fast drops in sufficiency, im-
plying fewer irrelevant or redundant tokens. They
demonstrate generally higher comprehensiveness
but somewhat different shapes (E-SNLI and Mul-
tiRC mostly show a slow drop, indicating depen-
dence, while FEVER shows a fast drop, indicating
irrelevance). The difference here between FEVER
and MultiRC is interesting as they are similar in
task, text, and rationale properties (Table 2). A pos-
sible explanation is that rationales in MultiRC are
designed to consist of multiple mutually-dependent
sentences whereas those of FEVER are single con-
tiguous snippets of the text. This greater level of
dependency is thus reflected in the slow-dropping
comprehensiveness curve of MultiRC.

Hence, we find that human rationales for the
three classification tasks are characterized by re-
dundancy in human rationales, particularly Movie.
The three document/query-style datasets, by con-
trast, are characterized by a relatively high degree
of token dependency, explaining their relatively
high comprehensiveness in Fig. 4c. While this ob-
servation is intuitive given the semantics of these
tasks, it demonstrates the effectiveness of the pro-
posed fidelity curves.

6 Related Work

We summarize additional related work in the fol-
lowing three areas.
Feature attribution. Feature attribution seeks to
explain model behavior by attributing model predic-
tions to specific inputs. Popular techniques include
LIME (Ribeiro et al., 2016), integrated gradients
(Sundararajan et al., 2017), SHAP (Lundberg and
Lee, 2017), and attention mechanisms (Lei et al.,
2016; Paranjape et al., 2020).
Human rationales. Many recent datasets in NLP
have been released with rationales accompanying
the document-level labels. ERASER (DeYoung
et al., 2020) includes three additional datasets: CoS-
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(a) Sufficiency (b) Comprehensiveness

Sufficiency Comprehensiveness

WikiAttack slow drop fast drop
SST slow drop fast drop
Movie slow drop fast drop
MultiRC fast drop fast→slow drop
FEVER fast drop fast drop
E-SNLI fast drop slow drop

(c) Summary by dataset.

Figure 7: Fidelity curves for all datasets (normalized sufficiency and comprehensiveness). Human rationales tend
to be redundant in the single-text classification datasets, and dependent in the document/query-style datasets.

E (Rajani et al., 2019), BoolQ (Clark et al., 2019),
and Evidence Inference (Lehman et al., 2019).
Other rationale datasets include that of Kaushik
et al. (2019) and Sen et al. (2020).
Attribution evaluation. A growing amount of
work seeks to evaluate the quality of feature at-
tribution. Beyond collecting human rationales as a
gold-standard, a common human-based method is
to test the utility of attribution masks in task-based
human subject experiments (Carton et al., 2020;
Lai and Tan, 2019; Poursabzi-Sangdeh et al., 2018;
Lage et al., 2018; Lai et al., 2020).

Automatic model-based metrics beyond suffi-
ciency and comprehensiveness include local model
fidelity (Ribeiro et al., 2016), switching point
(Nguyen, 2018), and area-over-the-perturbation-
curve (Samek et al., 2016).

7 Concluding Discussion

Human explanations contain a lot of promise. The
explainable AI community hopes to use them as a
guide for evaluating model explanations and, pos-
sibly, for teaching models to make robust and well-
reasoned decisions. In this work, we contribute to
that effort by analyzing human rationales through
the lens of automatic rationale evaluation methods,
namely, sufficiency and comprehensiveness. We
find that human rationales do not necessarily have
high sufficiency or comprehensiveness.
Interpreting fidelity variance. Furthermore,
there exists significant variance across datasets and
classes. In §5.2, we speculate that some of these
differences (e.g., dependency) can be explained by
the semantic differences between classification and
document/query-style tasks.

However, with such a small sample size of
datasets (n = 6), it is difficult to determine whether
these differences are due solely to task type or to
other factors such as annotation instructions or indi-
vidual dataset semantics. WikiAttack and E-SNLI,
for example, display class asymmetry in their ratio-
nales, which likely contribute to their outlier status

in Fig. 4 and 6 respectively. As we note in Fig. 2,
modeling outcomes also have a heavy impact on
explanation fidelity. While E-SNLI comprises an
even class balance, our model learns a strong bias
in favor of the neutral class, which contributes to a
class imbalance in fidelity for that dataset (Fig. 4).

As more human-rationale datasets are released,
it will become increasingly possible to categorize
them by rationale properties. Our goal is to high-
light the variance in these properties and call for
more widespread empirical evaluations thereof.
Actionable implications. When human rationales
are found to be unfaithful, this can mean that ei-
ther they fail to capture relevant signal, or that the
model improperly utilizes that signal, perhaps as a
result of learning spurious associations. In either
case, analysis can expose inconsistencies between
human and model understanding of the task.

We propose three ways to extend fidelity met-
rics: normalization, model adaptation, and random
ablation. Each addresses one shortcoming of the
basic metric: normalization addresses the differ-
ences in class biases across models, adaptation the
problem of domain inconsistency between full and
rationale-only data, and ablation the inability of ex-
isting metrics to capture qualities like redundancy.
While not all of these issues are salient for every
application involving rationale fidelity, we offer
them as potential solutions where necessary.

Overall, our results suggest that the idea of one-
size-fits-all fidelity benchmarks might be problem-
atic: human rationales may not be simply treated
as gold standard. We need to design careful pro-
cedures to collect human rationales, understand
properties of the resulting human rationales, and
cautiously interpret the evaluation metrics.
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A Derivation of Rationales for SST

The Stanford Sentiment Treebank (SST) consists
of 9,620 short movie review snippets formatted
as syntactic trees with a sentiment label in [-2,2]
for each node, ranging from the single-token leaf
nodes to the top-level node corresponding to the
whole snippet.

We use a heuristic algorithm for flattening this
representation into a 1-dimensional rationale for

each document: beginning with the top node and
traversing the tree in a breadth-first manner, we
consider a node to be part of the rationale if the
magnitude of its sentiment is greater than that of
any of its descendants. That is, if the sentiment of
a node cannot be explained by any of its syntactic
constituents, then we consider it to be explanatory
and include it in the top-level rationale.

Practically speaking, this results in a rationale
dataset that is comprehensive by design, including
all high-sentiment words and phrases that could
explain the overall sentiment of each snippet. Table
5 shows a few examples of the resultant rationales.

B Model Implementation Details

We consider the following models:

• Logistic regression. We use the scikit-
Learn implementation of logistic re-
gression (Pedregosa et al., 2011), scan-
ning across regularization constant
(C = {0.001, 0.01, 0.1, 1, 10, 100, 1000}).
• Random forest. We use the scikit-

Learn implementation of random forests,
scanning across number of estimators
({16, 32, 64, 128, 256, 512}).
• LSTM (Hochreiter and Schmidhuber, 1997). We

use the Pytorch (Paszke et al., 2017) implementa-
tion of a 1-layer BiLSTM, tuning across hidden
layer size ({100, 200, 300}) and learning rate
({5e−4, 1e−3, 2e−3}).
• RoBERTA (Liu et al., 2019). We use the Hug-

gingFace (Wolf et al., 2020) pretrained distri-
bution of this model with roughly 117m pa-
rameters. We tune the learning rate across val-
ues {5e−6, 1e−5, 2e−5}, with 50 linear warmup
steps.
We train all LSTM models for 10 epochs and

RoBERTa models for 5 epochs, tuning on devel-
opment set accuracy. All neural network training
was done on two 24G Nvidia Titan RTX GPUs.
Training time varied from dataset to dataset, from
minutes for SST to roughly 6 hours per model for
E-SNLI.

To apply masking, we simply remove the tokens
corresponding with 0s in the rationale mask. We al-
ways keep special tokens such as [CLS] and [SEP].

Following DeYoung et al. (2020), we flatten the
three document/query-style datasets to single docu-
ments by simply appending the query to the docu-
ment with a “[SEP]” token.
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Rationale Class

All the performances are top notch and , once you get through the accents , All or Nothing becomes an emotional ,
though still positive , wrench of a sit .

Pos

While surprisingly sincere , this average little story is adorned with some awesome action photography and surfing Pos
A dreary rip-off of Goodfellas that serves as a muddled and offensive cautionary tale for Hispanic Americans Neg
A long-winded and stagy session of romantic contrivances that never really gels like the
shrewd feminist fairy tale it could have been

Neg

Table 5: Example SST rationales generated by heuristic flattening procedure.

(a) Clipped sufficiency

(b) ERASER sufficiency

Figure 8: Clipped sufficiency vs. ERASER sufficiency.

C Eraser Sufficiency/Comprehensiveness
vs. Our Definitions

Our definition of sufficiency and comprehensive-
ness diverge from that of DeYoung et al. (2020)
in clipping the absolute difference between the
full and rationalized class probability. This choice
erases negative probability differences, cases where
the rationalization makes the predicted class more
probable than it already was. We do this as a way
to bound fidelity metrics between 0 and 1. It also
serves to simplify the mathematics of normaliza-
tion, but practically speaking we find that it makes
little difference (Fig. 8 and Fig. 9).

D The Effect of Normalization

We discuss the effect of normalization by class
in §4. Fig. 10 compares the non-normalized
against the normalized fidelity at the dataset level.
This view makes clear the comprehensiveness
gap between the classification datasets and the
document/query-style datasets, and shows a wider
range of sufficiency scores among the six datasets,
when accounting for model bias.

Fig. 11 shows the effect of normalization on fi-
delity scores for all models. We can see that it
corrects the trend of weaker models showing better
sufficiency that we observe in Fig. 2b, though lo-

(a) Clipped comprehensiveness

(b) ERASER comprehensiveness

Figure 9: Clipped comprehensiveness vs. ERASER
comprehensiveness.

gistic regression shows very high sufficiency and
comprehensiveness for SST. Upon investigation,
we find that this is because this model tends to have
low confidence, often producing class probabilities
between 0.5 and 0.7. This situation leads to rela-
tively small null differences (Fig. 11a), which leads
to the high observed comprehensiveness. In com-
parison, the null difference is substantially greater
in deep models.

E The Effect of Hyperparameters and
Training

We largely focus on RoBERTa in this study be-
cause it is close the current state-of-the-art for NLP.
However, we do some additional analysis on the
other three models.

Fig. 12 shows how accuracy and rationale fidelity
change with the value of the C regularization hyper-
parameter for the logistic regression model. Both
the normalized sufficiency and comprehensiveness
rise with model accuracy. The outlier is MultiRC,
which is unable to achieve nontrivial accuracy, but
which nevertheless experiences a rise in rationale
fidelity.

The trends are less clear in Fig. 13, which tracks
accuracy and fidelity over a range of numbers of
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(a) Non-normalized fidelity

(b) Normalized fidelity

Figure 10: Non-normalized versus normalized fidelity.

estimators for the model. This may be because the
accuracy of these models does not improve much
with the increase in estimators.

Finally, Fig. 14 shows the change in accuracy
and fidelity over training epochs for the LSTM
model. We again see that fidelity metrics have a
tendency to fluctuate when accuracy has seemingly
stabilized, such as FEVER.

F Distribution of Fidelity Scores

Fig. 15 shows box plots of normalized fidelity
scores for the six datasets. We see a wide range
of variances. WikiAttack and E-SNLI, the two
datasets with assymmetric rationales, display the
highest variance in sufficiency, while WikiAttack,
Movie, and MultiRC who relatively high variance
in their comprehensiveness scores.
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(a) Null difference (b) Normalized sufficiency (c) Normalized comprehensiveness

Figure 11: Normalized fidelity for all models.

(a) Accuracy (b) Normalized sufficiency (c) Normalized comprehensiveness

Figure 12: Accuracy, sufficiency and comprehensiveness of logistic regressions models by regularization term C.

(a) Accuracy (b) Normalized sufficiency (c) Normalized comprehensiveness

Figure 13: Accuracy, sufficiency and comprehensiveness of random forest models by number of estimators.

(a) Accuracy (b) Normalized sufficiency (c) Normalized comprehensiveness

Figure 14: Accuracy, sufficiency and comprehensiveness of LSTM models by training epoch.

(a) Normalized sufficiency (b) Normalized comprehensiveness

Figure 15: Box plots of normalized fidelity metrics.


