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Abstract

Large datasets have become commonplace in
NLP research. However, the increased em-
phasis on data quantity has made it challeng-
ing to assess the quality of data. We intro-
duce Data Maps—a model-based tool to char-
acterize and diagnose datasets. We leverage
a largely ignored source of information: the
behavior of the model on individual instances
during training (training dynamics) for build-
ing data maps. This yields two intuitive mea-
sures for each example—the model’s confi-
dence in the true class, and the variability of
this confidence across epochs—obtained in a
single run of training. Experiments across
four datasets show that these model-dependent
measures reveal three distinct regions in the
data map, each with pronounced character-
istics. First, our data maps show the pres-
ence of ambiguous regions with respect to
the model, which contribute the most towards
out-of-distribution generalization. Second, the
most populous regions in the data are easy to
learn for the model, and play an important role
in model optimization. Finally, data maps un-
cover a region with instances that the model
finds hard to learn; these often correspond to
labeling errors. Our results indicate that a shift
in focus from quantity to quality of data could
lead to robust models and improved out-of-
distribution generalization.

1 Introduction

The creation of large labeled datasets has fueled
the advance of AI (Russakovsky et al., 2015; An-
tol et al., 2015) and NLP in particular (Bowman
et al., 2015; Rajpurkar et al., 2016). The common
belief is that the more abundant the labeled data,
the higher the likelihood of learning diverse phe-
nomena, which in turn leads to models that gener-
alize well. In practice, however, out-of-distribution

∗Work done at the Allen Institute for AI.
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Figure 1: Data map for SNLI train set, based
on a ROBERTA-large classifier. The x-axis shows
variability and y-axis, the confidence; the col-
ors/shapes indicate correctness. The top-left corner
of the data map (low variability, high confidence)
corresponds to easy-to-learn examples, the bottom-
left corner (low variability, low confidence) cor-
responds to hard-to-learn examples, and examples
on the right (with high variability) are ambiguous;
all definitions are with respect to the ROBERTA-large
model. The modal group in the data is formed by the
easy-to-learn regions. For clarity we only plot 25K
random samples from the SNLI train set. Fig. 8b in
App. §C shows the same map in greater relief.

(OOD) generalization remains a challenge (Yo-
gatama et al., 2019; Linzen, 2020); and, while re-
cent large pretrained language models help, they
fail to close this gap (Hendrycks et al., 2020). This
urges a closer look at datasets, where not all ex-
amples might contribute equally towards learning
(Vodrahalli et al., 2018). However, the scale of
data can make this assessment challenging. How
can we automatically characterize data instances
with respect to their role in achieving good perfor-
mance in- and out-of- distribution? Answering this
question may take us a step closer to bridging the
gap between dataset collection and broader task
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objectives.
Drawing analogies from cartography, we pro-

pose to find coordinates for instances within the
broader trends of a dataset. We introduce data
maps: a model-based tool for contextualizing ex-
amples in a dataset. We construct coordinates for
data maps by leveraging training dynamics—the
behavior of a model as training progresses. We
consider the mean and standard deviation of the
gold label probabilities, predicted for each exam-
ple across training epochs; these are referred to as
confidence and variability, respectively (§2).

Fig. 1 shows the data map for the SNLI dataset
(Bowman et al., 2015) constructed using the
ROBERTA-large model (Liu et al., 2019). The map
reveals three distinct regions in the dataset: a region
with instances whose true class probabilities fluctu-
ate frequently during training (high variability),
and are hence ambiguous for the model; a region
with easy-to-learn instances that the model predicts
correctly and consistently (high confidence, low
variability); and a region with hard-to-learn in-
stances with low confidence, low variability,
many of which we find are mislabeled during anno-
tation .1 Similar regions are observed across three
other datasets: MultiNLI (Williams et al., 2018),
WinoGrande (Sakaguchi et al., 2020) and SQuAD
(Rajpurkar et al., 2016), with respect to respective
ROBERTA-large classifiers.

We further investigate the above regions by train-
ing models exclusively on examples from each re-
gion (§3). Training on ambiguous instances pro-
motes generalization to OOD test sets, with little
or no effect on in-distribution (ID) performance.2

Our data maps also reveal that datasets contain a
majority of easy-to-learn instances, which are not
as critical for ID or OOD performance, but without
any such instances, training could fail to converge
(§4). In §5, we show that hard-to-learn instances
frequently correspond to labeling errors. Lastly,
we discuss connections between our measures and
uncertainty measures (§6).

Our findings indicate that data maps could serve
as effective tools to diagnose large datasets, at the
reasonable cost of training a model on them. Locat-
ing different regions within the data might pave the
way for constructing higher quality datasets., and
ultimately models that generalize better. Our code

1All terms are defined with respect to the model.
2We define out-of-distribution (OOD) test sets as those

which are collected independently of the original dataset, and
ID test sets as those which are sampled from it.

and higher resolution visualizations are publicly
available.3

2 Mapping Datasets with Training
Dynamics

Our goal is to construct Data Maps for datasets to
help visualize a dataset with respect to a model, as
well as understand the contributions of different
groups of instances towards that model’s learning.
Intuitively, instances that a model always predicts
correctly are different from those it almost never
does, or those on which it vacillates. For build-
ing such maps, each instance in the dataset must
be contextualized in the larger set. We consider
one contextualization approach, based on statistics
arising from the behavior of the training procedure
across time, or the “training dynamics”. We for-
mally define our notations (§2.1) and describe our
data maps (§2.2).

2.1 Training Dynamics
Consider a training dataset of size N , D =
{(x, y∗)i}Ni=1 where the ith instance consists of the
observation, xi and its true label under the task, y∗i .
Our method assumes a particular model (family)
whose parameters are selected to minimize empiri-
cal risk using a particular algorithm.4 We assume
the model defines a probability distribution over
labels given an observation. We assume a stochas-
tic gradient-based optimization procedure is used,
with training instances randomly ordered at each
epoch, across E epochs.

The training dynamics of instance i are defined
as statistics calculated across the E epochs. The
values of these measures then serve as coordinates
in our map. The first measure aims to capture how
confidently the learner assigns the true label to the
observation, based on its probability distribution.
We define confidence as the mean model proba-
bility of the true label (y∗i ) across epochs:

µ̂i =
1

E

E∑
e=1

pθ(e)(y∗i | xi)

where pθ(e) denotes the model’s probability with
parameters θ(e) at the end of the eth epoch.5 In

3https://github.com/allenai/
cartography

4In this paper, the model is ROBERTA (Liu et al., 2019),
currently established as a strong performer across many tasks.

5Note that µ̂i is with respect to the true label y∗i , not the
probability assigned to the model’s highest-scoring label (as
used in active learning, for example).

https://github.com/allenai/cartography
https://github.com/allenai/cartography
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Figure 2: Data map for the WinoGrande (Sakaguchi et al., 2020) train set, based on a ROBERTA-large classifier,
with the same axes as Fig. 1. Density plots for the three different measures based on training dynamics are shown
towards the right. Hard-to-learn regions have lower density in WinoGrande , compared to SNLI , perhaps as a result
of a rigorous validation of collected annotations. However, manual errors remain, which we showcase in Tab. 1 as
well as in Section §5. The plot shows only 25K train examples for clarity, and is best viewed enlarged.

some cases we also consider a coarser, and perhaps
more intuitive statistic, the fraction of times the
model correctly labels xi across epochs, named
correctness; this score only has 1 + E possible
values. Intuitively, a high-confidence instance is
“easier” for the given learner.

Lastly, we also consider variability, which
measures the spread of pθ(e)(y∗i | xi) across
epochs, using the standard deviation:

σ̂i =

√∑E
e=1

(
pθ(e)(y∗i | xi)− µ̂i

)2
E

Note that variability also depends on the gold
label, y∗i . A given instance to which the model
assigns the same label consistently (whether ac-
curately or not) will have low variability; one
which the model is indecisive about across training,
will have high variability.

Finally, we observe that confidence and
variability are fairly stable across different pa-

rameter initializations.6 Training dynamics can be
computed at different granularities, such as steps
vs. epochs; see App. A.1.

2.2 Data Maps

We construct data maps for four large datasets:
WinoGrande (Sakaguchi et al., 2020)—a cloze-
style task for commonsense reasoning, two NLI
datasets (SNLI ; Bowman et al., 2015; and
MultiNLI ; Williams et al., 2018), and QNLI , which
is a sentence-level question answering task derived
from SQuAD (Rajpurkar et al., 2016). All data
maps are built with models based on ROBERTA-
large architectures. Details on the model and
datasets can be found in App. §A.2 and §A.3.

Fig. 1 presents the data map for the SNLI dataset.
As is evident, the data follows a bell-shaped curve
with respect to confidence and variability;

6The average Pearson correlation coefficient between five
random seeds’ resulting training runs is 0.75 or higher (for
both measures, on WinoGrande).
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Instance Option1 Option2
ea

sy
-t

o-
le

ar
n The man chose to buy the roses in-

stead of the carnations because the
were more beautiful.

roses* carnations

We enjoyed the meeting tonight but
not the play as the was rather dull.

meeting play*

ha
rd

-t
o-

le
ar

n

Jason got into a deep financial hole,
unlike Joel, because managed their
fortune poorly.

Jason+ Joel*

In the mornings, Aaron can hit the
snooze button a lot, and Samuel
can’t. has to be at work at 10 am.

Aaron* Samuel−

Amy’s handwriting was meticulous,
while Cynthia’s handwriting was of-
ten sloppy, because was careless
about their work.

Amy* Cynthia+

am
bi

gu
ou

s

The dog ran up to Leslie and away
from Lawrence because had soap
for the dog to take a bath.

Leslie− Lawrence*

Kayla dated many more people at
once than Betty, because was in an
exclusive relationship.

Kayla* Betty+

Table 1: Examples from the WinoGrande train set from
different regions in the data map, with gold standard*

labels. Our best assessment of the correct+ and

equally plausible− labels are highlighted.

correctness further determines discrete regions
therein. The vast majority of instances belong
to the high confidence and low variability re-
gion of the map (Fig. 1, top-left). The model
consistently predicts such instances correctly with
high confidence; thus, we refer to them as easy-to-
learn (for the model). A second, smaller group is
formed by instances with low variability and low
confidence (Fig. 1, bottom-left corner). Since
such instances are seldom predicted correctly dur-
ing training, we refer to them as hard-to-learn (for
the model). The third notable group contains am-
biguous examples, or those with high variability
(Fig. 1, right-hand side); the model tends to be
indecisive about these instances, such that they
may or may not correspond to high confidence
or correctness. We refer to such instances as
ambiguous (to the model).

Fig. 2 shows the data map for WinoGrande,
which exhibits high structural similarity to the
SNLI data map (Fig. 1). The most remarkable
difference between the maps is in the density of
the hard-to-learn region, which is much lower for
WinoGrande, as is evident from the histograms
below. One explanation for this might be that
WinoGrande labels were rigorously validated post
annotation. App. §C includes data maps for all

four datasets, with respect to ROBERTA-large, in
greater relief.

Different model architectures trained on a given
dataset could be effectively compared using data
maps, as an alternative to standard quantitative
evaluation methods. App. §C includes data maps
for WinoGrande (Fig. 9b) and SNLI (Fig. 10 and
Fig. 11) based on other (somewhat weaker) archi-
tectures. While data maps based on similar archi-
tectures have similar appearance, the regions to
which a given instance belongs might vary. Data
maps for weaker architectures still display similar
regions, but the regions are not as distinct as those
in ROBERTA based data maps.

Tab. 1 shows examples from WinoGrande be-
longing to the different regions defined above.
easy-to-learn examples are straightforward for the
model, as well as for humans. In contrast, most
hard-to-learn and some ambiguous examples could
be challenging for humans (see green highlights
in Tab. 1), which might explain why the model
shows lower confidence on them. These cate-
gories could be harder for models either because of
labeling errors (blue highlights) or simply because
the model is indecisive about the correct label. See
App. §A.4 for similar examples from SNLI .

The next four sections include a diagnosis of the
different data regions defined above. The effect of
training models on each region on both in- and out-
of-distribution performance is studied in §3. The
effect of selecting decreasing amounts of data is
discussed in §4. We investigate the presence of
mislabeled instances in the hard-to-learn regions
of the data maps in §5. Lastly, we demonstrate
connections between training dynamics measures
and measures of uncertainty in §6.

3 Data Selection using Data Maps

Data maps reveal distinct regions in datasets; it
is natural to wonder what roles do instances from
different regions play in learning and generaliza-
tion. We answer this empirically by training mod-
els exclusively on instances selected from distinct
regions, followed by standard in-distribution (ID),
as well as out-of-distribution (OOD) evaluation.

Our strategy is straightforward—we train the
model from scratch on a subset of the training data
selected by ranking instances based on the differ-
ent training dynamics measures.7 We hypothesize
that ambiguous and hard-to-learn regions could

7Hyperparameters are also tuned from scratch (App. §A.3).
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WINOG. Val. (ID) WSC (OOD)

100% train 79.70.2 86.00.1

33
%

tr
ai

n

random 73.31.3 85.60.4

high-correctness 70.80.6 84.10.4

high-confidence 69.40.5 83.90.5

low-variability 70.11.0 83.71.4

forgetting 75.51.3 84.80.7

AL-uncertainty 75.70.8 85.70.8

AL-greedyK 74.20.4 86.50.5

AFLite 76.80.8 86.60.6

low-correctness 78.20.6 86.30.6

hard-to-learn 77.91.3 87.20.7

ambiguous 78.70.4 87.60.6

Table 2: ID and OOD accuracies for ROBERTA-large
models trained on different selections of WinoGrande .
Reported values are averaged over 3 random seeds,
with s.d. reported as a subscript. Selection of 33% train-
ing instances with highest variability (ambiguous)
achieves the best OOD performance, outperforming all
other baselines from this work, as well as prior work.

be the most informative for learning, since these
examples are the most challenging for the model
(Shrivastava et al., 2016). We compare these two
settings to ROBERTA-large models trained on data
subsets, selected using several other methods. All
subsets considered contain 33% of the training data
(to control for the effect of train data size on per-
formance).

Baselines The two most natural baselines are
those where all data is used (100% train), and
where a 33% random sample is used (random).
Our second set of baselines considers subsets which
are the most easy-to-learn for the model (high-
confidence), and those that the model is most de-
cisive about (low-variability), which comprises
a mixture of easy-to-learn and hard-to-learn exam-
ples. We also consider baselines based on high-
and low-correctness. Finally, we also compare
with our implementation of the following methods
for data selection from prior work (discussed in §7):
forgetting (Toneva et al., 2018), AFLite (LeBras
et al., 2020), AL-uncertainty (Joshi et al., 2009),
and AL-greedyK (Sener and Savarese, 2018).

Results We test our selections on the same
datasets from the previous section—WinoGrande ,
SNLI , MultiNLI and QNLI . We report ID val-
idation performance, and OOD performance on
test sets either created independently of the dataset
(NLI Diagnostics (Wang et al., 2019) for SNLI and
MultiNLI , and WSC (Levesque et al., 2011) for

WinoGrande), or specifically to be adversarial to
the dataset (Adversarial SQuAD (Jia and Liang,
2017) for QNLI ); see App. §A.2 for details.

Tab. 2 shows our results on WinoGrande .8 Train-
ing on the most ambiguous data results in the best
OOD performance, exceeding that of 100% train,
even with just a third of the data. A similar effect
is seen with hard-to-learn, as well as its coarse-
grained counterpart, low-correctness. In each of
the three cases, ID performance is also higher than
all other 33% baselines, though we observe some
degradation compared to the full training set; this
is expected as with larger amounts of data models
tend to fit the dataset distribution rather than the
task (Torralba and Efros, 2011). The only selection
methods that underperform the random baseline
are forgetting, and the ones where we select data
the model is highly confident and decisive about
(high-confidence, high-correctness, and low-
variability). The latter pattern, as well as our
overall results, highlight the important role played
by examples which are challenging for the model,
i.e., ambiguous and hard-to-learn examples.

Given that our selection methods outperform
baselines from prior work, we only report random
and 100% train selection baselines on the remain-
ing datasets, where we see similar trends. Tab. 3
shows results for SNLI and MultiNLI , where the
random selection baseline is already within 1% of
the 100% train baseline.9 Selecting 33% of the
most ambiguous examples achieves even better
ID performance, within 0.2% of the 100% train
baseline, while exceeding OOD performance sub-
stantially on each of the linguistic categories in the
NLI Diagnostics test set.10 While hard-to-learn
does not perform as well as ambiguous on most
cases, it still matches or outperforms the 100%
train baseline on OOD test sets. Tab. 4 shows a
similar trend for QNLI , where we gain over 2%
performance on the OOD Adversarial SQuAD test
set, with minimal loss in ID accuracy.

Overall, regions revealed by data maps provide
ways to substantially improve OOD performance

8The official test set for WinoGrande has been filtered with
AFLite, making ID evaluation more challenging than OOD.
However, we apply all our selection methods (including the
AFLite selection) on WinoGrande’s unfiltered training data.

9The ID performance of all models exceeds human accu-
racy (88%) for SNLI . However, the difference in ID and OOD
performance in SNLI is quite high, showing that there is still
room for improvement in the NLI task.

10While MultiNLI -mismatched is technically out-of-
domain, performance is close to matched (ID).
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SNLI MultiNLI

ID NLI Diagnostics (OOD) ID (Val.) NLI Diagnostics (OOD)

Test Lex. PAS LS Kno. All Mat. MisM. Lex. PAS LS Kno. All

100% train 92.0 54.6 67.9 62.7 52.1 61.8 90.2 90.1 59.9 68.4 67.3 57.8 65.0

33
%

tr
ai

n random 91.3 53.0 66.8 59.7 50.7 60.4 89.8 89.2 59.3 69.6 66.5 56.3 64.6

hard-to-learn 91.8 55.2 69.1 63.2 51.7 62.0 89.5 89.7 59.3 68.9 69.5 58.8 65.3
ambiguous 92.2 58.5 67.9 64.1 54.2 63.5 90.1 89.3 63.5 71.0 68.9 59.2 66.9

Table 3: ID and OOD accuracies for ROBERTA-large models trained on different selections of SNLI and
MultiNLI ; we report the best performance over 3 random seeds (see Appendix §B for SNLI validation results).
ambiguous and hard-to-learn subsets of data promote OOD generalization, at minimal degradation of ID perfor-
mance. OOD performance improves across all fine-grained linguistic categories in the NLI Diagnostics set.
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Figure 3: ID (left) and OOD (centre) WinoGrande performance with increasing % of ambiguous (and randomly-
sampled) training data. ROBERTA-large optimization fails when trained on small amounts (< 25%) of the most
ambiguous data (results correspond to majority baseline performance and are not shown here, for better visibil-
ity). (Right) Replacing small amounts of ambiguous examples from the 17% subset with easy-to-learn examples
results in successful optimization and ID improvements, at the cost of decreased OOD accuracy. All reported
performances are averaged over 3 random seeds.

In-dist. Out-of-dist.

QNLI Val. Adversarial SQuAD

100% train 93.70.3 81.70.6

33
%

tr
ai

n random 92.70.3 78.30.4

hard-to-learn 93.30.2 83.30.6

ambiguous 93.80.3 83.90.2

Table 4: QNLI performance on ID validation and OOD
test sets, showing substantial improvements in the latter
with a third of the original data. Reported values are
averaged over 3 random seeds, with s.d. as subscripts.

across datasets. Regional selections of data not
only improve model generalization, but also do so
using substantially less data, providing a method
to potentially speed up training. We note, however,
that discovering such examples requires comput-
ing training dynamics, which involves training a
model on the full dataset. Future directions involve
building more efficient data maps, to better fulfill
the training speedup potential.

4 Role of Easy-to-Learn Instances

Data maps uncover ambiguous regions, small sub-
sets from which lead to improved OOD perfor-
mance, with minimal degradation of ID perfor-
mance (§3). We next investigate how performance
is affected as we vary the size of the ambiguous
subsets. We retrain our model with subsets contain-
ing the top 50%, 33%, 25%, 17%, 10%, 5% and
1% ambiguous instances of WinoGrande (Fig. 3,
left and center). Large ambiguous subsets (25%
or more) result in high ID and OOD performance.
Surprisingly however, for smaller ambiguous sub-
sets (17% or less), the model performs at chance
level, despite random restarts.11 In contrast, a base-
line that randomly selects subsets of similar sizes
is able to learn (while naturally performing worse
as data decreases, eventually failing at 1%). This
indicates that ambiguous instances alone might be
insufficient for learning.

Given that the model barely struggles with easy-

11This is common for large models trained on small datasets
(Devlin et al., 2019; Phang et al., 2018; Dodge et al., 2020).
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Figure 4: Retraining WinoGrande with 1% noised
(label-flipped) data changes the training dynamics of
the noisy examples. After retraining, there is a no-
ticeable distributional shift towards lower confidence,
with some shift towards higher variability as well.

to-learn instances (by definition), we next replace
some ambiguous examples with easy-to-learn ex-
amples in the 17% most ambiguous subset. In-
terestingly, replacing just a tenth of the ambigu-
ous data with easy-to-learn instances, the model
not only successfully learns, but also outperforms
the random selection baseline’s ID performance
(Fig. 3 right). This indicates that for successful
optimization, it is important to include easier-to-
learn instances. However, with too many replace-
ments, performance starts decreasing again; this
trend was seen in the previous section with the
high-confidence baseline (Tab. 2). OOD perfor-
mance shows a similar trend, but matches or is
worse than the baseline. Selection of the optimal
balance of easy-to-learn and ambiguous examples
in low data regimes is an open problem; we defer
this exploration to future work.

5 Detecting Mislabeled Examples

Crowdsourced datasets are often subject to noise
attributed to incorrect labeled annotations (Sheng
et al., 2008; Krishna et al., 2016; Ekambaram et al.,
2017), which may lead to training models that are
not representative of the task at hand. Recent stud-
ies have shown that over-parameterized neural net-
works can fit the incorrect labels blindly (Zhang
et al., 2017), which might hurt their generalization
ability (Hu et al., 2020). For large datasets, identi-
fying mislabeled examples can be prohibitively ex-
pensive. Our data maps provide a semi-automated
method to identify such mislabeled instances, with-
out significantly more effort than simply training
a model on the data. We hypothesize that hard-
to-learn examples—those with low confidence—
might be mislabeled, as has also been suggested in
prior work (Manning, 2011; Toneva et al., 2018).

To verify this hypothesis, we design an experi-
mental setting where we artificially inject noise in
the training data, by flipping the labels of 1% of
the training data for WinoGrande. Motivated by
our qualitative analysis (Tab 1), we select the can-
didates for flipping from the easy-to-learn region—
this minimizes the risk of selecting already misla-
beled examples. We retrain ROBERTA with the
partly noised data, and recompute confidence
and variability of all instances. Fig. 4 shows
the training dynamics measures, before and after
re-training. Flipped instances move to the lower
confidence regions after retraining, with some
movement towards higher variability. This in-
dicates that perhaps the hard-to-learn region (low
confidence) of the map contains other mislabeled
instances. We next explore a simple method to au-
tomatically detect such instances.

Automatic Noise Detection We train a linear
model to classify examples as mislabeled (noise) or
not, using a single feature: the confidence score
from the retrained ROBERTA model on Wino-
Grande. This model is trained using a balanced
training set for this task by sampling equal num-
bers of noisy (label-flipped) and clean examples
from the original train set. This simple classifier
is quite effective—a sanity check evaluation on a
similarly constructed test set yields 100% F1.12

Next, we run the trained noise classifier on the
entire original training set, with features extracted
from the original training dynamics measures (com-
puted without added noise). We first observe that
despite training on a balanced dataset, our classifier
predicts only a few examples as mislabeled—only
31 WinoGrande instances (out a total of 40K). A
similar experiment on SNLI results in 15K noisy
examples (out of 500K). These results are encour-
aging and follow our intuitions that most instances
in data are indeed labeled “correctly”. Indeed,
WinoGrande contains a lower portion of noisy ex-
amples, as indicated by our data maps (Fig. 2).

We further investigated these trends via a hu-
man evaluation on the output of the classifier. We
created an evaluation set by randomly selecting
50 instances from each predicted class as per our
classifier. Two of the authors re-annotated these
100 instances (without access to the original or pre-
dicted labels); some instances were annotated as
too ambiguous for the authors. After discussions

12A similar experiment with only variability scores as
features resulted in a much poorer classifier—70% F1.
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to resolve their differences, both annotators agreed
on 96% of the instances in each dataset. Using our
annotations as a new gold standard, we found that
for WinoGrande, 67% of the instances predicted
as noisy by the linear classifier are indeed either
mislabeled or ambiguous, compared to only 13%
of the ones predicted as correctly labeled. Similar
patterns are observed for SNLI (76% vs. 4%).

Our results demonstrate the potential of using
data maps as a tool to “clean-up” datasets, by iden-
tifying mislabeled or ambiguous instances.13 No-
tably, our results were obtained using a simple
method; this encourages exploration of methods
that might lead to more accurate noise-detectors.

6 Training Dynamics as Uncertainty
Measures

We introduced data maps, and used training dynam-
ics measures as coordinates for data points in §2.
We now take a closer look at these measures, and
find intuitive connections with measures of uncer-
tainty. When a model fails to predict the correct
label, the error may come from ambiguity inherent
to the example (intrinsic uncertainty), but it may
also come from the model’s limitations (often re-
ferred to as model uncertainty).14 To understand
how examples contribute to a dataset, it is impor-
tant to separate these two sources of error.

We start by studying the relationship between in-
trinsic uncertainty and our training dynamics mea-
sures. Human agreement can serve as a proxy for
intrinsic uncertainty. We estimate human agree-
ment using the multiple human annotations avail-
able in SNLI ’s development set.15 For each an-
notator, we compute whether they agree with the
majority label from the other four, breaking ties
randomly and then averaging over annotators.16,17

Fig. 5 visualizes the relation between our
training dynamics measures (confidence and
variability) and human agreement, averaged over
the examples. We observe a strong relationship be-

13In preliminary experiments, retraining WinoGrande after
removal of noise did not yield a large difference in perfor-
mance, given the relatively small amount of noise.

14These are also sometimes called the aleatoric and epis-
temic uncertainty, respectively (Gal, 2016).

15Only SNLI dev. and test set have multiple annotations on
all instances. We obtain training dynamics with ROBERTA-
large run on train and dev. combined.

16Normally, this provides the minimum-variance unbiased
estimate, though SNLI ’s development set throws away exam-
ples without a majority, which introduces some bias.

17Note that the model only has seen the majority vote, while
we take into account all annotator labels to quantify agreement.
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Figure 5: Visualizing human agreement on the SNLI
(dev. set only) data map reveals its strong relationship
to confidence. Each cell in the heatmap bins exam-
ples based on confidence and variability, then col-
ors the cell by the mean human agreement.

tween human agreement and confidence: high
confidence indicates high agreement between an-
notators, while low confidence often indicates
disagreement on the example. In contrast, once
confidence is known, variability does not pro-
vide much information about the agreement.

The connection between our second measure,
variability, and model uncertainty is more
straightforward: variability, by definition, cap-
tures exactly the uncertainty of the model. See
App. B.1 for an additional discussion (with empiri-
cal justifications) on connections between training
dynamics measures and dropout-based (Srivastava
et al., 2014), first-principles uncertainty estimates.

These relations are further supported by previ-
ous work, which showed that deep ensembles pro-
vide well-calibrated uncertainty estimates (Laksh-
minarayanan et al., 2017; Gustafsson et al., 2019;
Snoek et al., 2019). Generally, such approaches
ensemble models trained from scratch; while en-
sembles of training checkpoints lose some diversity
(Fort et al., 2019), they offer a cheaper alternative
capturing some of the benefits (Chen et al., 2017a).
Future work will involve investigation of such al-
ternatives for building data maps.

7 Related Work

Our work builds data maps using training dynam-
ics measures for scoring data instances. Loss land-
scapes (Xing et al., 2018) are similar to training
dynamics, but also consider variables from the
stochastic optimization algorithm. Toneva et al.
(2018) also use training dynamics to find train ex-
amples which are frequently “forgotten”, i.e., mis-
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classified during a later epoch of training, despite
being classified correctly earlier; our correctness
metric provides similar discrete scores, and results
in models with better performance. Variants of
such approaches address catastrophic forgetting,
and are useful for analyzing data instances (Pan
et al., 2020; Krymolowski, 2002).

Prior work has proposed other criteria to score
instances. AFLite (LeBras et al., 2020) is an ad-
versarial filtering algorithm which ranks instances
based on their “predictability”, i.e. the ability of
simple linear classifiers to predict them correctly.
While AFLite, among others (Li and Vasconcelos,
2019; Gururangan et al., 2018), advocate removing
“easy” instances from the dataset, our work shows
that easy-to-learn instances can be useful. Similar
intuitions have guided other work such as curricu-
lum learning (Bengio et al., 2009) and self-paced
learning (Kumar et al., 2010; Lee and Grauman,
2011) where all examples are prioritized based on
their “difficulty”.

Other approaches have used training loss (Han
et al., 2018; Arazo et al., 2019; Shen and Sang-
havi, 2019), confidence (Hovy et al., 2013), and
meta-learning (Ren et al., 2018), to differentiate
instances within datasets. Perhaps our measures
are the closest to those from Chang et al. (2017);
they propose prediction variance and threshold
closeness—which correspond to variability and
confidence, respectively.18 However, they use
these measures to reweight all instances, similar
to sampling effective batches in online learning
(Loshchilov and Hutter, 2016). Our work, instead,
does a hard selection for the purpose of studying
different groups within data.

Our methods are also reminiscent of active learn-
ing methods (Settles, 2009; Peris and Casacuberta,
2018; P.V.S and Meyer, 2019), such as uncertainty
sampling (Lewis and Gale, 1994) which selects
(unlabeled) data points, which a model trained on
a small labeled subset, has least confidence in, or
predicts as farthest (in vector space, based on co-
sine similarity) (Sener and Savarese, 2018; Wolf,
2011). Our approach uses labeled data for selec-
tion, similar to core-set selection approaches (Wei
et al., 2013). Active learning approaches could
be used in conjunction with data maps to create
better datasets, similar to approaches proposed in
Mishra et al. (2020). For instance, creating datasets

18They also consider confidence intervals; our preliminary
experiments, with and without, yielded similar results.

with more ambiguous examples (with respect to
a given model) could make it beneficial for OOD
generalization.

Data error detection also involves instance scor-
ing. Influence functions (Koh and Liang, 2017),
forgetting events (Toneva et al., 2018), cross valida-
tion (Chen et al., 2019), Shapely values (Ghorbani
and Zou, 2019), and the area-under-margin metric
(Pleiss et al., 2020) have all been used to identify
mislabeled examples. Some approaches avoid hard
examples altogether (Bottou et al., 2005; Northcutt
et al., 2017) to reduce fit to noisy data. Our use of
training dynamics to locate mislabeled examples
involves minimal additional effort beyond training
a model on the dataset.

8 Conclusion

We presented data maps: an automatic method to
visualize and diagnose large datasets using training
dynamics. Our data maps for four different datasets
reveal similar terrains in each dataset: groups of
ambiguous instances useful for high performance,
easy-to-learn instances which aid optimization, and
hard-to-learn instances which often correspond
to data errors. While our maps are based on
ROBERTA-large, the methods to build them are
model-agnostic (App. §C.1). Our work shows the
effectiveness of simple training dynamics measures
based on mean and standard deviation; exploration
of more sophisticated measures to build data maps
is an exciting future direction. Data maps not
only help diagnose and make better use of exist-
ing datasets, but also hold potential for guiding the
construction of new datasets. Moreover, data maps
could facilitate comparison of different model ar-
chitectures trained on a given dataset, resulting in
alternative evaluation methodologies. Our imple-
mentation is publicly available to facilitate such
efforts.19
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A Supplemental Material

A.1 Training Dynamics Computation
Both confidence and variability are computed
across epochs, but could alternatively be computed
over other granularities, e.g. over every few steps
of optimization. This might enable more efficient
computation of the same. However, care must be
taken to ignore the first few steps till optimization
stabilizes. In our experiments, we considered all
epochs including the first to compute the training
dynamics, since the first epoch contains multiple
steps of optimization for large training sets.

Moreover, it is possible to stop training early, or
before the training converges for computing train-
ing dynamics. This early burn-out scheme results
in confidence and variability measures which
correlate well with confidence and variability
(see Fig. 6). For our experiments, we use later
burn-outs corresponding to model convergence.

A.2 Datasets
This appendix provides further details on datasets.
We perform our experimental evaluation on four
large datasets, each with at least 10K instances.
Sizes of the different datasets are reported in Tab. 5.
Instances in each of the original datasets are labeled
by crowdworkers, whereas the OOD test sets are
either manually or semi-automatically created. The
performance in each case is reported as accuracy.

WinoGrande This dataset contains a large scale
crowd-sourced collection of Winograd schema
challenge (WSC Levesque et al., 2011) style ques-
tions. Commonsense reasoning is required to se-
lect an entity from a pair of entities to complete
a sentence. Following Sakaguchi et al. (2020),
we use the multiple choice architecture based on
ROBERTA (Liu et al., 2019). For OOD evalua-
tion, we use the validation set from the original
WSC as provided under the SuperGLUE bench-
mark (Wang et al., 2019). We used a rule-based
method to convert WSC validation and training
data to the cloze-style format followed in Wino-
Grande, removing all the repetitions included in
the training data. Figure 2 shows the data map for
WinoGrande .

SNLI and MultiNLI The task of natural lan-
guage inference involves prediction of the relation-
ship between a premise and hypothesis sentence
pair. The label determines whether the hypothesis
entails, contradicts or is neutral to the premise. We

Figure 6: Pearson correlation coefficient of instance
variability on WinoGrande between training dynam-
ics when model is trained to convergence and when
model is stopped early. The high correlation indicates
that training till convergence is not required to compute
a good approximation of the training dynamics.

experiment with the Stanford natural language in-
ference (SNLI ) dataset (Bowman et al., 2015) and
its multi-genre counterpart, MultiNLI (Williams
et al., 2018).20 Several challenge sets have been
proposed to evaluate models OOD. As an OOD
test set, we consider NLI diagnostics (Wang et al.,
2018) which contains a set of hand-crafted exam-
ples designed to demonstrate NLI model perfor-
mance on several fine-grained semantic categories,
such as lexical semantics, logical reasoning, predi-
cate argument structure and commonsense knowl-
edge. In addition, we also report performance on
the OOD mismatched MultiNLI validation set. Fig-
ure 8a shows the data map for MultiNLI .

QNLI Rajpurkar et al. (2016) proposed the
SQuAD dataset containing question and document
pairs, where the answer to the question is a span
in the document. The QNLI dataset, provided as
part of the GLUE benchmark (Wang et al., 2018)
reformulates this as a sentence-level binary clas-
sification task. Here, the goal is to determine if a
candidate sentence from the document contains the
answer to the given question. As an OOD test set,
we consider the Adversarial SQuAD challenge set
(Jia and Liang, 2017) where distractor sentences
are added to the document to confound the model.
We automatically convert this to the QNLI format.
Figure 9a shows the data map for QNLI .

20 For MultiNLI, we use the version released under the
GLUE benchmark (Wang et al., 2018).
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In-dist. Out-of-dist.

Train Val. Test Test

WinoGrande 40399 1268 - 424
SNLI 549368 9843 9825 1105
MultiNLI 392703 9816 9833 1105
QNLI 104744 5464 - 5324

Table 5: Dataset sizes. ID test set in MultiNLI is the
mismatched validation set, which we did not use for
validation, but as test. We did not use the provided test
sets in WinoGrande and QNLI , rather report OOD per-
formance for both cases.

A.3 Experimental Settings
For each of our classifiers, we minimize cross en-
tropy with the Adam optimizer (Kingma and Ba,
2014) following the AdamW learning rate sched-
ule from PyTorch21. Each experiment is run
with 3 random seeds and a learning rate22 cho-
sen using the AllenTune package (Dodge et al.,
2019). Initializations greatly affect performance,
as noted in Dodge et al. (2020). WinoGrande and
SNLI ROBERTA-large models are trained for 6
epochs, and MultiNLI and QNLI are trained for 5
epochs each. Each experiment is performed on a
single Quadro RTX 8000 GPU. Based on the avail-
able GPU memory, our experiments on all datasets
use a batch size of 96, except for WinoGrande,
where a batch size of 64 is used. Our implementa-
tion uses the Huggingface Transformers
library (Wolf et al., 2019). For the active learn-
ing baselines, we train a acquisition model using
ROBERTA-large on a randomly sampled 1% sub-
set of the full training set.

A.4 SNLI Qualitative Analysis
Qualitative samples from different regions of the
SNLI data map are provided in Tab. 6.

B Additional Results

Results on the SNLI validation set are provided in
Tab. 7.

B.1 Training Dynamics vs. Dropout
To empirically test the hypothesis that confidence
and variability from the training dynamics re-
spectively quantify intrinsic and model uncertainty,
we compare confidence and variability against
an established method of capturing intrinsic and

21pytorch.org
22Learning rate is chosen using a log-uniform sampling

strategy from the range (5e-6, 2e-5).

model uncertainty from the literature based on
dropout (Srivastava et al., 2014). Dropout can be
seen as variational Bayesian inference (Gal and
Ghahramani, 2016), with predictions from differ-
ent dropout masks corresponding to predictions
sampled from the posterior. Thus, confidence
and variability computed from sampled dropout
predictions measure the average and standard de-
viation of the gold label’s probability under the
posterior—quantifying the intrinsic and model un-
certainty in a principled way.

We computed confidence and variability
from both training dynamics and dropout on Wino-
Grande’s development set.23 Figure 7 visualizes
a regression analysis of the relationship between
confidence and variability from training dy-
namics and dropout. confidence from training
dynamics and dropout correlate between 0.450 and
0.452 for Pearson’s r at 95% confidence. Likewise,
variability from training dynamics and dropout
share a Pearson’s r from 0.390 to 0.393 at 95% con-
fidence. Thus, the training dynamics empirically
demonstrate a positive, predictive relationship with
these first-principles estimates of the intrinsic and
model uncertainty. Compared to dropout, however,
training dynamics have the pragmatic advantage
that all information required to calculate them is
already available from training, without additional
work or computation.
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Figure 7: The confidence (left) and variability
(right) from sampled dropout predictions correlate pos-
itively with those from the training dynamics on Wino-
Grande (dev. set). Shaded regions are bootstrapped
95% confidence intervals for the regression line.

C Additional Data Maps

All the data maps have been provided in Fig. 8 and
Fig. 9.

23To compute training dynamics, we trained a model on the
combined training and development sets for WinoGrande . In
contrast, the dropout model was trained only on WinoGrande’s
training set then run on development, to avoid over-fitting and
provide higher quality uncertainty estimates.

pytorch.org
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Premise Hypothesis Gold Label Our Assessment
am

bi
gu

ou
s A mom is feeding two babies. A mom is giving her children

carrots to eat.
Contradiction− Neutral

Smiling woman in a blue apron standing in
front of a pile of bags and boxes.

The woman is wearing a red
dress.

Neutral

ha
rd

-t
o-

le
ar

n

Photographers take pictures of a girl sitting in
a street.

The photographer is taking a pic-
ture of a boy.

Entailment− Contradiction

A group of men in a blue car driving on the
track.

One woman is driving the blue
car.

Entailment− Contradiction

Pedestrians walking down the street passing
The Temple Bar.

The pedestrians are outside. Contradiction− Entailment

ea
sy

-t
o-

le
ar

n Four musicians play their instruments on the
street while a young man on a bike stands by
to listen.

a kid in a car goes through a
drive thru

Contradiction

A girl sits with excavating tools examining a
rock.

Two men writing a draft of a
speech.

Contradiction

Table 6: Examples from SNLI belonging to different regions in the data map. Cases where authors disagree with
the gold standard are highlighted in blue− .

SNLI Val. (In-dist.)

100% train 93.1

33
%

tr
ai

n random 92.1

hard-to-learn 92.6
ambiguous 92.9

Table 7: SNLI validation performance comparing dif-
ferent selection methods. Reported numbers are the
best of 3 runs across different seeds.

C.1 Effect of Encoder in building Data Maps
While training dynamics are inherently model de-
pendent, data maps can be built for any model,
and might reveal similar structures. Since mod-
els can be of varying capacities with respect to a
task or dataset, instances might receive different
co-ordinates on data maps built based on differ-
ent models. For instance, BERT is known to be
worse at reasoning than ROBERTA (Sakaguchi
et al., 2020; Talmor et al., 2019), and ROBERTA

being a larger model is likely very sample effi-
cient (Kaplan et al., 2020). However, the overall
structure of data maps based on different models
remains the same; Fig. 9b shows the data map built
for WinoGrande using a BERT-large classifier.

Four different architectures for the SNLI dataset
are compared in Fig. 10 and Fig. 11.
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(a) Data Map for MultiNLI (Williams et al., 2018) and density plots for different measures based on training dynamics (below).
For clarity we only use 50K random samples from MultiNLI in the scatter plot. Trends are very similar to SNLI , even though
MultiNLI contains samples from diverse genres.
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(b) (Left) Data Map for SNLI , same as Fig. 1, provided here in greater relief again for comparison with other datasets. SNLI is
larger than all other datasets, and thus has a higher density of easy-to-learn examples. (Right) Densities of the above statistics
across the entire dataset; examples which are easy-to-learn (for ROBERTA) form the vast majority of SNLI .

Figure 8: Data maps for *NLI datasets; each data map plots 25K instances, for clarity.
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(a) Data map for the sentence-level SQuAD dataset, QNLI (left) and density plots for different measures based on training
dynamics (right). Unlike other datasets, QNLI has fewer instances with low variability and confidence close to 0.5.
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(b) Data map for WinoGrande built based on a BERT-large (Devlin et al., 2019) model. While similar regions can be seen as
a WinoGrande-ROBERTA data map (Fig. 2), the densities of different regions can be different. Moreover the same instances
might be mapped to different regions across maps.

Figure 9: Additional data maps, each plotting 25K instances, for clarity.
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Figure 10: Data maps for SNLI based on non-ROBERTA (and weaker) architectures—bag of words (BoW; Top)
and LSTMs (Bottom). Although these maps exhibit bell-shaped curves, similar to the ROBERTA data map for
SNLI in 8b, the curvature is somewhat smaller. The spread of the data is larger across the regions, which are not as
distinct as in the ROBERTA data map. These shapes could be attributed to these architectures being weaker (and
hence unable to overfit to data) than those involving representations from large, pretrained language models. Each
data map plots 25K instances, for clarity, and are best viewed enlarged.
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Figure 11: Data maps for SNLI based on other (weaker) architectures—bag of words eSim (Chen et al., 2017b)
(Top) and BERT-large (Bottom). Although these maps exhibit bell-shaped curves, similar to the ROBERTA data
map for SNLI in 8b, the curvature is somewhat smaller for eSIM. The spread of the data is larger across the regions,
which are not as distinct as in the ROBERTA data map. Each data map plots 25K instances, for clarity, and are
best viewed enlarged.


