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Abstract

Despite the success of existing referenced met-
rics (e.g., BLEU and MoverScore), they cor-
relate poorly with human judgments for open-
ended text generation including story or dia-
log generation because of the notorious one-
to-many issue: there are many plausible out-
puts for the same input, which may differ sub-
stantially in literal or semantics from the lim-
ited number of given references. To allevi-
ate this issue, we propose UNION, a learnable
UNreferenced metrIc for evaluating Open-
eNded story generation, which measures the
quality of a generated story without any refer-
ence. Built on top of BERT, UNION is trained
to distinguish human-written stories from neg-
ative samples and recover the perturbation in
negative stories. We propose an approach
of constructing negative samples by mimick-
ing the errors commonly observed in existing
NLG models, including repeated plots, con-
flicting logic, and long-range incoherence. Ex-
periments on two story datasets demonstrate
that UNION is a reliable measure for evalu-
ating the quality of generated stories, which
correlates better with human judgments and is
more generalizable than existing state-of-the-
art metrics.

1 Introduction

Significant advances have been witnessed with neu-
ral encoder-decoder paradigm (Sutskever et al.,
2014), transformer-based architecture (Vaswani
et al., 2017) and large-scale pretraining models (De-
vlin et al., 2019; Radford et al., 2019) in a wide
array of natural language generation (NLG) tasks
including machine translation (Bahdanau et al.,
2015), story generation (Fan et al., 2018; Guan
et al., 2020), and many more. However, the re-
search is increasingly hindered by the lack of effec-
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Leading Context
Jack was at the bar.

Reference By Human
He noticed a phone on the floor. He was going to take it
to lost and found. But it started ringing on the way. Jack
answered it and returned it to the owner’s friends.

Sample 1 (Reasonable, B=0.29, M=0.49, U=1.00)
On the way out he noticed a phone on the floor. He asked
around if anybody owned it. Eventually he gave it to the
bartender. They put it into their lost and found box.

Sample 2 (Reasonable, B=0.14, M=0.27, U=1.00)
He had a drinking problem. He kept having more beers.
After a while he passed out. When he waked up, he was
surprised to find that he lost over a hundred dollars.

Sample 3 (Unreasonable, B=0.20, M=0.35, U=0.00)
He was going to get drunk and get drunk. The bartender
told him it was already time to leave. Jack started drinking.
Jack wound up returning but cops came on the way home.

Table 1: Generated story samples given the same lead-
ing context from ROCStories (Mostafazadeh et al.,
2016). B stands for BLEU (Papineni et al., 2002), M
for MoverScore (Zhao et al., 2019), and U for UNION.
A story can be reasonable even if it is dissimilar to the
reference with a low BLEU score (B=0.14 in Sample
2), or unreasonable even if it has a large MoverScore
(M=0.35 in Sample 3). In contrast, UNION is more re-
liable for evaluating story generation.

tive evaluation metrics, particularly for open-ended
text generation tasks such as story generation.

Since human evaluation is time-consuming, ex-
pensive, and difficult to reproduce, the commu-
nity commonly uses automatic metrics for eval-
uation. Previous studies in conditional language
generation tasks (e.g., machine translation) have
developed several successful referenced metrics,
which roughly quantify the lexical overlap (e.g.,
BLEU (Papineni et al., 2002)) or semantic entail-
ment (e.g., MoverScore (Zhao et al., 2019)) be-
tween a generated sample and the reference. How-
ever, such referenced metrics correlate poorly with
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human judgments when evaluating open-ended text
generation (Liu et al., 2016) due to the one-to-
many nature (Zhao et al., 2017), as illustrated in
Table 1. Specifically, a generated sample can be
reasonable if it is coherent to the given input, and
self-consistent within its own context but not nec-
essarily being similar to the reference in literal or
semantics, as shown in Sample 2 and 3.

To address the one-to-many issue, unreferenced
metrics are proposed to measure the quality of a
generated sample without any reference. Kannan
and Vinyals (2017) presented a learnable, unrefer-
enced metric which measures the text quality by
learning to distinguish human-written texts from
generated samples. However, the discriminator-
based metric can easily lead to over-fitting to spe-
cific data (Garbacea et al., 2019) or model bias
since the quality of generated texts varies substan-
tially across different NLG models. As a matter
of fact, the generalization or robustness issue is
critical for any learnable metrics.

Therefore, we propose UNION, a learnable
UNreferenced metrIc for evaluating Open-eNded
story generation. UNION learns to distinguish
human-written stories from negative samples auto-
constructed by generating perturbations of human-
written stories. It is trained without dependence
on specific NLG models or any human annotation,
making it more generalizable to distribution drift
(Sellam et al., 2020) than the discriminator-based
metric and those metrics which learn from human
preference (e.g., Adem (Lowe et al., 2017)). To
capture commonly observed issues in generated sto-
ries, such as repeated plots, conflicting logic, and
inter-sentence incoherence, we adopt four negative
sampling techniques to construct negative samples,
including repetition, substitution, reordering, and
negation alteration. In addition, we design an aux-
iliary reconstruction objective for UNION, which
recovers the perturbation from a negative sample.
This objective is shown to further improve the per-
formance of UNION.

Our contributions are summarized as follows:
I. We propose a learnable unreferenced metric
UNION for evaluating open-ended story generation
to alleviate the one-to-many issue of referenced
metrics. UNION does not depend on any output of
NLG models or human annotation.
II. Extensive experiments1 show that UNION cor-

1All the codes and data are available at https://
github.com/thu-coai/UNION.

relates better with human judgments than state-of-
the-art metrics, and is more generalizable to data
drift (samples from different datasets) and quality
drift (samples with different quality levels).

2 Related Work

Automatic evaluation is crucial for language gen-
eration tasks. We roughly divide existing metrics
into referenced, unreferenced, and hybrid metrics,
according to whether they rely on human-written
references when calculating the metric score.
Referenced metrics usually measure how similar
a generated text is to the reference text. There-
fore, they are developed mainly for conditional lan-
guage generation tasks such as machine translation
and text summarization, where plausible outputs
are largely limited within the semantics of input.
Commonly used referenced metrics include word-
overlap based (e.g., BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004)) and embedding based met-
rics (e.g., BertScore (Zhang* et al., 2020), Mover-
Score (Zhao et al., 2019)). However, referenced
metrics are reported to correlate poorly with hu-
man judgments in open-ended generation tasks in-
cluding open-domain dialog generation (Liu et al.,
2016) and story generation, where the input con-
tains only limited information for generation, and
there are many plausible outputs for the same input,
which can vary substantially in literal or semantics.
Unreferenced metrics measure the quality of a
sample without any reference. The most classic
unreferenced metric is perplexity, which measures
how likely a sample is generated by a given lan-
guage model trained on human-written texts. How-
ever, recent work has shown that natural language
is rarely the most probable text (Holtzman et al.,
2020), and perplexity is inadequate to measure
quality (Hashimoto et al., 2019). Therefore, per-
plexity may not indicate the actual text quality well.
Discriminator-based metric (Kannan and Vinyals,
2017) measures how easily a discriminator distin-
guishes the generated samples from human-written
texts. However, training such a discriminator can
be easily over-fitted to a specific dataset, thereby
leading to poor generalization and low correlation
with human judgments (Garbacea et al., 2019). In
addition to the above point-wise metrics which
score an individual sample, Semeniuta et al. (2019)
proposed the Fréchet InferSent Distance (FID) to
evaluate the model-level quality and diversity of
generated samples, by computing the Fréchet dis-

https://github.com/thu-coai/UNION
https://github.com/thu-coai/UNION
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tance between the Gaussian distribution fitted to
human text embeddings and that to generated sam-
ple embeddings. However, in real data, the distri-
bution of embeddings may be far from Gaussian.
Recently, Zhou and Xu (2020) proposed to evaluate
sample-level quality by comparing a pair of sam-
ples, and further adopted a skill rating system to
evaluate model-level quality based on the sample-
level pair-wise comparison. However, it is unlikely
to evaluate a single sample without access to its
references.
Hybrid metrics combine referenced and unrefer-
enced metrics. For open-domain dialog system
evaluation, Lowe et al. (2017) proposed a learnable
metric Adem to learn from the human-annotated
score of a response given its post and ground truth.
However, such a metric shows very poor general-
ization and is not robust to easy attacks such as
simple word substitution or random word shuffle
(Sai et al., 2019). Furthermore, RUBER and its
variants (Tao et al., 2018; Ghazarian et al., 2019)
evaluate a response by directly averaging a non-
learnable referenced embedding similarity score
and a learnable unreferenced post-response related-
ness score that is learned by applying negative sam-
pling without human annotations. However, merely
measuring input-output relatedness is not sufficient
for evaluating long text generation, as the intrin-
sic coherence and consistency within the generated
text is a critical factor. Additionally, some met-
rics which learn from human preference achieve
substantial results in conditional language gener-
ation, e.g., RUSE (Shimanaka et al., 2018) and
BLEURT (Sellam et al., 2020). RUSE trained a re-
gression model to score a reference-candidate pair
using their sentence embeddings. And BLEURT
used multiple automatic metrics (e.g., BLEU) as su-
pervision signals for pretraining on synthetic data,
and was fine-tuned on human judgments. However,
BLEURT heavily relies on the quality of automatic
metrics, but there are yet no such reliable metrics
for open-ended text generation.

3 Methodology

UNION is expected to measure the overall quality
of a generated story. In this section, we begin with
common issues that can be observed in the output
of NLG models. We then propose four negative
sampling techniques based on the observations. Af-
terward, we introduce how UNION is trained and
used for story evaluation. The overall paradigm of

UNION is shown in Figure 1.

BERT
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Figure 1: Overview of the UNION metric. UNION is
trained to distinguish the human-written stories from
the negative samples constructed by four negative sam-
pling techniques, as well as to reconstruct the original
human-written stories.

3.1 Empirical Observations

The key aspect of UNION is the construction of
negative samples, which provides a range of lexical,
syntactic, and semantic variations to simulate the
errors made by NLG models. Therefore, we first
present our empirical observations regarding the
question “What makes a story unreasonable for
NLG models?”.

We analyzed 381 unreasonable stories gener-
ated by various NLG models like Plan&Write (Yao
et al., 2019) and fine-tuned GPT-2 (Radford et al.,
2019) base on ROCStories (Mostafazadeh et al.,
2016), and summarized four major types of er-
rors, including repeated plots (repeating similar
texts), poor coherence (with unrelated keywords
or events but a reasonable main plot), conflicting
logic (wrong causal or temporal relationship), and
chaotic scenes (difficult to understand or with mul-
tiple previous errors). To facilitate understanding
of the error types, we resorted to manual annotation
of all the unreasonable stories. And seven annota-
tors were hired for each story (see the full details
in Section 4.2). In addition to the four error types,
we also provide annotators with an option Others.
We summarize the proportion of stories annotated
with different error types in Table 22.

We can see that the four error types are the ma-
jor issues of unreasonable stories, which provides

2Note that these human annotations are only used in test
of UNION.
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Type Repe Cohe Conf Chao Others

Prop (%) 44.1 56.2 67.5 50.4 12.9

Table 2: Error type Proportions of 381 un-
reasonable stories, including Repeated plots/poor
Coherence/Conflicting logic/Chaotic scenes/Others.

rationales of constructing negative samples for eval-
uating generated stories. Besides, all the Spearman
correlations between every two error types are less
than 0.15 (p-value > 0.01), suggesting that different
error types correlate weakly with each other. Fur-
thermore, the stories annotated with 1/2/3/4 errors
constitute 23.36%/36.48%/34.65%/4.46% of the
annotated stories, respectively. Most of the unrea-
sonable stories have more than one error, which
motivates us to simultaneously apply multiple sam-
pling techniques to construct negative samples.

3.2 Constructing Negative Samples

We construct negative samples to cover as many
aforementioned issues of unreasonable stories as
possible. Since using machine-generated texts as
negative samples will easily lead to poor generaliza-
tion (over-fitting to specific data or model bias (Gar-
bacea et al., 2019)), we devise four negative sam-
pling techniques to automatically construct a large
number of negative samples from human-written
stories as follows:
Repetition: Generating repetitive texts is com-
monly observed in many state-of-the-art NLG mod-
els (Fan et al., 2018; Radford et al., 2019), where
the models focus repeatedly on what they have
recently generated, particularly with maximum-
likelihood based decoding strategies (Holtzman
et al., 2020). To address the issue, we introduce
lexical and sentence-level repetition to construct
negative samples using two policies—we either re-
peat an N-gram (N=1,2,3,4) in a random sentence,
or randomly select a sentence to repeat and remove
the following sentence to keep the sentence number
unchanged.
Substitution: The coherence of a story is mainly
embodied through the relationship between key-
words in the context (Clark et al., 2018; Guan
et al., 2020). Therefore, we create incoherent
samples by random keywords and sentence sub-
stitution, respectively at word level and sentence
level. For word-level substitution, we replace ran-
dom 15% keywords in a story with their corre-
sponding antonyms (e.g., replace “deny” with “con-

firm”), otherwise with another random keyword
sampled from all the keywords of the same part-of-
speech (POS), according to the mention frequency.
We use the commonsense knowledge base Con-
ceptNet (Speer and Havasi, 2012)3 for keyword
recognition and antonym query. ConceptNet con-
sists of commonsense triples like (h, r, t),
meaning that the head concept h has a relation
r with the tail concept t, e.g., (evaluation,
IsA, judgment). We regard those words
which are heads or tails in ConceptNet as key-
words. And given an keyword, we look up those
keywords as its antonyms with which have negated
relations, including Antonym, NotDesires,
NotCapableOf, and NotHasProperty. If
no antonym is found for a keyword, we perform
replacement with a random keyword of the same
POS. And we adopt NLTK4 for POS tagging.

For sentence-level substitution, we randomly re-
place a sentence in a story with another one sam-
pled from the rest of stories in the dataset.

Reordering: Conflicting logic usually results from
wrong causal relationship and temporal depen-
dency in the context. Therefore, we randomly re-
order the sentences in a story to create negative
stories with conflicting plot.

Negation Alteration: Negation words such as
“not” are crucial for language generation tasks be-
cause they may flip the semantics of a sentence,
which is also an important cause of conflicting
logic. We perform negation alteration by adding or
removing negation words using rules for different
types of verbs5.

Since there may be multiple error types in a
generated story, we apply different sampling tech-
niques simultaneously to construct a negative sam-
ple. We first sample the number (n) of techniques
from {1,2,3,4} with a distribution {50%, 20%,
20%, 10%}. We then sample a technique without
replacement from {repetition, substitution, reorder-
ing, negation alteration} with a distribution {10%,
30%, 40%, 20%} until the total number of tech-
niques (n) is reached. Last, we apply the sampled
techniques on a human-written story to obtain a per-
turbated sample. A constructed example is shown
in Table 3.

3http://www.conceptnet.io/
4http://nltk.org/
5The details are shown in the supplementary material.

http://www.conceptnet.io/
http://nltk.org/
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Leading Context
Ken was out jogging one morning.

Reference By Human
The weather was crisp and cool. Ken felt good and en-
ergetic. He decided to keep jogging longer than normal.
Ken went several more miles out of his way.

Auto-Constructed Negative Sample
The weather was crisp and cool and cool. Ken felt bad
and energetic. Ken DID NOT GO several more miles
out of his way. He decided to keep jogging longer
than normal.

Table 3: An example of negative sample construction.
The repeated bigram is in italic, the substituted key-
word is underlined, the reordered sentences are indi-
cated in bold, and the altered negation words are CAPI-
TALIZED.

3.3 Modeling
Let {sn, rn, yn}Nn=1 denote the training dataset of
size N for training the UNION metric, where sn
is a human-written story or an auto-constructed
negative sample, rn is the corresponding original
story of sn. If sn is a negative sample, yn = 0,
otherwise yn = 1 where sn is exactly the same as
rn in this case. yn ∈ {0, 1} indicates whether sn is
written by human. For better story understanding,
we leverage BERT (Devlin et al., 2019) to obtain
contextualized representations of the input. Given a
story sn = (s1, s2, · · · , sp) of length p (each si is a
word), BERT outputs a sequence of contextualized
vectors:

v[CLS],vs1 , · · · ,vsp ,v[SEP] = BERT(sn), (1)

where v[CLS] and v[SEP] are the representation for
the special tokens [CLS] and [SEP], respectively.
We add a task-specific linear layer on top of the
[CLS] vector to predict the UNION score, indicat-
ing the probability that sn is written by human:

ŷn = sigmoid(Wcv[CLS] + bc), (2)

where Wc and bc are trainable parameters. We use
the cross entropy loss to optimize the prediction
objective as follows:

LCn = −yn log ŷn − (1− yn) log (1− ŷn). (3)

In addition to the main prediction task, we devise
an auxiliary reconstruction task which requires to
reconstruct the corresponding human-written story
rn from perturbated story sn. Therefore, we add
an additional linear layer at the last layer of BERT,
which takes as input the vectors output from the

last transformer block and computes a probability
distribution over the entire vocabulary through a
softmax layer, formally as follows:

P (r̂i|sn) = softmax(Wrvsi + br), (4)

where r̂i is the predicted i-th token, Wr and br are
the parameters of the additional linear layer. Then
the model is trained by minimizing the negative
log-likelihood:

LRn = −1

p

p∑
i=1

log P (r̂i = ri|sn), (5)

where ri is the i-th token in human-written story
rn. The combined loss function L of the full model
is computed as follows:

L =
1

N

N∑
n=1

(LCn + λLRn ), (6)

where λ is an adjustable hyperparameter.
We fine-tune all the parameters of UNION on the

training dataset, including the BERT and the two
additional linear layers. In practical use, UNION

can measure the quality of a new generated sample
ŝ by taking ŝ as input to predict the corresponding
score ŷ.

4 Experiment

We conducted extensive experiments to evaluate
UNION on two story datasets. First, we compared
UNION against existing text generation metrics.
Then, we assessed its generalization on distribution
drifts, including dataset drift and quality drift. Last,
we measured the effect of each negative sampling
technique with ablation studies.

4.1 Baselines
We compared UNION with the following three
kinds of metrics as baselines:
Referenced metrics: sentence BLEU score (ge-
ometric mean of 1-gram up to 4-gram) (Papineni
et al., 2002) to measure the lexical similarity be-
tween a candidate sample and its reference, and
MoverScore (Zhao et al., 2019) to measure the
semantic similarity.
Unreferenced metrics: Perplexity6 computed by
the GPT-2 model (Radford et al., 2019), and a
discriminative evaluator (DisScore) (Kannan and

6We take the minus of perplexity for all the following
experiments to ensure a higher value means better quality.
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Vinyals, 2017) that is trained based on BERT to
distinguish generated samples from human-written
stories.
Hybrid metrics: RUBER-BERT (Ghazarian
et al., 2019) which improves the original RU-
BER (Tao et al., 2018) with contextualized em-
beddings from BERT, and the supervised metric
BLEURT (Sellam et al., 2020) that is fine-tuned on
human judgments after pretraining on large-scale
synthetic data with multiple automatic metrics as
supervision signals.

In addition, we also reported the performance
of the referenced and unreferenced versions in
RUBER-BERT, denoted as RUBERr-BERT and
RUBERu-BERT, respectively.

We set the parameters of UNION by following
the uncased base version of Devlin et al. (2019):
the transformer has 12 layers, 768 dimensional hid-
den states, and 12 attention heads. We used batch
size 10, and learning rate 5e-5. The scale factor
λ is set to 0.1. We directly used public pretrained
parameters of BERT7 or GPT-28 (base version) for
all the baselines.

4.2 Data Preparation
We used two datasets for evaluation, ROC-
Stories (ROC for short) (Mostafazadeh et al.,
2016) and WritingPrompts (WP) (Fan et al.,
2018). The ROC dataset contains 98,161 five-
sentence human-written stories, with an aver-
age length of 49.4 words. To achieve better
generalization performance, we followed Guan
et al. (2020) to make delexilization by masking all
the male/female/unknown names with placeholders
[MALE]/[FEMALE]/[NEUTRAL], respectively.

The WP dataset consists of 303,358 stories
paired with writing prompts collected from an on-
line forum. The average length of the prompt/story
is 28.4/734.5 respectively, much longer than those
in ROC. Since it is still challenging for state-of-
the-art NLG models to maintain a reasonable plot
through the whole story, and hard to obtain accept-
able annotation agreement in manual evaluation of
long stories, we retained about 200 words (with
correct sentence boundary) from the start and trun-
cated the rest in WP for subsequent experiments.

We randomly selected 90%/5%/5% stories from
both datasets for training/validation/test of UNION

and learnable baseline metrics, and created the
7https://github.com/google-research/

bert
8https://github.com/openai/gpt-2

evaluation set for all the metrics by generating
stories based on the test sets of the datasets with
state-of-the-art story generation models. The story
generation models include fusion convolutional
seq2seq model (Fan et al., 2018), plan&write (Yao
et al., 2019), fine-tuned GPT-2 (Radford et al.,
2019), and knowledge-enhanced GPT-2 (Guan
et al., 2020).

The data statistics are shown in Table 4. The
number of negative samples for learning the met-
rics when necessary is the same as that of human-
written stories on each dataset. Specifically, we
created negative samples for DisScore by generat-
ing stories with above NLG models. For RUBERu-
BERT, a given leading context is appended by a
randomly sampled continuation. All the stories in
the evaluation set are manually labeled. In addi-
tion, we annotated another 400 stories in ROC and
200 in WP for training BLEURT9. Seven annota-
tors were hired to judge the quality of each story
with a binary score (1 for a reasonable story, and
0 otherwise). Furthermore, we asked annotators
to label the error type of a story if it is labeled as
unreasonable, including repeated plots, poor coher-
ence, conflicting logic, chaotic scenes, and others.
We resorted to Amazon Mechanical Turk (AMT)
for annotation, and the average score of the seven
annotators is treated as the final score. We provide
the full details of the instruction for annotators in
the supplementary file.

Split Metrics ROC WP NS
Perplexity 7
DisScore 88,344/ 272,600/ 3

Train/ RUBERu 4,908 15,620 3
Validate UNION 3

BLEURT 360†/40† 180†/20† 7

Test All metrics 400† 200† N/A

Table 4: Data statistics. RUBERu is short for
RUBERu-BERT. NS (Negative Sampling) means
whether a metric requires negative samples for train-
ing/validation. † means the stories are generated by
NLG models and manually annotated.

4.3 Correlation Results
Correlation analysis has been widely used to evalu-
ate automatic metrics for language generation (Tao
et al., 2018; Sellam et al., 2020). We employed
UNION and other metrics to score the collected
samples, and then calculated the Pearson (r),

9BLEURT is first initialized with the pretrained param-
eters (https://github.com/google-research/
bleurt) and then fine-tuned on our annotated stories.

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/openai/gpt-2
https://github.com/google-research/bleurt
https://github.com/google-research/bleurt
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Metrics ROC WP
r ρ τ r ρ τ

Referenced BLEU 0.0299 0.0320 0.0231 0.1213 0.0941 0.0704
MoverScore 0.1538∗ 0.1535∗ 0.1093∗ 0.1613 0.1450 0.1031
RUBERr-BERT 0.0448 0.0517 0.0380 0.1502 0.1357 0.0986

Unreferenced

Perplexity 0.2464∗ 0.2295∗ 0.1650∗ -0.0705 -0.0479 -0.0345
RUBERu-BERT 0.1477∗ 0.1434∗ 0.1018∗ 0.1613 0.1605 0.1157
DisScore 0.0406 0.0633 0.0456 0.0627 -0.0234 -0.0180
UNION 0.3687∗ 0.4599∗ 0.3386∗ 0.3663∗ 0.4493∗ 0.3293∗

-Recon 0.3101∗ 0.4027∗ 0.2927∗ 0.3292∗ 0.3786∗ 0.2836∗

Hybrid RUBER-BERT 0.1412∗ 0.1395∗ 0.1015∗ 0.1676 0.1664 0.1194
BLEURT 0.2310∗ 0.2353∗ 0.1679∗ 0.2229∗ 0.1602 0.1180

Table 5: Correlation with human judgments on ROC and WP datasets. r/ρ/τ indicates the Pear-
son/Spearman/Kendall correlation, respectively. The best performance is highlighted in bold. The correlation
scores marked with * indicate the result significantly correlates with human judgments (p-value<0.01).

Spearman (ρ) and Kendall (τ ) correlation coeffi-
cients between model evaluation and human judg-
ments. Pearson’s r estimates linear correlation
while Spearman’s ρ and Kendall’s τ estimate mono-
tonic correlation, and τ is usually more insensitive
to abnormal values than ρ. We used the standard
statistical package stats in SciPy10 for correla-
tion calculation and significance test.

As summarized in Table 5, the referenced met-
rics correlate worse with human judgments, par-
ticularly for BLEU which is based on lexical sim-
ilarity. Measuring the semantic similarity instead
(MoverScore, RUBERr-BERT) can improve the
correlation but is still limited, indicating that ref-
erenced metrics are not competitive for evaluating
open-ended language generation. Perplexity is in-
effective on WP because the generated stories in
the dataset are much longer and hence suffer from
more serious repetition errors than those in ROC,
which easily results in low perplexity (i.e., high
minus perplexity) (Holtzman et al., 2020) but poor
human judgment scores. Furthermore, UNION out-
performs other baselines including the supervised
metric BLEURT by a large margin, which also
demonstrates the advantage of unreferenced met-
rics. Besides, removing the reconstruction training
objective (-Recon) leads to remarkably worse cor-
relation, indicating that the auxiliary task further
improves the performance of UNION.

4.4 Generalization to Dataset and Quality
Drift

It is extremely important for learnable metrics to
deal with dataset drift and quality drift (Sellam

10https://docs.scipy.org/doc/scipy/
reference/stats.html

et al., 2020). Specifically, a generalizable metric is
expected to reliably evaluate outputs from different
datasets even without re-training. Moreover, since
the quality of generated samples can vary signifi-
cantly across NLG models, a reliable metric should
be able to evaluate samples of different quality lev-
els. Therefore, we conducted experiments to assess
the generalization ability of UNION in this section.

Metrics r ρ τ

Training: WP Test: ROC

Perplexity -0.0015 0.0149 0.0101
RUBERu-BERT -0.0099 -0.0162 -0.0110
BLEURT 0.1326∗ 0.1137∗ 0.0828∗

UNION 0.1986∗ 0.2501∗ 0.1755∗
-Recon 0.1704∗ 0.2158∗ 0.1523∗

Training: ROC Test: WP

Perplexity 0.0366 0.0198 0.0150
RUBERu-BERT 0.1392 0.1276 0.0912
BLEURT 0.1560 0.1305 0.0941
UNION 0.2872∗ 0.2935∗ 0.2142∗

-Recon 0.2397∗ 0.2712∗ 0.1971∗

Table 6: Correlation results in the dataset drift setting
where the metrics are trained on one dataset and then
used for the other one.

To assess the generalization to dataset drift, we
first trained the learnable metrics on ROC and then
directly used them to evaluate generated stories
from WP, and vise versa. Table 6 shows the Pearson
correlation with human judgments in this setting.
Compared with the results in Table 5, all the met-
rics trained on one dataset have remarkable drops in
correlation when they are used for the other dataset
because the two datasets are significantly different
in length and topic. Nevertheless, UNION performs
more robustly than other metrics, with much bet-

https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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Figure 2: Generalization over different biased test sets. Left: distribution of stories of different annotation scores
in different test sets. Right: the Pearson correlation of different metrics with human judgments on different test
sets, where UNION-Recon denotes UNION without the reconstruction task.

Evaluation Set All Samples (400) Reasonable Samples (19) + Unreasonable Samples with
Repe (24) Cohe (38) Conf (61) Chao (23)

UNION 0.3687 0.6943 0.5144 0.4571 0.6744
-Repetition 0.3167 (↓14%) 0.4743 (↓32%) 0.5308 (↑3%) 0.4316 (↓6%) 0.6561 (↓3%)
-Substitution 0.3118 (↓15%) 0.7034 (↑1%) 0.4185 (↓19%) 0.4468 (↓2%) 0.5850 (↓13%)
-Reordering 0.2302 (↓38%) 0.6546 (↓6%) 0.5077 (↓1%) 0.3507 (↓23%) 0.5393 (↓20%)
-Negation Alteration 0.3304 (↓10%) 0.6665 (↓4%) 0.4987 (↓3%) 0.3946 (↓14%) 0.5176 (↓23%)

Table 7: Pearson correlation with different negative sampling techniques. The numbers in parentheses denote the
number of stories. The error types include Repeated plots, poor Coherence, Conflicting logic, and Chaotic scenes.
The proportions in parentheses indicate the relative change with respect to UNION (the first row).

ter correlation with human judgments. Moreover,
our method of constructing negative examples is
generalizable to the two datasets.

To assess the generalization of UNION to quality
drift, we created biased test sets from ROC by sam-
pling stories of different quality levels with differ-
ent probabilities. Specifically, the annotation score
of each story ranges from 0 to 1 (i.e., 0, 17 ,

2
7 , · · · , 1)

since there are seven annotators for each sample.
We then created 8 biased sets, indexed from 1 to 8
with variable I . For the Ith set, we sampled the sto-
ries whose annotation score is k

7 with a probability
of 1
|I−k|+1 where k ∈ {0, 1, · · · , 7}. In this way,

the 8 sets have different distributions of stories with
different qualities11, as shown in Figure 2 (left).

We then computed the Pearson correlation of dif-
ferent metrics with human judgments on the 8 sets.
Results in Figure 2 (right) show that: I. UNION

has higher correlation than other metrics on all the
biased sets. II. UNION is more reliable and ro-
bust than other metrics, with much less variance.
For instance, MoverScore performs much better on
Set #1 (with more low-quality stories) than on Set
#8 (with more high-quality stories). Interestingly,
Perplexity performs much better on high-quality
sets than on low-quality ones, because high-quality
stories are closer to human-written stories from
which a language model learns. III. The ablated

11We assume that the annotation score k
7

approximates the
quality level.

UNION without the reconstruction objective has
lower correlation and larger variance, indicating
that the auxiliary task can improve the discrimina-
tive and generalization ability.

4.5 Ablation Studies

To understand the effect of each negative sampling
technique, we conducted ablation tests on ROC
dataset. Each time we ablated one technique of
constructing negative samples, re-trained UNION

on the constructed data, and evaluated it on five
evaluation sets: all 400 samples, and four other
sets where each contains 19 reasonable samples
and other unreasonable samples of some error type.
The error type of a story is decided if at least three
of seven annotators annotate the same error type.

Table 7 shows the Pearson correlation results.
UNION is remarkably better than its ablated ver-
sion on the all-sample set, indicating the necessity
of the four techniques for constructing negative
samples. Reordering seems to be the most impor-
tant technique, which agrees with our observation
that conflicting logic is the major issue in existing
story generation models. Furthermore, as expected,
the correlation drops remarkably on the evaluation
set of some error type if without the corresponding
negative sampling technique. Interestingly, it is eas-
ier for UNION to evaluate repetitive/chaotic stories,
which seem to be easier cases in story generation.
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5 Conclusion

We present UNION, an unreferenced metric for
evaluating open-ended story generation. UNION is
trained to distinguish human-written stories from
auto-constructed negative samples and to recover
the perturbation in negative samples. Extensive
experiments show that UNION outperforms state-
of-the-art metrics in terms of correlation with hu-
man judgments on two story datasets, and is more
robust to dataset drift and quality drift. Results also
show the effectiveness of the proposed four nega-
tive sampling techniques. As future work, we will
explore the similar idea of designing unreferenced
metrics for dialog generation.
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