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Abstract

Recognizing the flow of time in a story is a
crucial aspect of understanding it. Prior work
related to time has primarily focused on identi-
fying temporal expressions or relative sequenc-
ing of events, but here we propose computa-
tionally annotating each line of a book with
wall clock times, even in the absence of ex-
plicit time-descriptive phrases. To do so, we
construct a data set of hourly time phrases
from 52,183 fictional books. We then con-
struct a time-of-day classification model that
achieves an average error of 2.27 hours. Fur-
thermore, we show that by analyzing a book in
whole using dynamic programming of break-
points, we can roughly partition a book into
segments that each correspond to a particu-
lar time-of-day. This approach improves upon
baselines by over two hour. Finally, we apply
our model to a corpus of literature categorized
by different periods in history, to show inter-
esting trends of hourly activity throughout the
past. Among several observations we find that
the fraction of events taking place past 10 P.M
jumps past 1880 - coincident with the advent
of the electric light bulb and city lights.

1 Introduction

The flow of time is an indispensable guide for our
actions, and provides a framework in which to see
a logical progression of events. Just as in real life,
the clock provides the background against which
literary works play out: when characters wake, eat,
and act. In most works of fiction, the events of the
story take place during recognizable time periods
over the course of the day. Recognizing a story’s
flow through time is essential to understanding the
text.

In this paper, we try to capture the flow of time
through novels by attempting to recognize what
time of day each event in the story takes place at.

As our motivating example, we use “The Great
Gatsby” (Fitzgerald, 1925), a short novel with a fa-
miliar plot that can be analyzed with our techniques.
Figure 1 presents the work of two human annota-
tors, independently making their best guesses of
the clock time at every paragraph of the book. The
x-axis of Figure 1 represents the full text of the
book as enumerated by paragraph numbers, while
the y-axis represents the 24 hours of the day. The
times identified by the annotators are shown in blue,
while our model’s time predictions are shown in
red.

We first note that there is general but not perfect
agreement between the annotators, with an aver-
age disagreement of 1.85 hours. There is also a
strong general agreement between the model and
the annotators, with an average absolute error of
2.62 hours, computed by taking the minimum time
difference from either of the annotators.

Although human readers are generally able to
track the flow of texts, this task is more difficult
than may initially be supposed – because there
are surprisingly few actual times reported in most
books. Figure 2 shows how many explicit hourly
time phrases appear in our dataset of 52,183 nov-
els. About 6,000 of these books contain zero time
references to any hour. Among the books that do
contain clock times, most of them contain fewer
than twenty references. Events are often described
in a neutral manner that does not signal much about
exactly when it is taking place.

This scarcity of time references presents a big
challenge in developing good models and in inter-
preting the evidence associated with a particular
text. Because of the lack of explicit references,
some notion of likelihood must be part of the model.
For this reason, we model time as a probability dis-
tribution of what hour it likely is at this juncture.
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Figure 1: Comparing annotator times (in blue) versus algorithmically generated times for The Great Gatsby, shown
in red. Blue colored dots represent the common agreed upon points of time. Green lines represent start of chapters.
(A half-hour offset between the annotator and the model prediction to eliminate direct overlaps).

Figure 2: Number of books with explicit time refer-
ences out of 52,183 books. 12.04% of these books con-
tain no clock times within them.

Our contributions1 in this paper include:

• Literary Time Reference Dataset – We
build a clean data resource containing all
explicit time references in a dataset of
52,183 novels whose full text is available via
Project Gutenberg (Gutenberg, n.d.) and the
HathiTrust Digital Library2. The times ex-
tracted via regular expressions generally do
not include AM or PM designations, so we
build models to predict the AM/PM label for a
window of text with the best model achieving
an accuracy of 86.3% at this task.

• Models for Local Time Prediction – We de-
velop three language-based models to forecast
the time (on the military hour scale from 0 to

1Code and links to dataset can be found at https://
github.com/allenkim/what-time-is-it

2www.hathitrust.org

23) from local text windows. This task is dis-
tinguished from typical regression problems
in that time is periodic: thus the difference
between 23:00 and 1:00 is the same as that
between 10:30 and 12:30. We treat this task
as a 24-class classification problem, with our
strongest model (based on BERT) achieving
an average error of 2.27 hours.

• Global Time-Flow Analysis in Novels – Pre-
dictions of time signals from local text fea-
tures are doomed to be of bounded accuracy
because, as previously detailed, books contain
relatively rare explicit time references. Signif-
icant episodes typically require several pages
to present, so we anticipate times to hold con-
stant through large segments of text, and then
proceed in a forward direction.

We define an optimization criteria to partition
texts into coherent time windows, and provide
an efficient dynamic programming algorithm,
which reduces the average absolute prediction
error by over an hour against baselines.

• Historical Trends in Hourly Activities – By
analyzing times extracted from our corpus of
novels and the lifespan of its authors, we can
identify how waking periods and peak times
of activity have changed over the past two hun-
dred years. In particular, we demonstrate that
the fraction of events in novels taking place
after 10 PM has grown steadily since 1880
– a tribute to the power of the electric light.
Characters rose with the sun far more often
in the agrarian society of old. Contemporary
characters spend more time at lunch and less

https://github.com/allenkim/what-time-is-it
https://github.com/allenkim/what-time-is-it
www.hathitrust.org
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at dinner than their forebearers.

Our paper is organized as follows. We first dis-
cuss related works in temporal analysis and NLP
for fiction (Section 2). We then describe our data
collection process, specifically how we extracted
temporal expressions along with some analysis of
the phrases (Section 3). We then describe how the
time-of-day models were constructed and their eval-
uations (Section 4). With these models, we show
our book-length prediction algorithms and their cor-
responding metrics as well (Section 5). Finally, we
present a trend of time activity over history based
on our book-length prediction algorithm (Section
6).

2 Related Works

Work related to temporal analysis stems back to
foundations in logic, which defined time in the
context of sets and relations (Bruce, 1972; Allen,
1983). Less formally, we associate time with events
(Setzer and Gaizauskas, 2000) and indeed most re-
cent work has similarly approached understanding
time in the context of events.

There has been much work done on temporal
event analysis, primarily in the areas of identifying
time phrases as well as extracting temporal rela-
tions between them (Pustejovsky et al., 2005; Bram-
sen et al., 2006; Chambers et al., 2007; Bethard
and Martin, 2007; Lapata and Lascarides, 2006).
Standards have been set up to properly categorize
what kind of phrases are considered to be “time
phrases” (Pustejovsky et al., 2003), and methods
using regular expressions (Mani and Wilson, 2000;
Strötgen and Gertz, 2010) as well as machine learn-
ing approaches (Mani et al., 2006; Min et al., 2007;
UzZaman and Allen, 2010) have been used to parse
these expressions. Looking more broadly, there has
also been much work done in understanding a doc-
ument’s time dimension, which can involve deter-
mining when the document was created/published
(De Jong et al., 2005; Garcia-Fernandez et al.,
2011) or determining the time in which the con-
tents of the story is focused on (Jatowt et al., 2013)
or analyzing dates in German literature (Fischer
and Strötgen, 2015).

Not only are we interested in just time, we are
interested in time in the context of literature. There
is a vast field of research in analyzing literature
such as sentiment analysis of plot (Alm and Sproat,
2005; Mohammad, 2013; Elsner, 2012; Reagan

et al., 2016; Jockers, 2015). Since time is inher-
ently connected to events, we also refer to litera-
ture in parsing literary events within books as well
(Ahn, 2006; Liao and Grishman, 2010; Li et al.,
2013; Feng et al., 2018; Sims et al., 2019). Within
literature, we are also interested in the activities of
humans over history. For example, electric lighting
began to become more popularized in the form of
lightbulbs and city lights in the 1880s (DiLaura,
2008), and with electric lighting, people can more
readily be active during the night. Prior to then,
we are inclined to believe that people were not as
active late at night.

3 Dataset Preparation

We initially started with a dataset of 10,489 Guten-
berg books as well as 97,772 HathiTrust books,
which were filtered to be English fiction (Under-
wood), but these contained numerous duplicates
of the same book as well as duplicates between
the Gutenberg dataset. These were deduplicated
based on title and author similarity for a resulting
count of 52,183 unique books over both sets. For
the sake of completeness, we present results in this
paper that use Gutenberg and HathiTrust books
independently.

Regarding the format of the data, the Guten-
berg books are provided as a raw text files and
were cleaned to strip headers and front matter. The
HathiTrust books were provided as a folder of text
files representing pages. These were preprocessed
to strip headers using the HathiTrust Research Cen-
ter RunningHeaders tool 3 as well as to separate
out the body of the book from its front and back
matter (McConnaughey et al., 2017). We also per-
formed further preprocessing to split them into
paragraphs, sentences, and tokens. Among the
preprocessing tasks, the most important task was
to annotate which tokens belong to time phrases.
This was done using SUTime library (Chang and
Manning, 2012) to tag time terms, which uses a
regular expression based approach. In particular,
we focused on times that pinpointed hours within a
day such as “two o’clock” or “noon”. The library
provides the terms as well as the time it can be
translated to.

Table 1 shows the number of time tokens for ev-
ery hour. The first two columns show the number
of time references that can be determined down to

3https://github.com/htrc/
HTRC-Tools-RunningHeaders-Python

https://github.com/htrc/HTRC-Tools-RunningHeaders-Python
https://github.com/htrc/HTRC-Tools-RunningHeaders-Python
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Gutenberg HathiTrust
Hour A.M P.M A.M P.M

0 21,810 21,646 123,214 121,649

1 1,038 315 29,582 1,696

2 1,337 661 7,330 3,582

3 1,139 965 6,060 4,867

4 911 1032 5,133 5,150

5 645 720 4,053 3,693

6 754 562 4,316 3,125

7 531 495 3,421 2,602

8 698 596 3,950 3,401

9 657 587 3,795 3,468

10 745 661 3,952 3,897

11 410 460 2,055 2,737

Table 1: Number of time examples by hour. The most
frequent explicit time references are to noon and mid-
night.

an hour out of the 24 hour clock while the third
column shows the number of time references that
can only be determined down to the 12 hour clock.
Time phrases can be disambiguated with words
such as “AM” or “PM”, or if the time is connected
to a prepositional phrase such as “three in the af-
ternoon”. However, it is more often the case that
time phrases are used without explicit labels. Refer-
ences to a certain time like “eight o’clock” usually
do not come with an “AM” or “PM” tag as it is of-
ten inferred from context. Note that we especially
have many samples for hour 0 - midnight and noon
- simply because those are more commonly used
phrases as opposed to prepositional phrases such
as “five o’clock at night”. We also note that there
are abnormally large amounts of examples for 1
A.M. in the Hathi dataset. We found that this was
largely due to OCR errors that transcribed “I am”
to “1 am”.

3.1 Associating Words with Hours of the Day
Given the references in each hour, we now want to
examine words that are over-represented in differ-
ent time periods. For each time reference, we take a
window including three sentences before and after
the reference, concatenate all of the windows refer-
ring to the same hour, and tokenize and count the
words among them. This effectively creates 24 bag

word top three hours

breakfast 7, 8, 6

bright 10, 11, 12

sun 12, 13, 11

lunch 12, 13, 11

park 15, 16, 11

dinner 18, 19, 13

dark 23, 0, 1

moon 23, 0, 1

Table 2: Top three hours for select feature words, con-
sistent with common experience.

of words, one for each hour in the day. Since time
periods with a difference of one hour are practically
similar in the context in which they can appear, we
also merge neighboring hour bag of words with
each other.

We now want to determine how closely related
a word is to a particular hour. To do so, we define
a scoring function that takes in a word and hour,
and outputs a score between 0 and 1 representing
how closely related the word is to that hour. As
examples, we would expect the word “lunch” and
the hour 12 to have a high score and the word
“dinner” and the hour “8” to have a low score.

Scoring Description Intuitively, we want to mea-
sure how surprised we are when observing the fre-
quency of word in the context of a hourly phrase
versus the frequency of the word in any standard
text. For a given word and hour, we look at the
frequency of the word within the hour’s bag of
words and compare it to the standard normalized
frequency of the word in all of our dataset. We
model the occurrence of the word as a geometric
distribution with probability equal to the standard
normalized frequency, and thus, we can score each
word by using their frequencies within the bag of
words and using a binomial cumulative distribution
function to find a corresponding likelihood.

Formally, for a given word w and hour h, let k
be the number of occurrences of w in the bag of
words of h, p[w] be the probability of w appearing
in a text – computed by taking the normalized fre-
quency of w in all of the text – and Nh be the total
number of words in the bag of words of h. We then
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define the scoring function s(w, h) as:

s(w, h) =
k∑

i=0

(
Nh

i

)
p[w]i(1− p[w])Nh−i

With this scoring function, for any given word,
we can rank the top hours it is associated with. We
show the top three hours for several common words
in Table 2. We considered words with common
associated times with them such as eating breakfast
in the morning, lunch at noon, and dinner at night.
We see that there is a general agreement between
the top hours for the given words and the times an
average person would associate them with.

4 Time Prediction from Text

For a given window of sentences, we seek to predict
the hour it is most likely taking place in. To con-
struct models for this task, we use the time phrases
from Section 3, but recall much of the time phrases
were unlabeled. Given the limited amount of la-
beled data, we first want to augment our dataset by
labeling the unlabeled data as well. Thus, we have
a two step approach:

1. Build a model to resolve ambiguous time
terms (AM versus PM) and label the unla-
beled data.

2. Train a model for time of day prediction by
hour using the augmented dataset.

4.1 Resolving Ambiguity in Time Terms
As shown in Table 1, a majority of the time terms
do not have AM or PM tags. In order to get rid of
this ambiguity, we first label this data with AM/PM
tags.

Our problem is as follows: Given a reference
to a phrase representing some hour of the day as
well as the words in the context around it, deter-
mine whether the time the phrase is referring to is
“A.M” or “P.M”. Intuitively, this problem requires
12 different models, one for each hour from 0 to
11. We require separate models for each hour since
neighboring hours can have similar words but dif-
ferent labels. For example, “11 A.M” can have
words quite similar to “12 P.M”, but their labels are
clearly different. Additionally, we use a window
that spans three sentences before the time phrase
and three sentences afterwards. We found that em-
pirically, the predictive power of the model did not
significantly improve past this window size.

We consider three main models along with a
baseline and an ensemble of the three models.

• Baseline: We use the majority class for each
hour as the default prediction.

• Naive Bayes (NB): We convert the window
of sentences to a binary bag of word represen-
tation using StanfordNLP (Qi et al., 2019) for
every hour and train Naive Bayes classifier for
prediction.

• LSTM: We represent the window of sen-
tences as vectors using GloVe (Pennington
et al., 2014). We use the 6B tokens, 400K vo-
cab, uncased, 100d pre-trained word vectors
to convert windows to sequences of vectors
that were then used to train an LSTM.

• BERT: We tokenize the windows using the
BERT tokenizer and fine-tune the pre-trained
12-layer, 768-hidden, 12-heads, 110M param-
eters uncased BERT model (Devlin et al.,
2018).

Experimental Details. For each of these model
types, we construct twelve classifiers (one for each
hour up to twelve). We also split the training and
testing set in a 70-30% split and further split the
training set in a 90-10% split for validation. Ad-
ditionally, we take advantage of the fact that the
windows of words around one hour are quite similar
to the hours near it. We can imagine that replacing
“1 P.M” with “2 P.M” in a window will have mini-
mal impact. Thus, we take the neighboring hours
training set as well when training for each hour.

All models were run on a compute server with
2.30 GHz CPU and TeslaV100 GPU. No hyperpa-
rameter tuning was done on any models; default
values were run for all models. The average train-
ing time of all the neural models were within sev-
eral hours. This is true for future experimentation
as well.

One point to note is the necessity of masking the
time phrase that the window was based on. Words
such as “AM/PM” or “in the morning/night” pro-
vided the temporal cues to parse the time phrase in
the first place, and any decent model with access to
these words will perform with unrealistic accuracy.
These features do not exist in the unlabeled train-
ing set, to ensure the models learn to identify the
proper AM/PM label without cheating. Thus, we
replace all the time phrases with the same special
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classifier type acc am f1 pm f1

Gutenberg

Baseline
mic 0.520 0.306 0.633

mac 0.573 0.501 0.223

NB
mic 0.704 0.715 0.692

mac 0.671 0.688 0.603

LSTM
mic 0.713 0.728 0.699

mac 0.585 0.622 0.510

BERT
mic 0.793 0.800 0.785
mac 0.665 0.695 0.601

HathiTrust

Baseline
mic 0.621 0.738 0.312

mac 0.576 0.554 0.171

NB
mic 0.739 0.786 0.665

mac 0.729 0.748 0.666

LSTM
mic 0.766 0.810 0.697

mac 0.723 0.728 0.674

BERT
mic 0.863 0.889 0.821
mac 0.837 0.847 0.804

Table 3: AM - PM Prediction Results for Gutenberg /
HathiTrust

token. In some models such as BERT, we use this
while tokenizing. In other models such as GloVe +
LSTM, we create a new random vector to represent
this token.

Results. The results are shown in Table 3 with
the metrics of accuracy and F1 scores for each
class. We include results when running these mod-
els purely on Gutenberg data as well as the results
when running these models with the HathiTrust
data. We see clear improvement across the board,
especially for BERT with the extra data. The macro
metrics are the averaged values over all 12 mod-
els while the micro metrics are the values over all
the test examples over all the models. The results
show that this is a challenging task given the lim-
ited amount of data we have. Analyzing the dataset
shows that many windows that contain a time ref-
erence can be sensible with either A.M or P.M, so
it is not easy to disambiguate mentions of time in
generic dialogue. However, all our models substan-

hour agreement hour agreement

0 0.79 6 0.76

1 0.69 7 0.76

2 0.79 8 0.80

3 0.82 9 0.69

4 0.75 10 0.71

5 0.80 11 0.77

Mean Agreement = 0.761

Table 4: Agreement between Annotators and Model for
AM/PM prediction

tially outperform the baseline. In the end, we use
the winning BERT model to label our unlabeled
data for training.

Since we are imputing our data with computer-
generated labels, we compare its output to human
annotators to test how reliable it is. We manually
annotated 1200 instances of AM/PM windows —
100 examples for each hour pair — and compared it
to our model’s output to see the agreement. In cases
where the label can be ambiguous, the annotators
made their best intuitive guess. Figure 4 shows the
agreement between the annotators and our model,
where the agreement is measured in number of
matching predictions divided by the total number.

We see that the model performs respectably with
an overall average of 76% accuracy. We comment
that the human annotations contain some anomalies
due to linguistic changes such as “dinner” being
eaten as lunchtime and “supper” being the canoni-
cal name for a later meal, but these anomalies were
relatively minor.

4.2 Time of Day Prediction
Given the words in the context of the time phrase,
we now predict the most likely time of day. We treat
this problem as a 24-class classification problem,
where each class is defined to be an hour of the
day. We again consider the same three models as
in the AM-PM models: bag of words with Naive
Bayes, GloVe with LSTM, and BERT fine-tuning,
but with 24-class outputs as opposed to binary.

Results. The results are shown in Table 5 and 6.
The models shown in these results were trained on
exclusively HathiTrust books. We also show the
results when purely trained on Gutenberg books as
well. We note that error is measured in number of
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hour NB LSTM BERT

0 2.92 2.56 1.69
1 2.07 1.56 1.05
2 4.24 3.28 2.57
3 5.21 3.54 2.71
4 5.75 3.51 2.57
5 5.94 3.87 2.66
6 5.68 3.85 2.88
7 5.72 4.01 2.85
8 5.05 3.89 2.55
9 5.04 3.81 2.58
10 5.11 4.13 2.87
11 5.10 3.63 2.27
12 5.21 3.46 1.73
13 4.98 3.29 1.88
14 4.38 3.41 2.18
15 3.86 3.32 2.12
16 3.57 3.32 2.00
17 3.57 3.19 2.23
18 3.86 3.51 2.31
19 4.22 3.29 2.48
20 3.79 3.29 2.10
21 3.42 3.20 2.01
22 3.25 3.17 2.19
23 3.17 2.61 2.17

Table 5: Time-of-day prediction error by hour for
HathiTrust books

hours. Thus, the worst possible error is 12 hours
on a 24 hour clock. A baseline model with random
guessing would have an expected error of 6 hours.

We see that the BERT model performs the best
with an error of 2.28 hours while Naive Bayes per-
forms the worst with an error of 4.38 hours. We
clearly see that this problem is heavily influenced
by the amount of data available. We see that by
simply adding more data to the LSTM and BERT
models, the average error improves significantly
and unsurprisingly, the naive Bayes model only
improves slightly.

hour NB LSTM BERT

Gutenberg 4.69 4.72 4.09
HathiTrust 4.38 3.36 2.28

Table 6: Average time-of-day prediction error for
Gutenberg and HathiTrust books

5 Book-length Time Prediction

Given a model that can predict the time of day for
a single window of sentences, we now consider
predicting the time of day over an entire book –
constructing a time flow through the book. The
simplest idea is to partition the book into windows
that fit into the model and independently predict
an hour for each window using the model. How-
ever, this will have very poor performance since
many windows will consist of sentences that have
no bearing to time and in these cases, the model
will output an arbitrary time that will not fit with
its surroundings. To resolve this, we consider the
problem of optimally partitioning the windows into
larger segments corresponding to particular hours.

More formally, given a sequence of sentence win-
dows s1, s2, . . . , sn and the number of segments,
parameterized as k, our goal is to generate the
most likely list of indices i1, i2, . . . , ik that rep-
resent the start of each segment, and a list of hours
h1, h2, . . . , hk that represents the corresponding
hour assigned to each segment.

5.1 Generating Probability Distributions
For every window, we now want to generate a prob-
ability distribution over the 24 hours. We present
two different means of acquiring these probabilities
and in the end, we combine these two probability
distributions.

Model Probabilities. The first approach applies
our BERT time of day model from Section 4. As
discussed in the introductory paragraph of this sec-
tion, we can simply run our model on each window
of text and min-max normalize the scores to get
probabilities. We additionally smooth the probabil-
ity by averaging the probabilities with their neigh-
boring hours since we expect neighboring hour
classes to be similar to each other. With this, we
now have a probability distribution over 24 hours
for each window using our model. However, one
limiting feature of just using our model is the fact
that our model was trained with core time phrases
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removed from its training. Recall that phrases such
as “eight o’clock at night” were masked entirely to
prevent skewing the testing procedure.

Tag-based Probabilities. To make use of these
crucial time phrases, we consider another proba-
bility distribution based on key time phrases that
are also annotated by SUTime: “morning”, “af-
ternoon”, “evening”, and “night”. For each tag,
we define a probability over the standard hours in
which they refer to (morning: 6-11, afternoon: 12-
16, evening: 17-20, night: 21-5). For any window
containing these tags, we define a uniform proba-
bility over the hours the tag refers to with zeros for
other hours. This defines a probability distribution
for windows containing these tags. For windows
not containing any time tags, we simply let it equal
the probability of the previous known tag.

Merging. We average our model probabilities
with the tag-based probabilities to get our final
probability distribution for every window.

5.2 Optimal Partitioning of Probabilities

Given the probability distribution for each window,
we now want to find the optimal partitioning of
the windows. Recall that in the formulation of
this problem, one of the required parameters is the
number of partitions we want to make among the
windows of text. We consider this number as a
parameter we can control. If we allow too many
segments, then the model will probably overfit to
noisy windows whereas if the number of segments
is too small, then the times will not be accurate to
the book. For our experiments, we approximate the
ratio of the number of windows to number of par-
titions in a book to be approximately eight, which
is about 55 sentences on average per partition. We
saw that this worked well empirically with several
sample texts such as The Great Gatsby and main-
tained a good balance between not overfitting and
getting sensible results.

To determine the location of partition breaks, we
present a baseline and two methods.

• Baseline: We assign every window to be the
same constant hour - we choose noon in par-
ticular since that is the middle of the day.

• Max Hour: We first partition the windows
into equal sizes. Each partition now contains
a series of probability distributions. For each
partition, we take the sum of the probabilities

classifer error

Noon Baseline 6.215

Max Hour 4.250

DP 4.232

Table 7: Book Time Prediction Results

across each window and assigns to each parti-
tion the hour that corresponds to the maximal
sum in the summed partition probabilities.

• Dynamic Programming (DP): The dynamic
programming takes in the number of text win-
dows and number of partitions as parameters
and optimizes the size of the segments to maxi-
mize the alignment of each section with its un-
derlying probability. We define the DP recur-
rence relation to score the alignment f(n, k),
where n is the number of windows and k is
the number of breaks, as:

max
i∈[1,n−k]

(
f(n−i, k−1)+ max

h∈[0,23]

n∑
j=n−i

ph[j]

)
where we define p as the array of array of 24
probabilities for every window, and thus, p[j]
can be described as an array of 24 probabili-
ties for window j. By taking the max, the DP
prioritizes the hour with maximal probability
sum over the length of the partition.

5.3 Evaluation
To evaluate our methods, we construct ground truth
for the books in our dataset. While the exam-
ple with “The Great Gatsby” was manually an-
notated, we have no annotations of times for our
book dataset. Thus, we approximate the ground
truth by considering books that contain time ref-
erences to specific hours of the day and annotate
the text window containing that phrase to be that
hour. Additionally, to raise the quality of the test
set, we only consider books with multiple time ref-
erences that include references beyond just noon
and midnight. We note that our “ground truth” is
not correct in many circumstances such as when
a specific time is referred to in dialogue referenc-
ing some point in the past or future, but suffices to
show general trends in our results.

Results. Our results for average error in hours
are shown in Table 7. Even with the low quality of



9084

Figure 3: Activity in Different Time Periods by Percentage - shaded by relative weight within each column

labels in the test set, we see that the local method
of maximal hours over uniform segments as well
as the dynamic programming method beat the noon
baseline by about two hours. Overall, the dynamic
programming method performs best, but the local
maximization method performs admirably as well.

One might ask why the error is higher compared
to the 24 hour model. This is due to the fact that
while the model performs well on local windows
that contain a time reference, the neighboring win-
dows tend to give little signal about time and con-
fuses which windows should be emphasized more
than others. Quite often, the probabilities provided
by the models do not fully represent confidence.
For future work, it would be worth considering
a different model that uses probabilistic labels as
classes or a variant of a regression model.

6 Historical Trends

In the end, we use our book-length time predic-
tion through all the Gutenberg books in our dataset
and found the distribution of times throughout each
book. While the dataset does not have the publica-
tion date of the book in the metadata, we were able
to access the authors and the years the author was
alive. Thus, we created groupings of our data by
time period based on the year of the author’s birth.
We group the authors by year of birth, separated
every 20 years.

Figure 3 shows the results for six groupings of
years. We consider all books up to 1800 to be one
group, then every 20 years afterwards up to 1900,
and all books from 1900 and beyond to be the final
group. We first note the number of books in each
grouping. Given copyright laws, most of the books
we have access to are in the late 1800s as shown by
the number column.

We see some interesting trends. For example,
noon and afternoons (12 to 5 P.M) are referenced
more as the periods pass. Additionally, the times
around dinner (6 to 9 P.M.) are referenced much
more in earlier books, but become less relevant in
later periods. The emphasis tends to shift towards
later at night (11 P.M to 1 A.M). We also see a de-
crease in emphasis in the morning from 8 to 9 A.M.
Overall, the emphasis seems to shift towards the
afternoon and late nights and away from mornings
and evenings as we progress through the books his-
torically, which can potentially be attributed to the
rise in the emphasis on lunch times as well as the
advent of electric lighting, along with a decreased
emphasis on family dinners.

7 Conclusions and Future Work

We have constructed a dataset of time phrases to
build models that can predict the most relevant hour
of the day for a given text window. Our models are
a good start, but we release the dataset to encourage
others to improve on this task. We note that this
dataset can be further cleaned by resolving OCR
errors in the source text as well as improving upon
the time extraction algorithm. More annotations of
complete novels would permit better models and
evaluation.

Full time annotations of novels additionally in-
clude the challenging task of distinguishing be-
tween narrator and recall time in discussing past
events. We also seek to annotate information about
dates and seasons. Future work includes applying
time inference models to question answering and
other NLP systems.
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