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Abstract
Targeted opinion word extraction (TOWE) is
a sub-task of aspect based sentiment analy-
sis (ABSA) which aims to find the opinion
words for a given aspect-term in a sentence.
Despite their success for TOWE, the current
deep learning models fail to exploit the syntac-
tic information of the sentences that have been
proved to be useful for TOWE in the prior re-
search. In this work, we propose to incorporate
the syntactic structures of the sentences into
the deep learning models for TOWE, leverag-
ing the syntax-based opinion possibility scores
and the syntactic connections between the
words. We also introduce a novel regulariza-
tion technique to improve the performance of
the deep learning models based on the rep-
resentation distinctions between the words in
TOWE. The proposed model is extensively an-
alyzed and achieves the state-of-the-art perfor-
mance on four benchmark datasets.

1 Introduction

Targeted Opinion Word Extraction (TOWE) is an
important task in aspect based sentiment analysis
(ABSA) of sentiment analysis (SA). Given a target
word (also called aspect term) in the input sen-
tence, the goal of TOWE is to identify the words
in the sentence (called the target-oriented opinion
words) that help to express the attitude of the au-
thor toward the aspect represented by the target
word. For instance, as a running example, in the
sentence “All warranties honored by XYZ (what I
thought was a reputable company) are disappoint-
ing.”, “disappointing” is the opinion word for the
target word “warranties” while the opinion words
for the target word “company” would involve “rep-
utable”. Among others, TOWE finds its applica-
tions in target-oriented sentiment analysis (Tang
et al., 2016; Xue and Li, 2018; Veyseh et al., 2020)
and opinion summarization (Wu et al., 2020).

∗Equal contribution.
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Figure 1: The dependency tree of the example sentence.

The early approach for TOWE has involved the
rule-based and lexicon-based methods (Hu and Liu,
2004; Zhuang et al., 2006) while the recent work
has focused on deep learning models for this prob-
lem (Fan et al., 2019; Wu et al., 2020). One of
the insights from the rule-based methods is that
the syntactic structures (i.e., the parsing trees) of
the sentences can provide useful information to im-
prove the performance for TOWE (Zhuang et al.,
2006). However, these syntactic structures have not
been exploited in the current deep learning mod-
els for TOWE (Fan et al., 2019; Wu et al., 2020).
Consequently, in this work, we seek to fill in this
gap by extracting useful knowledge from the syn-
tactic structures to help the deep learning models
learn better representations for TOWE. In partic-
ular, based on the dependency parsing trees, we
envision two major syntactic information that can
be complementarily beneficial for the deep learning
models for TOWE, i.e., the syntax-based opinion
possibility scores and syntactic word connections
for representation learning. First, for the syntax-
based possibility scores, our intuition is that the
closer words to the target word in the dependency
tree of the input sentence tend to have better chance
for being the opinion words for the target in TOWE.
For instance, in our running example, the opin-
ion word “disappointing” is sequentially far from
its target word “warranties”. However, in the de-
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pendency tree shown in Figure 1, “disappointing”
is directly connected to “warranties”, promoting
the distance between “disappointing” and “war-
ranties” (i.e., the length of the connecting path) in
the dependency tree as an useful feature for TOWE.
Consequently, in this work, we propose to use the
distances between the words and the target word in
the dependency trees to obtain a score to represent
how likely a word is an opinion word for TOWE
(called syntax-based possibility scores). These pos-
sibility scores would then be introduced into the
deep learning models to improve the representation
learning for TOWE.

In order to achieve such possibility score incor-
poration, we propose to employ the representation
vectors for the words in the deep learning models to
compute a model-based possibility score for each
word in the sentence. The model-based possibility
scores also aim to quantify the likelihood of being
an opinion word for each word in the sentence;
however, they are based on the internal representa-
tion learning mechanism of the deep learning mod-
els for TOWE. To this end, we propose to inject
the information from the syntax-based possibility
scores into the models for TOWE by enforcing the
similarity/consistency between the syntax-based
and model-based possibility scores for the words
in the sentence. The rationale is to leverage the
possibility score consistency to guide the represen-
tation learning process of the deep learning models
(using the extracted syntactic information) to gen-
erate more effective representations for TOWE. In
this work, we employ the Ordered-Neuron Long
Short-Term Memory Networks (ON-LSTM) (Shen
et al., 2019) to obtain the model-based possibility
scores for the words in the sentences for TOWE.
ON-LSTM introduces two additional gates into
the original Long Short-Term Memory Network
(LSTM) cells that facilitate the computation of the
model-based possibility scores via the numbers of
active neurons in the hidden vectors for each word.

For the second type of syntactic information in
this work, the main motivation is to further im-
prove the representation vector computation for
each word by leveraging the dependency connec-
tions between the words to infer the effective con-
text words for each word in the sentence. In partic-
ular, motivated by our running example, we argue
that the effective context words for the represen-
tation vector of a current word in TOWE involve
the neighboring words of the current word and the

target word in the dependency tree. For instance,
consider the running example with “warranties” as
the target word and “reputable” as the word we
need to compute the representation vector. On the
one hand, it is important to include the informa-
tion of the neighboring words of “reputable” (i.e.,
“company”) in the representation so the models can
know the context for the current word (e.g., which
object “reputable” is modifying). On the other
hand, the information about the target word (i.e.,
“warranties” and possibly its neighboring words)
should also be encoded in the representation vec-
tor for “reputable” so the models can be aware
of the context of the target word and make appro-
priate comparison in the representation to decide
the label (i.e., non-opinion word) for “reputable”
in this case. Note that this syntactic connection
mechanism allows the models to de-emphasize the
context information of “I” in the representation for
“reputable” to improve the representation quality.
Consequently, in this work, we propose to formu-
late these intuitions into an importance score matrix
whose cells quantify the contextual importance that
a word would contribute to the representation vec-
tor of another word, given a target word for TOWE.
These importance scores will be conditioned on
the distances between the target word and the other
words in the dependency tree. Afterward, the score
matrix will be consumed by a Graph Convolutional
Neural Network (GCN) model (Kipf and Welling,
2017) to produce the final representation vectors
for opinion word prediction.

Finally, in order to further improve the induced
representation vectors for TOWE, we introduce a
novel inductive bias that seeks to explicitly dis-
tinguish the representation vectors of the target-
oriented opinion words and those for the other
words in the sentence. We conduct extensive exper-
iments to demonstrate the benefits of the proposed
model, leading to the state-of-the-art performance
for TOWE in several benchmark datasets.

2 Related Work

Comparing to the related tasks, TOWE has been
relatively less explored in the literature. In particu-
lar, the most related task of TOWE is opinion word
extraction (OWE) that aims to locate the terms
used to express attitude in the sentences (Htay and
Lynn, 2013; Shamshurin, 2012). A key difference
between OWE and TOWE is that OWE does not
require the opinion words to tie to any target words
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in the sentence while the opinion words in TOWE
should be explicitly paired with a given target word.
Another related task for TOWE is opinion target
extraction (OTE) that attempts to identify the target
words in the sentences (Qiu et al., 2011; Liu et al.,
2015; Poria et al., 2016; Yin et al., 2016; Xu et al.,
2018). Note that some previous works have also
attempted to jointly predict the target and opinion
words (Qiu et al., 2011; Liu et al., 2013; Wang et al.,
2016, 2017; Li and Lam, 2017); however, the target
words are still not paired with their corresponding
opinion words in these studies.

As mentioned in the introduction, among a few
previous work on TOWE, the main approaches
include the rule-based methods (i.e., based on
word distances or syntactic patterns) (Zhuang et al.,
2006; Hu and Liu, 2004) and the recent deep learn-
ing models (Fan et al., 2019; Wu et al., 2020). Our
model is different from the previous deep learning
models as we exploit the syntactic information (i.e.,
dependency trees) for TOWE with deep learning.

3 Model

The TOWE problem can be formulated as a se-
quence labeling task. Formally, given a sentence
W of N words: W = w1, w2, . . . , wN with wt

as the target word (1 ≤ t ≤ N ), the goal is to
assign a label li to each word wi so the label se-
quence L = l1, l2, ..., lN for W can capture the
target-oriented opinion words forwt. Following the
previous work (Fan et al., 2019), we use the BIO
tagging schema to encode the label li for TOWE
(i.e., li ∈ {B, I,O} for being at the Beginning,
Inside or Outside of the opinion words respec-
tively). Our model for TOWE consists of four com-
ponents that would be described in the following:
(i) Sentence Encoding, (ii) Syntax-Model Consis-
tency, (iii) Graph Convolutional Neural Networks,
and (iv) Representation Regularization.

3.1 Sentence Encoding

In order to represent the input sentence W , we
encode each word wi into a real-valued vector xi
based on the concatenation of the two following
vectors: (1) the hidden vector of the first word-
piece of wi from the last layer of the BERTbase

model (Devlin et al., 2019), and (2) the position
embedding forwi. For this vector, we first compute
the relative distance di from wi to the target word
wt (i.e., ri = i − t). Afterward, we retrieve the
position embedding for wi by looking up ri in a po-

sition embedding table (initialized randomly). The
position embeddings are fine-tuned during train-
ing in this work. The resulting vector sequence
X = x1, x2, . . . , xN for W will be then sent to the
next computation step.

3.2 Syntax-Model Consistency
As presented in the introduction, the goal of this
component is to employ the dependency tree of
W to obtain the syntax-based opinion possibility
scores for the words. These scores would be used to
guide the representation learning of the models via
the consistency with the model-based possibility
scores. In particular, as we consider the closer
words to the target word wt in the dependency tree
of W as being more likely to be the target-oriented
opinion words, we first compute the distance dsyni

between each word wi to the target word wt in the
dependency tree (i.e., the number of words along
the shortest path between wi and wt). Afterward,
we obtain the syntax-based possibility score ssyni

for wi based on: ssyni =
exp(−dsyni )∑

j=1..N exp(−dsynj )
.

In order to implement the possibility score con-
sistency, our deep learning model needs to produce
ssyn1 , ssyn2 , . . . , ssynN as the model-based possibil-
ity scores the words w1, w2, . . . , wN in W respec-
tively. While the model-based score computation
would be explained later, given the model-based
scores, the syntax-model consistency for possibil-
ity scores would be enforced by introducing the KL
divergence Lconst between the syntax-based and
model-based scores into the overall loss function
to minimize:

LKL = −
∑
i

smodel
i

smodel
i

ssyni

(1)

As mentioned in the introduction, in this work,
we propose to obtain the model-based possibility
scores for TOWE using the Ordered-Neuron Long
Short-Term Memory Networks (ON-LSTM) (Shen
et al., 2019). ON-LSTM is an extension of the pop-
ular Long Short-Term Memory Networks (LSTM)
that have been used extensively in Natural Lan-
guage Processing (NLP). Concretely, given the vec-
tor sequence X = x1, x2, . . . , xN as the input, a
LSTM layer would produce a sequence of hidden
vectors H = h1, h2, . . . , hN via:

fi = σ(Wfxi + Ufhi−1 + bf )

ii = σ(Wixi + Uihi−1 + bi)

oi = σ(Woxi + Uohi−1 + bo)

ĉi = tanh(Wcxi + Uchi−1 + bc)

ci = fi ◦ ci−1 + ii ◦ ĉi, hi = oi ◦ tanh(ci)

(2)
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in which h0 is set to zero vector, ◦ is the element-
wise multiplication, and ft, it and ot are called the
forget, input, and output gates respectively.

A major problem with the LSTM cell is that
all the dimensions/neurons of the hidden vectors
(for the gates) are equally important as these neu-
rons are active/used for all the step/word i in W .
In other words, the words in W have the same
permission to access to all the available neurons
in the hidden vectors of the gates in LSTM. This
might not be desirable as given a NLP task, the
words in a sentence might have different levels
of contextual contribution/information for solving
the task. It thus suggests a mechanism where the
words in the sentences have different access to the
neurons in the hidden vectors depending on their in-
formativeness. To this end, ON-LSTM introduces
two additional gates f̄i and īi (the master forget
and input gates) into the original LSTM mecha-
nism using the cummax activation function (i.e.,
cumax(x) = cumsum(softmax(x)))1:

f̂i = cummax(Wf̂xi + Uf̂hi−1 + bf̂ )

îi = 1− cummax(Wîxi + Uîht−1 + bî)

f̄i = f̂i ◦ (fi îi + 1− îi), īi = îi ◦ (itf̂i + 1− f̂i)
ci = f̄i ◦ ci−1 + īi ◦ ĉi

(3)

The benefit of cummax is to introduce a hierar-
chy over the neurons in the hidden vectors of the
master gates so the higher-ranking neurons would
be active for more words in the sentence and vice
verse (i.e., the activity of the neurons is limited
to only a portion of the words in the sentence in
this case). In particular, as cummax applies the
softmax function on the input vector whose out-
puts are aggregated over the dimensions, the result
of cummax(x) represents the expectation of a bi-
nary vector of the form (0, . . . , 0, 1, . . . , 1) (i.e.,
two consecutive segments of 0’s and 1’s). The 1’s
segment in this binary vector determines the neu-
rons/dimensions activated for the current step/word
wi, thus enabling the different access of the words
to the neurons. In ON-LSTM, a word is consid-
ered as more informative or important for the task
if it has more active neurons (or a larger size for
its 1’s segment) in the master gates’ hidden vec-
tors than the other words in the sentence. As such,
ON-LSTM introduces a mechanism to estimate an
informativeness score simp

i for each word wi in
the sentence based on the number of active neu-

1cumsum(u1, u2, . . . , un) = (u′1, u
′
2, . . . , u

′
n) where

u′i =
∑

j=1..i uj .

rons in the master gates. Following (Shen et al.,
2019), we approximate simp

i via the sum of the
weights of the neurons in the master forget gates,
i.e., simp

i = 1−
∑

j=1..D f̂ij . Here, D is the num-
ber of dimensions/neurons in the hidden vectors of
the ON-LSTM gates and f̂ij is the weight of the
j-th dimension for the master forget gate f̂i at wi.

An important property of the target-oriented
opinion words in our TOWE problem is that they
tend to be more informative than the other words
in the sentence (i.e., for understanding the senti-
ment of the target words). To this end, we pro-
pose to compute the model-based opinion possibil-
ity scores smodel

i for wi based on the informative-
ness scores simp

i from ON-LSTM via: smodel
i =

exp(simp
i )∑

j=1..N exp(simp
j )

. Consequently, by promoting

the syntax-model consistency as in Equation 1,
we expect that the syntactic information from the
syntax-based possibility scores can directly inter-
fere with the internal computation/structure of the
ON-LSTM cell (via the neurons of the master
gates) to potentially produce better representation
vectors for TOWE. For convenience, we also use
H = h1, h2, . . . , hN to denote the hidden vectors
returned by running ON-LSTM over the input se-
quence vector X in the following.

3.3 Graph Convolutional Networks

This component seeks to extract effective context
words to further improve the representation vectors
H for the words in W based on the dependency
connections between the words for TOWE. As dis-
cussed in the introduction, given the current word
wi ∈W , there are two groups of important context
words in W that should be explicitly encoded in
the representation vector for wi to enable effective
opinion word prediction: (i) the neighboring words
of wi, and (ii) the neighboring words of the target
word wt in the dependency tree (i.e., these words
should receive higher weights than the others in the
representation computation for wi). Consequently,
in order to capture such important context words
for all the words in the sentence for TOWE, we
propose to obtain two importance score matrices
of size N × N for which the scores at cells (i, j)
are expected to weight the importance of the con-
textual information from wj with respect to the
representation vector computation for wi in W . In
particular, one score matrix would be used to cap-
ture the syntactic neighboring words of the current
words (i.e., wi) while the other score matrix would
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be reserved for the neighboring words of the target
word wt. These two matrices would then be com-
bined and consumed by a GCN model (Kipf and
Welling, 2017) for representation learning.

Specifically, for the syntactic neighbors of the
current words, following the previous GCN models
for NLP (Marcheggiani and Titov, 2017; Nguyen
and Grishman, 2018; Veyseh et al., 2019), we
directly use the adjacency binary matrix Ad =
{adi,j}i,j=1..N of the dependency tree for W as the
importance score matrix for this group of words.
Note that adi,j is only set to 1 if wi is directly con-
nected to wj in the dependency tree or i = j in
this case. In the next step for the neighboring
words of the target wordwt, as we expect the closer
words to the target word wt to have larger contri-
butions for the representation vectors of the words
in W for TOWE, we propose to use the syntac-
tic distances (to the target word) dsyni and dsynj of
wi and wj as the features to learn the importance
score matrix At = {ati,j}i,j=1..N for the words
in this case. In particular, ati,j would be computed
by: ati,j = σ(FF ([dsyni , dsynj , dsyni +dsynj , |dsyni −
dsynj |, d

syn
i ∗ dsynj ])) where FF is a feed-forward

network to convert a vector input with five dimen-
sions into a scalar score and σ is the sigmoid func-
tion. Given the importance score matrices Ad and
At, we seek to integrate them into a single impor-
tance score matrix A to simultaneously capture the
two groups of important context words for repre-
sentation learning in TOWE via the weighted sum:
A = γAd + (1 − γ)At = {ai,j}i,j=1..N where γ
is a trade-off parameter2.

In the next step for this component, we run a
GCN model over the ON-LSTM hidden vectors H
to learn more abstract representation vectors for
the words in W . This step will leverage A as the
adjacency matrix to enrich the representation vec-
tor for each word wi with the information from its
effective context words (i.e., the syntactic neigh-
boring words of wi and wt), potentially improving
the opinion word prediction for wi. In particular,
the GCN model in this work involves several lay-
ers (i.e., G layers in our case). The representation
vector h̄ki for the word wi at the k-the layer of the

2Note that we tried to directly learn A from the
available information from Ad and At (i.e., ai,j =
σ(FF ([adi,j , d

syn
i , dsynj , dsyni + dsynj , |dsyni − dsynj |, dsyni ∗

dsynj ]))). However, the performance of this model was worse
than the linear combination of Ad and At in our experiments.

GCN model would be computed by:

h̄k
i = ReLU

(
Σj=1..Nai,j(Wkh̄

k−1
j + bk)∑

j=1..N ai,j

)
(4)

whereWk and bk are the weight matrix and bias for
the k-th GCN layer. The input vector h0i for GCN
is set to the hidden vector hi from ON-LSTM (i.e.,
h0i = hi) for all i in this case. For convenience,
we denote h̄i as the hidden vector for wi in the last
layer of GCN (i.e., h̄i = h̄Gi for all 1 ≤ i ≤ N ).
We also write h̄1, h̄2, . . . , h̄N = GCN(H,A) to
indicate that h̄1, h̄2, . . . , h̄N are the hidden vectors
in the last layer of the GCN model run over the
input H and the adjacency matrix A for simplicity.

Finally, given the syntax-enriched representation
vectors hi from ON-LSTM and h̄i from the last
layer of GCN, we form the vector Vi = [hi, h̄i]
to serve as the feature to perform opinion word
prediction for wi. In particular, Vi would be sent
to a two-layer feed-forward network with the soft-
max function in the end to produce a probability
distribution P (.|W, t, i) over the possible opinion
labels for wi (i.e., B, I, and O). The negative log-
likelihood function Lpred would then be used as
the objective function to train the overall model:
Lpred = −

∑N
i=1 P (li|W, t, i).

3.4 Representation Regularization

There are three groups of words in the input sen-
tence W for our TOWE problem, i.e., the target
wordwt, the target-oriented opinion words (i.e., the
words we want to identify) (called W opinion), and
the other words (called W other). After the input
sentence W has been processed by several abstrac-
tion layers (i.e., ON-LSTM and GCN), we expect
that the resulting representation vectors for the tar-
get word and the target-oriented opinion words
would capture the sentiment polarity information
for the target word while the representation vec-
tors for the other words might encode some other
context information in W . We thus argue that the
representation vector for the target word should be
more similar to the representations for the words in
W opinion (in term of the sentiment polarity) than
those for W other. To this end, we introduce an
explicit loss term to encourage such representation
distinction between these groups of words to po-
tentially promote better representation vectors for
TOWE. In particular, let Rtar, Ropn, and Roth be
some representation vectors for the target word wt,
the target-oriented opinion words (i.e., W opinion),
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and the other words (i.e., W other) in W . The loss
term for the representation distinction based on
our intuition (i.e., to encourage Rtar to be more
similar to Ropn than Roth) can be captured via the
following triplet loss for minimization:

Lreg = 1−cosine(Rtar, Ropn)+cosine(Rtar, Roth) (5)

In this work, the representation vector for the
target word is simply taken from last GCN layer,
i.e., Rtar = h̄t. However, as W opinion and W other

might involve sets of words, we need to aggregate
the representation vectors for the individual words
in these sets to produce the single representation
vectors Ropn and Roth. The simple and popular
aggregation method in this case involves perform-
ing the max-pooling operation over the represen-
tation vectors (i.e., from GCN) for the individual
words in each set (i.e., our baseline). However, this
approach ignores the structures/orders of the in-
dividual words in W opinion and W other, and fails
to recognize the target word for better customized
representation for regularization. To this end, we
propose to preserve the syntactic structures among
the words in W opinion and W other in the repre-
sentation computation for regularization for these
sets. This is done by generating the target-oriented
pruned trees from the original dependency tree for
W that are customized for the words in W opinion

andW other. These pruned trees would then be con-
sumed by the GCN model in the previous section
to produce the representation vectors for W opinion

and W other in this part. In particular, we ob-
tain the pruned tree for the target-oriented opinion
words W opinion by forming the adjacency matrix
Aopinion = {aopinioni,j }i,j=1..N where aopinioni,j =
ai,j if both wi and wj belong to some shortest de-
pendency paths between wt and some words in
W opinion, and 0 otherwise. This helps to maintain
the syntactic structures of the words in W opinion

and also introduce the target word wt as the cen-
ter of the pruned tree for representation learn-
ing. We apply the similar procedure to obtain
the adjacency matrix Aother = {aotheri,j }i,j=1..N

for the pruned tree for W other. Given the two ad-
jacency matrices for the pruned trees, the GCN
model in the previous section is run over the
ON-LSTM vectors H , resulting in two sequences
of hidden vectors for W opinion and W other,
i.e., h′1, h

′
2, . . . , h

′
N = GCN(H,Aopinion) and

h′′1, h
′′
2, . . . , h

′′
N = GCN(H,Aother). Afterward,

we compute the representation vectors Ropn and

Roth for the sets W opinion and W other by retriev-
ing the hidden vectors for the target word returned
by the GCN model with the corresponding adja-
cency matrices, i.e., Ropn = h′t and Roth = h′′t .
Note that the application of GCN over the pruned
trees and the ON-LSTM vectors makes Ropn and
Roth more comparable with Rtar in our case. This
completes the description for the representation reg-
ularizer in this work. The overall loss function in
this work would be: L = Lpred + αLKL + βLreg

where α and β are the trade-off parameters.

4 Experiments

4.1 Datasets & Parameters

We use four benchmark datasets presented in (Fan
et al., 2019) to evaluate the effectiveness of the
proposed TOWE model. These datasets contain
reviews for restaurants (i.e., the datasets 14res,
15res and 16res) and laptops, (i.e., the dataset
14lap). They are created from the widely used
ABSA datasets from the SemEval challenges (i.e.,
SemEval 2014 Task 4 (14res and 14lap), SemEval
2015 Task 12 (15res) and SemEval 2016 Task 5
(16res)). Each example in these datasets involves a
target word in a sentence where the opinion words
have been manually annotated.

As none of the datasets provides the develop-
ment data, for each dataset, we sample 20% of the
training instances for the development sets. Note
that we use the same samples for the development
data as in (Fan et al., 2019) to achieve a fair com-
parison. We use the 14res development set for
hyper-parameter fine-tuning, leading to the follow-
ing values for the proposed model (used for all the
datasets): 30 dimensions for the position embed-
dings, 200 dimensions for the layers of the feed-
forward networks and GCN (with G = 2 layers),
300 hidden units for one layer of ON-LSTM, 0.2
for γ in A, and 0.1 for the parameters α and β.

4.2 Comparing to the State of the Art

We compare the TOWE model in this work (called
ONG for ON-LSTM and GCN) with the recent
models in (Fan et al., 2019; Wu et al., 2020) and
their baselines. More specifically, the following
baselines are considered in our experiments:

1. Rule-based: These baselines employ prede-
fined patterns to extract the opinion-target pairs that
could be either dependency-based (Zhuang et al.,
2006) or distance-based (Hu and Liu, 2004).
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14res 14lap 15res 16res
Model P R F1 P R F1 P R F1 P R F1
Distance-rule (2004) 58.39 43.59 49.92 50.13 33.86 40.42 54.12 39.96 45.97 61.90 44.57 51.83
Dependency-rule (2006) 64.57 52.72 58.04 45.09 31.57 37.14 65.49 48.88 55.98 76.03 56.19 64.62
LSTM (2015) 52.64 65.47 58.34 55.71 57.53 56.52 57.27 60.69 58.93 62.46 68.72 65.33
BiLSTM (2015) 58.34 61.73 59.95 64.52 61.45 62.71 60.46 63.65 62.00 68.68 70.51 69.57
Pipeline (2019) 77.72 62.33 69.18 72.58 56.97 63.83 74.75 60.65 66.97 81.46 67.81 74.01
TC-BiLSTM (2019) 67.65 67.67 67.61 62.45 60.14 61.21 66.06 60.16 62.94 73.46 72.88 73.10
IOG (2019) 82.85 77.38 80.02 73.24 69.63 71.35 76.06 70.71 73.25 82.25 78.51 81.69
LOTN (Wu et al., 2020) 84.00 80.52 82.21 77.08 67.62 72.02 76.61 70.29 73.29 86.57 80.89 83.62
ONG (Ours) 83.23 81.46 82.33 73.87 77.78 75.77 76.63 81.14 78.81 87.72 84.38 86.01

Table 1: Test set performance (i.e., Precision (P), Recall (R) and F1 scores) of the models.

2. Sequence-based Deep Learning: These ap-
proaches apply some deep learning model over
the input sentences following the sequential or-
der of the words to predict the opinion words (i.e.,
LSTM/BiLSTM (Liu et al., 2015), TC-BiLSTM
(Fan et al., 2019) and IOG (Fan et al., 2019)).

3. Pipeline with Deep Learning: This method
utilizes a recurrent neural network to predict the
opinion words. The distance-based rules are then
introduced to select the target-oriented opinion
words (i.e., Pipeline) (Fan et al., 2019).

4. Multitask Learning: These methods seek to
jointly solve TOWE and another related task (i.e.,
sentiment classification). In particular, the LOTN
model in (Wu et al., 2020) uses a pre-trained SA
model to obtain an auxiliary label for each word in
the sentence using distance-based rules. A bidirec-
tional LSTM model is then trained to make predic-
tion for both TOWE and the auxiliary labels3.

Table 1 shows the performance of the models on
the test sets of the four datasets. It is clear from the
table that the proposed ONG model outperforms
all the other baseline methods in this work. The
performance gap between ONG and the other mod-
els are large and significant (with p < 0.01) over
all the four benchmark datasets (except for LOTN
on 14res), clearly testifying to the effectiveness
of the proposed model for TOWE. Among differ-
ent factors, we attribute this better performance of
ONG to the use of syntactic information (i.e., the
dependency trees) to guide the representation learn-
ing of the models (i.e., with ON-LSTM and GCN)
that is not considered in the previous deep learning
models for TOWE.

3Note that (Peng et al., 2020) also proposes a related model
for TOWE based on multitask deep learning. However, the
models in this work actually predict general opinion words
that are not necessary tied to any target word. As we focus
on target-oriented opinion words, the models in (Peng et al.,
2020) are not comparable with us.

4.3 Model Analysis and Ablation Study

There are three main components in the proposed
ONG model, including the ON-LSTM component,
the GCN component and the representation regular-
ization component. This section studies different
variations and ablated versions of such components
to highlight their importance for ONG.

ON-LSTM: First, we evaluate the following
variations for the ON-LSTM component: (i) ONG
- KL: this model is similar to ONG, except that the
syntax-model consistency loss based on KL LKL is
not included in the overall loss function, (ii) ONG
- ON-LSTM: this model completely removes the
ON-LSTM component in ONG (so the KL-based
syntax-model consistency loss is not used and the
input vector sequenceX is directly sent to the GCN
model), and (iii) ONG wLSTM: this model re-
places the ON-LSTM model with the traditional
LSTM model in ONG (so the syntax-model con-
sistency loss is also not employed in this case as
LSTM does not support the neuron hierarchy for
model-based possibility scores). The performance
for these models on the test sets (i.e., F1 scores)
are presented in Table 2.

Model 14res 14lap 15res 16res
ONG 82.33 75.77 78.81 86.01
ONG - KL 80.91 73.34 76.21 83.78
ONG - ON-LSTM 78.99 70.28 71.39 81.13
ONG wLSTM 81.03 73.98 74.43 82.81

Table 2: Performance of the ON-LSTM’s variations.

As we can see from the table, the syntax-model
consistency loss with KL divergence is important
for ONG as removing it would significantly hurt
the model’s performance on different datasets. The
model also becomes significantly worse when the
ON-LSTM component is eliminated or replaced by
the LSTM model. These evidences altogether con-
firm the benefits of the ON-LSTM model with the
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syntax-model consistency proposed in this work.
GCN Structures: There are two types of im-

portance score matrices in the GCN model, i.e.,
the adjacency binary matrices Ad for the syntac-
tic neighbors of the current words and At for the
syntactic neighbors of the target word. This part
evaluates the effectiveness of these score matrices
by removing each of them from the GCN model,
leading to the two ablated models ONG - Ad and
ONG - At for evaluation. Table 3 provides the per-
formance on the test sets for these models (i.e., F1
scores). It is clear from the table that the absence
of any importance score matrices (i.e., Ad or At)
would decrease the performance over all the four
datasets and both matrices are necessary for ONG
to achieve its highest performance.

Model 14res 14lap 15res 16res
ONG 82.33 75.77 78.81 86.01
ONG - Ad 80.98 73.05 75.51 83.72
ONG - At 81.23 74.18 76.32 85.20

Table 3: Ablation study on the GCN structures.

GCN and Representation Regularization: As
the representation regularization component re-
lies on the GCN model to obtain the represen-
tation vectors, we jointly perform analysis for
the GCN and representation regularization com-
ponents in this part. In particular, we consider
the following variations for these two components:
(i) ONG - REG: this model is similar to ONG
except that the representation regularization loss
Lreg is not applied in the overall loss function,
(ii) ONG REG wMP-GCN: this is also similar to
ONG; however, it does not apply the GCN model
to compute the representation vectors Ropn and
Roth for regularization. Instead, it uses the sim-
ple max-pooling operation over the GCN-produced
vectors h̄1, h̄2, . . . , h̄N of the target-oriented words
W opinion and the other wordsW other forRopn and
Roth: Ropn = max pool(h̄i|wi ∈ W opinion) and
Roth = max pool(h̄i|wi ∈ W other), (iii) ONG -
GCN: this model eliminates the GCN model from
ONG, but still applies the representation regulariza-
tion over the representation vectors obtained from
the ON-LSTM hidden vectors. In particular, the
ON-LSTM hidden vectors H = h1, h2, . . . , hN
would be employed for both opinion word pre-
diction (i.e., V = [hi] only) and the computa-
tion of Rtarget, Ropn and Roth for representation
regularization with max-pooling (i.e., Rtarget =
ht, Ropn = max pool(hi|wi ∈ W opinion) and

Roth = max pool(hi|wi ∈ W other)) in this case,
and (iv) ONG - GCN - REG: this model com-
pletely excludes both the GCN and the represen-
tation regularization models from ONG (so the
ON-LSTM hidden vectors H = h1, h2, . . . , hN
are used directly for opinion word prediction (i.e.,
V = [hi] as in ONG - GCN) and the regularization
loss Lreg is not included in the overall loss func-
tion). Table 4 shows the performance of the models
on the test datasets (i.e., F1 scores).

Model 14res 14lap 15res 16res
ONG 82.33 75.77 78.81 86.01
ONG - REG 80.88 73.89 75.92 84.03
ONG REG wMP-GCN 80.72 72.44 74.28 84.29
ONG - GCN 81.01 70.88 72.98 82.58
ONG - GCN - REG 79.23 71.04 72.53 82.13

Table 4: Performance of the variations of the GCN and
representation regularization components.

There are several important observations from
this table. First, as ONG - REG is significantly
worse than the full model ONG over different
datasets, it demonstrates the benefits of the repre-
sentation regularization component in this work.
Second, the better performance of ONG over
ONG REG wMP-GCN (also over all the four
datasets) highlights the advantages of the GCN-
based representation vectors Ropn and Roth over
the max-pooled vectors for representation regular-
ization. We attribute this to the ability of ONG to
exploit the syntactic structures among the words in
W opinion andW other for regularization in this case.
Finally, we also see that the GCN model is crucial
for the operation of the proposed model as remov-
ing it significantly degrades ONG’s performance
(whether the representation regularization is used
(i.e., in ONG - GCN) or not (i.e., in ONG - GCN
- REG). The performance become the worst when
both the GCN and the regularization components
are eliminated in ONG, eventually confirming the
effectiveness of our model for TOWE in this work.

Regularization Analysis: This section aims
to further investigate the effect of the depen-
dency structures Ropn and Roth (i.e., among the
words in W opinion and W other) to gain a better
insight into their importance for the representa-
tion regularization in this work. Concretely, we
again compare the performance of the full pro-
posed model ONG (with the graph-based rep-
resentations for Ropn and Roth) and the base-
line model ONG REG wMP-GCN (with the di-
rect max-pooling over the word representations,
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14res 14lap
Distance ONG ONG REG ONG ONG REG

wMP-GCN wMP-GCN
1 83.22 79.94 76.91 75.21
2 83.18 78.43 75.03 73.12
3 81.56 75.41 74.21 70.69
>3 80.97 73.77 73.92 66.23

15res 16res
Distance ONG ONG REG ONG ONG REG

wMP-GCN wMP-GCN
1 79.92 74.29 86.52 83.33
2 78.04 73.33 87.31 83.27
3 77.71 70.91 84.77 78.63
>3 76.98 68.88 84.05 77.13

Table 5: The performance (i.e., F1 scores) of ONG
and ONG REG wMP-GCN on the four data folds of
the development sets for 14res, 14lap, 15res, and 16res.
The data folds are based on the target-opinion distances
of the examples (called Distance in this table).

i.e., Ropn = max pool(h̄i|wi ∈ W opinion) and
Roth = max pool(h̄i|wi ∈ W other)). However,
in this analysis, we further divide the sentences in
the development sets into four folds and observe
the models’ performance on those fold. As such,
for each sentence, we rely on the longest distance
between the target word and some target-oriented
opinion word in W opinion in the dependency tree
to perform this data split (called the target-opinion
distance). In particular, the four data folds for the
development sets (of each dataset) correspond to
the sentences with the target-opinion distances of 1,
2, 3 or greater than 3. Intuitively, the higher target-
opinion distances amount to more complicated
dependency structures among the target-oriented
opinion word in W opinion (as more words are in-
volved in the structures). The four data folds are
thus ordered in the increasing complexity levels of
the dependency structures in W opinion.

Table 5 presents the performance of the mod-
els on the four data folds for the development
sets of the datasets in this work. First, it is
clear from the table that ONG significantly out-
performs the baseline model ONG REG wMP-
GCN over all the datasets and structure complexity
levels of W opinion. Second, we see that as the
structure complexity (i.e., the target-opinion dis-
tance) increases, the performance of both ONG
and ONG REG wMP-GCN decreases, demonstrat-
ing the more challenges presented by the sen-
tences with more complicated dependency struc-
tures in W opinion for TOWE. However, compar-
ing ONG and ONG REG wMP-GCN, we find

that ONG’s performance decreases slower than
those for ONG REG wMP-GCN when the target-
opinion distance increases (for all the four datasets
considered in this work). This implies that the
complicated dependency structures in W opinion

have more detrimental effect on the model’s per-
formance for ONG REG wMP-GCN than those
for ONG, leading to the larger performance gaps
between ONG and ONG REG wMP-GCN. Over-
all, these evidences suggest that the sentences with
complicated dependency structures for the words
in W opinion are more challenging for the TOWE
models and modeling such dependency structures
to compute the representation vectors Ropn and
Roth for regularization (as in ONG) can help the
models to better perform on these cases.

5 Conclusion

We propose a novel deep learning model for TOWE
that seeks to incorporate the syntactic structures of
the sentences into the model computation. Two
types of syntactic information are introduced in
this work, i.e., the syntax-based possibility scores
for words (integrated with the ON-LSTM model)
and the syntactic connections between the words
(applied with the GCN model with novel adjacency
matrices). We also present a novel inductive bias to
improve the model, leveraging the representation
distinction between the words in TOWE. Compre-
hensive analysis is done to demonstrate the effec-
tiveness of the proposed model over four datasets.
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