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Abstract
This work deals with the challenge of learn-
ing and reasoning over multi-hop question an-
swering (QA). We propose a graph reasoning
network based on the semantic structure of
the sentences to learn cross paragraph reason-
ing paths and find the supporting facts and
the answer jointly. The proposed graph is a
heterogeneous document-level graph that con-
tains nodes of type sentence (question, title,
and other sentences), and semantic role label-
ing sub-graphs per sentence that contain argu-
ments as nodes and predicates as edges. In-
corporating the argument types, the argument
phrases, and the semantics of the edges origi-
nated from SRL predicates into the graph en-
coder helps in finding and also the explainabil-
ity of the reasoning paths. Our proposed ap-
proach shows competitive performance on the
HotpotQA distractor setting benchmark com-
pared to the recent state-of-the-art models.

1 Introduction

Understanding and reasoning over natural language
plays a significant role in artificial intelligence tasks
such as Machine Reading Comprehension (MRC)
and Question Answering (QA). Several QA tasks
have been proposed in recent years to evaluate the
language understanding capabilities of machines
(Rajpurkar et al., 2016; Joshi et al., 2017; Dunn
et al., 2017). These tasks are single-hop QA tasks
and consider answering a question given only one
single paragraph. Many existing neural models
rely on learning context and type-matching heuris-
tics (Weissenborn et al., 2017). Those rarely build
reasoning modules but achieve promising perfor-
mance on single-hop QA tasks. The main reason
is that these single-hop QA tasks are lacking a re-
alistic evaluation of reasoning capabilities because
they do not require complex reasoning.

Recently multi-hop QA tasks, such as HotpotQA
(Yang et al., 2018) and WikiHop (Welbl et al.,

Question 430: What team did the recipient of the 2007 
Brownlow Medal play for?

Paragraph 1: Title: "2007 Brownlow Medal"
0. “The 2007 Brownlow Medal was the 80th year the award …
(AFL) home and away season."
1. “Jimmy Bartel won the medal by polling twenty-nine votes ..."

Answer: Geelong Football Club
Support fact: ["2007 Brownlow Medal", 1], 

["Jimmy Bartel", 0]

Paragraph 2: Title: "Jimmy Bartel"
0: “James Ross Bartel (born 4 December 1983) is a former 
Australian rules footballer who played for the Geelong Football 
Club in the …"
1: "A utility, 1.87 m tall and weighing 86 kg , Bartel is able …"

Paragraph 10: Title: "2005 Brownlow Medal"
0: "The 2005 Brownlow Medal was the 78th year the award …"
1: "Ben Cousins of the West Coast Eagles won the medal …"

�

Figure 1: An example of HotpotQA data.

2018), have been proposed to assess multi-hop rea-
soning ability. HotpotQA task provides annotations
to evaluate document level question answering and
finding supporting facts. Providing supervision
for supporting facts improves explainabilty of the
predicted answer because they clarify the cross
paragraph reasoning path. Due to the requirement
of multi-hop reasoning over multiple documents
with strong distraction, multi-hop QA tasks are
challenging. Figure 1 shows an example of Hot-
potQA. Given a question and 10 paragraphs, only
paragraph 1 and paragraph 2 are relevant. The sec-
ond sentence in paragraph 1 and the first sentence
in paragraph 2 are the supporting facts. The answer
is “Geelong Football Club”.

Primary studies in HotpotQA task prefer to use
a reading comprehension neural model (Min et al.,
2019; Zhong et al., 2019; Yang et al., 2018). First,
they use a neural retriever model to find the rele-
vant paragraphs to the question. After that, a neural
reader model is applied to the selected paragraphs
for answer prediction. Although these approaches
obtain promising results, the performance of evalu-
ating multi-hop reasoning capability is unsatisfac-
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tory (Min et al., 2019).
To solve the multi-hop reasoning problem, some

models tried to construct an entity graph using
Spacy1 or Stanford CoreNLP (Manning et al.,
2014) and then applied a graph model to infer
the entity path from question to the answer (Chen
et al., 2019; Xiao et al., 2019; Clark and Gardner,
2018; Fang et al., 2019). However, these models
ignore the importance of the semantic structure of
the sentences and the edge information and entity
types in the entity graph. To take the in-depth se-
mantic roles and semantic edges between words
into account here we use semantic role labeling
(SRL) graph as the backbone of a graph convolu-
tional network. Semantic role labeling provides
the semantic structure of the sentence in terms of
argument-predicate relationships (He et al., 2018).
The argument-predicate relationship graph can sig-
nificantly improve the multi-hop reasoning results.
Our experiments show that SRL is effective in find-
ing the cross paragraph reasoning path and answer-
ing the question.

Our proposed semantic role labeling graph rea-
soning network (SRLGRN) jointly learns to find
cross paragraph reasoning paths and answers ques-
tions on multi-hop QA. In SRLGRN model, firstly,
we train a paragraph selection module to retrieve
gold documents and minimize distractor. Second,
we build a heterogeneous document-level graph
that contains sentences as nodes (question, title and
sentence), and SRL sub-graphs including semantic
role labeling arguments as nodes and predicates as
edges. Third, we train a graph encoder to obtain
the graph node representations that incorporate the
argument types and the semantics of the predicate
edges in the learned representations. Finally, we
jointly train a multi-hop supporting fact prediction
module that finds the cross paragraph reasoning
path, and answer prediction module that obtains
the final answer. Notice that both supporting fact
prediction and answer prediction are based on con-
textual semantics graph representations as well as
token-level BERT pre-trained representations. The
contributions of this work are as follows:
1) We propose the SRLGRN framework that con-
siders the semantic structure of the sentences in
building a reasoning graph network. Not only the
semantics roles of nodes but also the semantics of
edges are exploited in the model.
2) We evaluate and analyse the reasoning capabili-

1https://spacy.io

ties of the semantic role labeling graph compared
to usual entity graphs. The fine-grained semantics
of SRL graph help in both finding the answer and
the explainability of the reasoning path.
3) Our proposed model obtains competitive re-
sults on both HotpotQA (Distractor setting) and
the SQuAD benchmarks.

2 Related Work

2.1 Graph Models for Multi-Hop Reasoning

Previous QA datasets, such as TriviaQA (Joshi
et al., 2017) and SearchQA (Dunn et al., 2017),
and MRC datasets, like SQuAD (Rajpurkar et al.,
2016), rarely require sophisticated reasoning (such
as cross paragraph reasoning) to answer the ques-
tion and fail to provide ground-truth explanations
for answers. Recently, WikiHop (Welbl et al.,
2018) and HotpotQA (Yang et al., 2018) are two
published multi-hop QA datasets that provide mul-
tiple paragraphs. Those QA datasets require a
multi-hop reasoning model to learn the cross para-
graph reasoning paths and predict the correct an-
swer.

Most of the existing multi-hop QA models (Tu
et al., 2019; Xiao et al., 2019; Fang et al., 2019)
utilize graph based neural networks, such as graph
attention network (Velickovic et al., 2018), graph
recurrent network (Song et al., 2018b), and graph
convolutional network (Kipf and Welling, 2017).
Moreover, multi-hop QA models use different ways
to construct entity graphs. Coref-GRN (Dhingra
et al., 2018) utilize co-reference resolution to build
the entity graph. MHQA-GRN (Song et al., 2018a)
is an updated version of Coref-GRN that adds slid-
ing windows. Entity-GCN (Cao et al., 2019) builds
the graph using entities and different types of edges
called match edges and complement edges. DFGN
(Xiao et al., 2019) and SAE (Tu et al., 2019) con-
struct entity graph through named entity recogni-
tion (NER).

In contrast to the above mentioned models, our
SRLGRN builds a heterogeneous graph that con-
tains a document-level graph of various sentences
and replaces the entity-based graphs with argument-
predicate based sub-graphs using SRL.

2.2 Semantic Role Labeling

The goal of semantic role labeling is to capture
argument and predicate relationships given a sen-
tence, such as “who did what to whom.” Several
deep SRL models achieve highly accurate results in

https://spacy.io
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Figure 2: Our proposed SRLGRN model is composed of Paragraph Selection, Graph Construction, Graph Encoder,
Supporting Fact prediction, and Answer Span prediction.

finding argument spans (Zhou and Xu, 2015; Tan
et al., 2018; Marcheggiani et al., 2017; He et al.,
2017). However, those models are evaluated based
on given gold predicates. Therefore, some deep
models (He et al., 2018; Guan et al., 2019) are
proposed to recognize all argument-predicate pairs.
Recently, Shi and Lin proposed a BERT Model for
SRL and Relation Extraction.

3 Model Description

Our proposed SRLGRN approach is composed of
Paragraph Selection, Graph Construction, Graph
encoder, Supporting Fact prediction, and Answer
Span prediction modules. Figure 2 shows the pro-
posed architecture. In this section, we introduce
our approach in detail and then explain how to train
it with an efficient algorithm.

3.1 Problem Formulation
Formally, the problem is to predict supporting fact
ySF and answer span yans given input question q
and candidate paragraphs. Each paragraph content
C = {t, s1, . . . , sn} includes title t and several
sentences {s1, . . . , sn}.

3.2 Paragraph Selection
Most of the paragraphs are distractors in the Hot-
potQA task (Yang et al., 2018). SRLGRN can
select gold documents and minimize distractors
from given N documents by a Paragraph Selec-
tion module. The Paragraph Selection is based on
the pre-trained BERT model (Devlin et al., 2018).
Our Paragraph Selection module has two rounds
explained in section 3.2.1 and section 3.2.2.

3.2.1 First Round Paragraph Selection
For every candidate paragraph, we take the ques-
tion q and the paragraph content C as input:

Q1 = [[CLS]; q; [SEP ]; C], (1)

whereQ1 represents the input, [CLS] and [SEP] are
the same as BERT tokenizer process (Devlin et al.,
2018). We feed input Q1 to a pre-trained BERT
encoder to obtain token representations. Then we
use BERT[CLS] token representation as the sum-
mary representation of the paragraph. Meanwhile,
we utilize a two-layer MLP to output the relevance
score, ysel. The paragraph which obtains the high-
est relevance score is selected as the first relevant
context. We concatenate q to the selected paragraph
as qnew for the next round of paragraph selection.

3.2.2 Second Round Paragraph Selection

For the remaining N − 1 candidate paragraphs, we
use the same model as first round paragraph selec-
tion to generate a relevance score that takes qnew
and paragraph content as input. We call this pro-
cess as second round paragraph selection. Similar
to section 3.2.1, one of the remaining candidate
paragraphs with the highest score is selected. Af-
terwards, we concatenate the question and the two
selected paragraphs to form a new context used as
the input text for graph construction.

3.3 Heterogeneous SRL Graph Construction

We build a heterogeneous graph that con-
tains document-level sub-graph S and argument-
predicate SRL sub-graph Arg for each data in-
stance. In the graph construction process, the
document level sub-graph S includes question q,
title t1 and sentences s1,...,n1 from first round se-
lected paragraph, and title t2 and sentences s1,...,n2

from the second round selected paragraph, that
is {q, t1, s11, . . . , sn1 , t2, s12, . . . , sn2} ∈ S. The
argument-predicate SRL sub-graphs Arg, includ-
ing arguments as nodes and the predicates as edges,
are generated using AllenNLP-SRL model (Shi
and Lin, 2019). Each argument node is the con-
catenation of argument phrase and argument type,
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.56: William Keith Bostic (born January 17, 1961) 
became a former football player who played for 
seven seasons in the National Football League.

William Keith 
Bostic: ARG

January 17, 1961
: TEMPORAL

a former football 
player: ARG

for seven seasons
:TEMPORAL

National Football 
League : LOC

played

played

became

born

.56

.66: Jerry Michael Glanville (born October 14, 1941) 
became a former football player, former NASCAR 
driver, and former sportscaster.

Jerry Michael 
Glanville :ARG

October 14, 1941
:TEMPORAL

former NASCAR 
driver :ARG

former sportscaster
:ARG

became born

.66

became
became

.55 .64

7

.54 .65 .68.58 � �95 96

.55
.64

Figure 3: An example of Heterogeneous SRL Graph. The question is “Who is younger Keith Bostic or Jerry
Glanville?” The circles show the document-level nodes, i.e., sentences. The blue squares show the argument
nodes. The argument nodes include argument phrase and argument type information. The solid black lines are
semantic edges between two arguments carrying the predicate information. The black dashed lines show the edges
between sentence nodes and argument nodes. The red dashed lines show the edges between two sentences if
there exists a shared argument (based on exact string match). The orange blocks are the SRL argument-predicate
sub-graphs for sentences. sji means the j-th sentence from the i-th paragraph.

including “TEMPORAL”, “LOC”, etc.
Figure 3 describes the construction of the hetero-

geneous graph. The heterogeneous graph’s edges
are added as follows: 1) There will be an edge be-
tween a sentence and an argument if an argument
appears in this sentence (the black dashed lines in
Figure 3); 2) Two sentences si and sj will have
an edge if they share an argument by exact match-
ing (the red dashed lines); 3) Two argument nodes
Argi and Argj will have an edge if a predicate ex-
ists between Argi and Argj (the black solid lines);
4) There will be an edge between the question and
sentence if they share an argument (the red dashed
lines).

Figure 3 shows an example of a heterogeneous
SRL graph. s21 and s22 are connected because of
a shared argument node “a former football player:
ARG”. Besides, the shared argument node has sev-
eral semantic edges, such as “played” and “be-
came”. In this way, the shared argument node and
other connected argument nodes have argument-
predicate relationships.

We create two matrices based on the constructed
graph that we will use in section 3.4. We build a
predicate-based semantic edge matrix K and a het-
erogeneous edge weight matrix A. The semantic
edge matrix K is a matrix that stores the word in-
dex of the predicates. We initialize all the elements
of K with empty, ∅. If two argument nodes Argi
and Argj related to the same predicate, we add
that predicate word index to K(Argi,Argj)

. Some-
times, Argi and Argj are related to more than one
predicate.

In the meantime, the heterogeneous edge weight

matrix A is a matrix that stores different types
of edge weights. We divide the edges into
three types: sentence-argument edges, argument-
argument edges, and sentence-sentence edges.

The weight of a sentence-sentence edge is 1
when two sentences share an argument. Mean-
while, the weight of a sentence-argument edge is
1 if there exists an edge between a sentence and
an argument. If two argument nodes have an edge,
the weight can be calculated by point-wise mutual
information (PMI) (Bouma, 2009). The reason
we use PMI is that it can better explain associa-
tions between nodes compared to the traditional
co-occurrence count method (Yao et al., 2019).

3.4 Graph Encoder

Section 3.3 introduces the detailed process of build-
ing a heterogeneous graph. Next, we introduce the
Graph Convolution Network (Kipf and Welling,
2017) to obtain the graph embeddings. Graph Con-
volution Network (GCN) is a multi-layer network
that uses the graph input directly and generates
embedding vectors of the graph.

Besides, GCN plays an essential role in incorpo-
rating higher-order neighborhood nodes and helps
in capturing the structural graph information. The
SRL graph uses the semantic structure of the sen-
tence to form the graph nodes and semantic edges,
making the GCN’s representation more explain-
able. For instance, the GCN node vectors of docu-
ment level sub-graph help in finding the supporting
fact path, while GCN node vectors of argument-
predicate level sub-graph help in identifying the
text span of the potential answers. In this work,
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we consider a two-layer GCN to allow message
passing operations and learn the graph embeddings.
The graph embeddings are computed as follows:

E1 = (D−
1
2AD−

1
2 )[XArg;XS ]W1, (2)

G = (D−
1
2AD−

1
2 )f(E1)W2, (3)

where E1 and G are graph embedding outputs
of two GCN layers that incorporate higher-order
neighborhood nodes by stacking GCN layers. f(x)
is an activation function, D is the degree matrix
of the graph (Kipf and Welling, 2017), A is the
heterogeneous edge weight matrix, and W1 and
W2 are the learned parameters. X represents node
embeddings, including argument-predicate embed-
ding XArg and sentence embedding XS . Notice
that each argument embedding Xi

Arg is the con-
catenation of the argument node Argi embedding
and the average embedding of Ki

Arg. Given G, we
use GS to represent document level node embed-
dings, and GArg to represent argument-predicate
level node embeddings.

3.5 Supporting Fact Prediction

q s3 s5 Done
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Output path
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Figure 4: An example of Supporting Fact Prediction.

The goal of supporting fact (SF) prediction is
to find the SF that is necessary to arrive at the
answer. Inspired by Asai et al., we utilize RNN
with a beam search to find the best document-level
SF path. This approach turns out to be effective
for selecting the SF reasoning path. Notice that,
our supporting fact prediction is not only based on
BERT and RNN, but also incorporates document
level graph node embeddings GS .

Formally, we use the concatenation of the graph
sentence embedding, GS (blue circles in Figure 4),
and BERT’s [CLS] token representation (orange
circles) to represent the candidate sentence Xcand

S :

Xcand
S = [Gcand

S ;BERT[CLS](q,Scand)], (4)

where Scand represents the neighbors of the candi-
date sentence. Afterwards, two feed-forward fully

connected layers with activation functions deter-
mine whether scand is an actual SF. The process of
selecting an SF is shown as follows:

ht = σ(Wht−1 + UXcand
S + bh), (5)

ot = V ht + bo, (6)

where ht is the hidden state of the RNN at the t-th
SF reasoning step, σ is the activation function. W ,
U , V , bh and bo are the parameters.

Finally, we use the beam search to output SF
paths, choosing the highest scored path as our final
supporting fact answer ySF:

ySF = argmax
1≤t≤T

∏
ot, (7)

where T is the maximum number of reasoning hops.
We penalize with the cross-entropy loss. More
details are described in section 3.7.

Figure 4 shows an example of the predicted SF
process. Based on the constructed heterogeneous
graph, two sentence nodes have an edge if they
share an argument. We start from question node
q as the first input sentence. Since q is a unique
input, we select q as the first SF candidate. In the
second step, two candidate sentence nodes, s2 and
s3 that are neighbor nodes of q, are chosen as the
input. We separately feed s2 and s3 to the RNN
layers. The sentence s3 that obtains a larger logit
score is selected as the second SF candidate of the
reasoning path. In the third step, s4 and s5 are
neighbor nodes of the second SF, s3. Then the
model chooses s5 as the third SF. In the end, s1, s3,
and s5 are the supporting facts.

3.6 Answer Span Prediction

The goal of the answer span prediction module
is to output “yes”, “no”, or answer span for the
final answer. We firstly design an answer type
classification based on BERT and an additional
two fully connected feed-forward layers. If the
highest probability of type classification is “yes”
or “no”, we directly output the answer. The input
of type classification is BERT[CLS]. The answer
type ytype can be calculated as

ytype =MLPtype([BERT[CLS]]).

If the answer is not “yes” or “no”, we compute
the logit of every token to find the start position i
and end position j for answer span. The logit is cal-
culated using BERT as the input given to two fully
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connected layers. The input token representation
is the concatenation of BERT token representation
BERTtok and graph embedding GArg. The an-
swer span yans can be computed as

yans = argmax
i,j, i≤j

yistarty
j
end, (8)

yistart =MLPstart([BERT
i
tok;G

i
Arg]), (9)

yiend =MLPend([BERT
i
tok;G

i
Arg]), (10)

where yans is the index pair of (start position, end
position), yistart represents the logit score of the
i-th word as the start position, and yiend represents
the logit score of the i-th word as the end position.

3.7 Objective Function

Inspired by Xiao et al. and Tu et al., the joint ob-
jective function includes the sum of cross-entropy
losses for the span prediction Lans, answer type
classification Ltype, and supporting fact prediction
LSF. The loss function is computed as follows:

Ljoint = Lans + LSF + Ltype

= λ1(−ystart log ystart − yend log yend)
− λ2ySF log ySF − λ3ytype log ytype,

where λ1, λ2, and λ3 are weighting factors.

4 Experiments and Results

4.1 Dataset

We use the HotpotQA dataset (Yang et al., 2018), a
popular benchmark for multi-hop QA task, for the
main evaluation of the SRLGRN. Specifically, two
sub-tasks are included in this dataset: Answer pre-
diction and Supporting facts prediction. For each
sub-task, exact match (EM) and partial match (F1)
are two official evaluations that follow the work of
Rajpurkar et al.. A joint EM and F1 score are used
to measure the final performance of both answer
and supporting fact prediction. We evaluate the
model on the Distractor Setting. For each question
in the Distractor Setting, two gold paragraphs and
8 distractor paragraphs, which are collected by a
high-quality TF-IDF retriever from Wikipedia, are
provided. Only gold paragraphs include ground-
truth answers and supporting facts. In addition, we
use MRC datasets, Stanford Question-Answering
Dataset (SQuAD) v1.1 (Rajpurkar et al., 2016) and
v2.0 (Rajpurkar et al., 2018), to demonstrate the
language understanding ability of our model.

4.2 Implementation Details
We implemented SRLGRN using PyTorch2. We
use a pre-trained BERT-base language model with
12 layers, 768-dimensional hidden size, 12 self-
attention heads, and around 110M parameters (De-
vlin et al., 2018). We keep 256 words as the max-
imum number of words for each paragraph. For
the graph construction module, we utilize a seman-
tic role labeling model (Shi and Lin, 2019) from
AllenNLP3 to extract the predicate-argument struc-
ture. For the graph encoder module, we use 300-
dimensional GloVe (Pennington et al., 2014) pre-
trained word embedding. The model is optimized
using Adam optimizer (Kingma and Ba, 2015).

4.3 Baselines
Baseline Model (Yang et al., 2018) makes use
of Clark and Gardner approach. The model in-
cludes some neural modules that are based on self-
attention and bi-attention (Seo et al., 2017).

DFGN (Xiao et al., 2019) is a strong baseline
method for the HotpotQA task. DFGN builds an
entity graph from the text. Moreover, DFGN in-
cludes a dynamic fusion layer that helps in finding
relevant supporting facts.

SAE (Tu et al., 2019) is an effective Select, An-
swer and Explain system for multi-hop QA. SAE is
a pipeline system that first selects the relevant para-
graph and uses the selected paragraph to predict
the answer and the supporting fact.

4.4 Results
Table 1 shows the results of HotpotQA (Distractor
setting). We can observe the SRLGRN model ex-
ceeds most published results. Our model obtains a
Joint Exact Matching (EM) score of 39.41% and
Partial Matching (F1) score of 66.37% on joint
performance. Our SRLGRN model has a signif-
icant improvement, about 28.58% on Joint EM
and 26.21% on F1, over the Baseline Model (Yang
et al., 2018). Compared to the current published
state of the art, SAE model (Tu et al., 2019), our
model improves EM about 2.29% and F1 about
2.56% on Answer performance and 1.41% of F1
on Joint performance. We can observe that F1
of answer span prediction is better than the cur-
rent SOTA. The reason is that our model not only

2Our code is available at https://github.com/
HLR/SRLGRN.

3https://demo.allennlp.org/
semantic-role-labeling.

https://github.com/HLR/SRLGRN
https://github.com/HLR/SRLGRN
https://demo.allennlp.org/semantic-role-labeling.
https://demo.allennlp.org/semantic-role-labeling.
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Model Ans(%) Sup(%) Joint(%)
EM F1 EM F1 EM F1

Baseline Model (Yang et al., 2018) 45.60 59.02 20.32 64.49 10.83 40.16
KGNN (Ye et al., 2019) 50.81 65.75 38.74 76.79 22.40 52.82

QFE (Nishida et al., 2019) 53.86 68.06 57.75 84.49 34.63 59.61
DecompRC (Min et al., 2019) 55.20 69.63 - - - -

DFGN (Xiao et al., 2019) 56.31 69.69 51.50 81.62 33.62 59.82
TAP 58.63 71.48 46.84 82.98 32.03 61.90

SAE-base (Tu et al., 2019) 60.36 73.58 56.93 84.63 38.81 64.96
ChainEx (Chen et al., 2019) 61.20 74.11 - - - -

HGN-base (Fang et al., 2019) - 74.76 - 86.61 - 66.90
SRLGRN-base 62.65 76.14 57.30 85.83 39.41 66.37

Table 1: HotpotQA Result on Distractor setting. Except Baseline model, all models deploy BERT-base uncased as
the pre-training language model to compare the performance.

uses token-level BERT representation, but also uses
graph-level SRL node representations.

Our framework provides an effective way for
multi-hop reasoning taking the advantages of the
SRL graph model and powerful pre-trained lan-
guage models. In the following section, we give a
detailed analysis of the SRLGRN model.

5 Analysis

Effect of SRL Graph. The SRL graph extracts
argument-predicate relationships, including in-
depth semantic roles and semantic edges. The
constructed graph is the basis of reasoning as the in-
puts of each hop are directly selected from the SRL
graph, as shown in Figure 4. The SRL graph signif-
icantly improves the completeness of the graph net-
work, that is, providing sufficient semantic edges
to cover reasoning paths, see Figure 3.

Compared to the NER graph in the previous mod-
els (Xiao et al., 2019), the proposed SRL graph
covers the 86.5% of complete reasoning paths for
the data samples. The NER graph of DFGN is
incomplete and can only cover 68.7% of the rea-
soning paths (Xiao et al., 2019). The graph com-
pleteness is one major reason that the SRLGRN
model has higher accuracy than other published
models. As shown in Table 1, the SRLGRN im-
proves 5.79% on joint EM and 6.55% on joint F1
over DFGN, which is based on the NER graph.

Ablation Model Ans(%)
EM F1

Graph
w/o graph 53.06 67.68

w/o Argument type
and Semantic edge 60.10 73.24

Joint w/o joint training 58.50 71.58

Language ALBERT-base 59.87 74.20
BERT-base 62.65 76.14

Table 2: SRLGRN ablation study on HotpotQA.

To evaluate the effectiveness of the types of se-
mantic roles and the edge types, we perform an
ablation study. First, we removed the whole SRL
graph. Second, we removed the predicate based
edge information from the SRL graph. Table 2
shows the results. The complete SRLGRN im-
proves 8.46% on F1 score compared to the model
without the SRL graph. The model loses the con-
nections used for multi-hop reasoning if we remove
the SRL graph and only use BERT for answer pre-
diction.

We also observe that the F1 score of answer span
prediction decreases 2.9% if we did not incorpo-
rate semantic edge information and argument types.
The reason is that removing predicate edges and
argument types will destroy the argument-predicate
relationships in the SRL graph and breaks the chain
of reasoning. For example, in Figure 3, the main
arguments of the two supporting facts in s21 and s22
(William and Jerry) are connected with a predicate
edge, “born”, to the temporal information neces-
sary for finding the answer. Both “born” edge and
the adjunct temporal roles are the key information
in the two sentences to find the final answer to this
question. The shared ARG node, “football player”,
also helps to connect the line of reasoning between
the two sentences. These two results indicate that
both semantic roles and semantic edges in the SRL
graph are essential for the SRLGRN performance.

In a different experiment, we tested the influ-
ence of the joint training of the supporting facts
and answer-prediction. As shown in Table 2, the
performance will decrease by 4.56% when we did
not train the model jointly.

Effect of Language Models. We use two recent
and widely-used pre-trained language representa-
tion models, BERT and ALBERT (Lan et al.,
2020). The last two lines of Table 2 show the
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results. Although BERT achieves relatively bet-
ter performance, ALBERT architecture has signifi-
cantly fewer parameters (18x) and is faster (about
1.7x running time) than BERT. In other words, AL-
BERT reduces memory consumption by cross-layer
parameter sharing, increases the speed, and obtains
a satisfactory performance.

Effect of SRLGRN on Single-hop QA. We
evaluate the SRLGRN (excluding the paragraph se-
lection module) on SQuAD (Rajpurkar et al., 2016)
to demonstrate its reading comprehension ability.
We evaluate the performance on both SQuAD v1.1
and SQuAD v2.0. Table 3 describes the com-
parison results with several baseline methods on
SQuAD v1.1. Our model obtains a 1.8% improve-
ment over BERT-large, and a 1.6% improvement
over BERT-large+TriviaQA (Devlin et al., 2018).

Model Ans(%)
EM F1

Human 82.3 91.2
BERT-base 80.8 88.5
BERT-large 84.1 90.9

BERT-large+TriviaQA 84.2 91.1
BERT-large+SRLGRN 85.4 92.7

Table 3: SQuAD v1.1 performance.

We further test the SRLGRN on SQuAD v2.0. The
main difference is that SQuAD v2.0 combines an-
swerable questions (like SQuAD v1.1) with unan-
swerable questions (Rajpurkar et al., 2018). Ta-
ble 4 shows that our proposed approach improves
the performance for SQuAD benchmark compared
to several recent strong baselines.

Model Ans(%)
EM F1

Human 86.3 89.0
ELMo+DocQA (Rajpurkar et al., 2018) 65.1 67.6

BERT-large (Devlin et al., 2018) 78.7 81.9
SemBERT (Zhang et al., 2019) 84.8 87.6

BERT-large+SRLGRN 85.8 87.9

Table 4: SQuAD v2.0 performance.

We recognize that our SRLGRN improves 7.1%
on EM compared to the robust BERT-large model
and improves 1.0% on EM compared to Sem-
BERT (Zhang et al., 2019). The two experiments
on SQuAD v1.1 and SQuAD v2.0 demonstrate the
significance of SRL graph and the graph encoder.

Error Type Model Prediction Label

Synonyms

washington dc district of columbia
sars severe acute

respiratory syndrome
ey ernst young

writer author

MLV
australian australia
hessian hessians

mcdonald’s, co mcdonalds

Month-Year
1946 1945

25, november, 2015 3, december
10, july, 1873 1, september, 1864

Number
11 10

fourth 4
2402 5922

External Coker NCAA I
Knowledge FBS football

Other
taylor, swift usher

film documentary
fourteenth 500th episode

Table 5: Error types on HotpotQA dev set.

6 Error Analysis

Synonyms are the most frequent cause of the
reported errors in many cases where the predicted
answer is semantically correct. As shown in the
first row of the Table 5, our predicted answer and
gold label have the same meaning. For example,
SRLGRN predicts ”sars”, while the label is ”severe
acute respiratory syndrome.” We know that ”sars”
is the abbreviation of the gold label.

Minor Lexical Variation (MLV) is another ma-
jor cause of mistakes in the SRLGRN model. As
shown in the second row of Table 5, our model’s
predicted answer is ”australian”, while the gold
label is ”australia”. Many wrong predictions occur
in the singular noun versus plural noun selection.

Paragraph Selection is a small portion of errors
in the SRLGRN model. As shown in Figure 5, the
model chooses a wrong paragraph “43rd Battalion”.
The reason is that “43rd Battalion” is a distractor
although “43rd” appears in the question. The para-
graph “Saturday Night Live” is the correct relevant
paragraph that includes “forty-third season” and
the answer. To resolve this issue in the future, we
will try to combine our model with an IR system
designed for multi-hopQA similar to the Multi-step
entity-centric model for multi-hop QA in (Godbole
et al., 2019).

Comparison and Bridge are two types of rea-
soning that are needed for answering HotpotQA
questions. “Bridge” reasoning predicts the answer
by connecting arguments to the line of reasoning
that leads to the final answer. “Comparison” rea-
soning predicts the answer (that is, yes, no, or a
text span) by comparing two arguments.

SRLGRN sometimes obtains wrong predictions
in the “Comparison” reasoning when the questions
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Question: Luke Null is an actor who was on the program that premiered its 43rd season on which date? 
Wrong Paragraph Selection:  1. Luke Null    2. 43rd Battalion (Australia)
Label Paragraphs Selection:  1. Luke Null    2. Saturday Night Live
Supporting Facts:
1. Luke Null is an American actor, comedian, and singer, who currently works as a cast member on "Saturday Night Live", 
having joined the show at the start of its forty-third season.
2. The forty-third season of the NBC comedy series "Saturday Night Live" premiered on September 30, 2017 with host Ryan 
Gosling and musical guest Jay-Z during the 2017-2018 television season.
Answer: September 30, 2017

Wrong 
Paragraph
Selection

Question: Who is younger, Wayne Coyne or Toshiko Koshijima? 
Supporting Facts:
1. Wayne Michael Coyne (born January 13, 1961) is an American musician.
2. Toshiko Koshijima (������� , Koshijima Toshiko , born March 3, 1980 in Kanazawa, Ishikawa) is a Japanese singer. 
Wrong Answer: Wayne Coyne 
Answer: Toshiko Koshijima
Question: What Division was the college football team that fired their head coach on November 24, 2006? 
Supporting Facts:
1. The 2006 Miami Hurricanes football team represented the University of Miami during the 2006 NCAA I FBS football season.
2. Coker was fired by Miami on November 24, 2006 following his sixth loss that season.
Wrong Answer: Coker
Label Answer: NCAA I FBS football

Comparison

Bridge

Figure 5: Failing cases on our proposed SRLGRN framework.

.65: Coker was fired by Miami on 
November 24, 2006.

Coker :ARG

fire

.65

q: What Division was the college football team 
that fired their head coach on November 24, 2006

November 24, 
2006 :TEMPORAL

head coach :ARG
fire

7

.55: The 2006 Miami Hurricanes football team represented the 
University of Miami during the 2006 NCAA I FBS football season.

Miami Hurricanes 
football team :ARG

2006: TEMPORAL

NCAA I FBS football 
season : LOC

represent

.55

University of 
Miami : ARG

represent

represent

fire
fire

Miami :ARGthe college football 
team :ARG

Figure 6: The “Bridge” failing case that SRL fails to
lead to the correct answer. The meaning of different
lines and node colors are the same as Figure 3.

are related to “Month-year” and “Number”. Our
qualitative error analysis showed that SRLGRN
graph leads to a wrong answer when two or more
argument nodes of a same type, such as “TEM-
PORAL” type, are connected to one node in the
graph. Moreover, We notice that the SRLGRN
sometimes makes inconsistent errors. For example,
in the “Comparison” failing cases of Figure 5, we
predict the wrong answer “Wayne Coyne”. How-
ever, we received the correct answer after replacing
the word “younger” with “older”.

Moreover, the “Bridge” type needs external
knowledge in the HotpotQA task. As is shown in
“Bridge” failing cases of Figure 5, the selected para-
graphs do not show the relation between “Coker”
and “Miami Hurricanes football team”. Figure 6 de-
scribes the SRL construction based on this failing
case. The second supporting fact and the question

have the same temporal argument node “November
24, 2006”. However, there is no chain between the
first supporting fact and the second supporting fact
due to the lack of the external knowledge that can
connect “Coker”, “coach” and “Miami Hurricanes
football team”. Therefore, the isolated reasoning
chain leads to a wrong answer.

7 Conclusion

We proposed a novel semantic role labeling graph
reasoning network (SRLGRN) to deal with multi-
hop QA. The backbone graph of our proposed
graph convolutional network (GCN) is created
based on the semantic structure of the sentences.
In creating the edges and nodes of the graph, we
exploit a semantic role labeling sub-graph for each
sentence and connect the candidate supporting
facts. The cross paragraph argument-predicate
structure of the sentences expressed in the graph
provides an explicit representation of the reason-
ing path and helps in both finding and explaining
the multiple hops of reasoning that lead to the fi-
nal answer. SRLGRN exceeds most of the SOTA
results on the HotpotQA benchmark. Moreover,
we evaluate the model (excluding the paragraph
selection module) on other reading comprehension
benchmarks. Our approach achieves competitive
performance on SQuAD v1.1 and v2.0.
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