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Abstract

Given a video with aligned dialogue, peo-
ple can often infer what is more likely to
happen next. Making such predictions re-
quires not only a deep understanding of the
rich dynamics underlying the video and dia-
logue, but also a significant amount of com-
monsense knowledge. In this work, we ex-
plore whether AI models are able to learn
to make such multimodal commonsense next-
event predictions. To support research in
this direction, we collect a new dataset,
named Video-and-Language Event Prediction
(VLEP), with 28,726 future event predic-
tion examples (along with their rationales)
from 10,234 diverse TV Show and YouTube
Lifestyle Vlog video clips. In order to pro-
mote the collection of non-trivial challenging
examples, we employ an adversarial human-
and-model-in-the-loop data collection proce-
dure. We also present a strong baseline in-
corporating information from video, dialogue,
and commonsense knowledge. Experiments
show that each type of information is useful for
this challenging task, and that compared to the
high human performance on VLEP, our model
provides a good starting point but leaves large
room for future work.1

1 Introduction

Given a video clip (premise event), humans can
often describe logical events that might happen
next (future events), and interestingly people tend
to agree on which future events are more likely
to happen than others. Making such predictions
requires not only a deep understanding of the rich
dynamics underlying the video and dialogue, but
also a significant amount of multimodal common-
sense knowledge about the world. In Figure 1 (top),

1Dataset, code are available at https://github.
com/jayleicn/VideoLanguageFuturePred

00:21,320 --> 00:23,381 
[Mark] Oh yeah! Maybe a shake. 

(Premise Summary : A woman with a white shirt with black buttons grinds fruit slush in a blender.)

A. The woman in the white shirt pours the slush into a cup.

Premise Event

(Which event is more likely to happen right after the premise?)

(Rationale: There are hollowed out watermelon rinds sitting around the blender.)

(Rationale: Slushy drinks are more commonly served in a cup, but there are hollowed out 
watermelon rinds sitting around the blender.)

B. The woman in the white shirt pours the slush into a watermelon rind and passes it to Mark.

Future Events

00:26,436 --> 00:31,230
Dean: When I got back to my apartment, that phone was on my doormat. It had a text on it.

(Premise Summary: The man being questioned references finding the cell phone in the 
evidence bag and there being a text on it. Detective Beckett reaches toward the evidence bag.)

A. Beckett takes the phone and reads the text. 

Premise Event

(Which event is more likely to happen right after the premise?)

(Rationale: The detective probably wouldn't hand a piece of evidence to a suspect.)

(Rationale: Dean mentioned a text on the phone, Beckett has reached toward the evidence bag.)
B. Beckett picks up the phone and hands it to Dean.

Future Events

Figure 1: Video event prediction examples. Given a
video (with dialogue) and two future events, the task is
to predict which event is more likely to happen follow-
ing the video. Top: an example with a TV show clip.
Bottom: an example with a YouTube Lifestyle Vlog
clip. The correct answer is shown in bold and green.
Premise Summary and Rationale are included for illus-
tration purpose only, they are hidden for the task.

we show an example where commonsense knowl-
edge about inter-human relationships is required,
i.e., that a detective typically does not hand evi-
dence to a suspect in a criminal case. Given this
knowledge, it is more likely that Beckett (the de-
tective) will take the phone (the evidence) and read
the text, than hand the phone to Dean (the suspect).

In this work, we propose Video-and-Language
Event Prediction (VLEP), a novel dataset and task
for fine-grained future event prediction from videos.
Given a video with aligned dialogue, and two possi-
ble future events, the AI system is required to under-
stand both visual and language semantics from this

https://github.com/jayleicn/VideoLanguageFuturePred
https://github.com/jayleicn/VideoLanguageFuturePred
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video, and commonsense world knowledge, and
then make a sound and practical judgment about the
future, by choosing the more likely event from two
provided possible future events. The VLEP dataset
contains 28,726 examples from 10,234 short video
clips. Each example (see Figure 1) consists of a
Premise Event (a short video clip with dialogue), a
Premise Summary (a text summary of the premise
event), and two potential natural language Future
Events (along with Rationales) written by people.
These clips are on average 6.1 seconds long and
are harvested from diverse event-rich sources, i.e.,
TV show and YouTube Lifestyle Vlog videos.

Collecting such a dataset is a non-trivial task, as
crowd-workers may write trivial negatives (less-
likely events) that contain biases or annotation
artifacts (Gururangan et al., 2018), such as nega-
tion (e.g., ‘says nothing’) or impolite actions (e.g.,

‘hit someone in the face’), as shown in Table 1.
To mitigate this, we combine two recent effective
approaches, adversarial human-and-model-in-the-
loop data collection (Nie et al., 2020) and adver-
sarial matching (Zellers et al., 2019a), to build a
larger, more-challenging, and less-biased dataset.
Specifically, 50% of the examples in VLEP are di-
rectly annotated by humans over two rounds: round
one of standard data collection, i.e., crowd-workers
perform the annotations with no model feedback,
and round two of adversarial data collection, i.e.,
crowd-workers perform the annotations with the
goal of fooling our basic models trained on round
one data (thus avoiding obvious biases). Our analy-
sis shows that the adversarial data collection helps
to mitigate dataset bias (reduce trivial negatives),
i.e., we notice that a premise-oblivious model (that
does not see the premise event) performs worse
on data collected on round two than that of round
one. Another 50% of the examples are obtained
by performing adversarial matching on the human-
annotated positive events (more-likely events), i.e.,
for each premise event, we sample a positive from
other premises as a negative, such that the sampled
negative is relevant to the current premise while not
being overly similar to the true positive. Overall,
our dataset is collected via 3 methods (standard-
human, adversarial-human, adversarial-matching),
hence maintaining a balance between easy and hard
examples while reducing potential biases.

To provide a strong baseline for this challenging
multimodal future-prediction task, we propose a
transformer-based model to incorporate both visual

and textual information from the premise event.
We also inject commonsense reasoning knowledge
into our model from the ATOMIC dataset (Sap
et al., 2019). Our ablation study shows that each
part of our model, i.e., video understanding, di-
alogue understanding, and commonsense knowl-
edge, is useful for the multimodal event prediction.
Though our model has shown promising results,
it is still not comparable to human performance
(67.46% vs. 90.50%), indicating the challenging
nature of the multimodal event prediction task and
the large scope for interesting future work on our
VLEP dataset and task.

To summarize, our contributions are 3-fold: (1)
We propose a new task, Video-and-Language Event
Prediction, which requires a model to make fine-
grained, multimodal prediction regarding which
future event is more likely to happen following a
premise video. (2) We introduce a new dataset
VLEP for the task, and use two approaches to
gather natural hard-negative future-events: adver-
sarial data collection and adversarial matching.
This helps mitigate potential annotation artifacts
and biases in the dataset. A detailed analysis of
VLEP is provided. (3) We present a strong base-
line method to benchmark the proposed dataset,
and show that incorporating commonsense knowl-
edge improves performance, indicating future direc-
tions for this new task (with a large model-human
performance gap).

2 Related Work

Video-and-Language Understanding. Various
datasets and tasks have been introduced in this area,
such as video captioning (Xu et al., 2016; Rohrbach
et al., 2017; Wang et al., 2019; Lei et al., 2020c),
video QA (Tapaswi et al., 2016; Jang et al., 2017;
Lei et al., 2018), and moment retrieval (Hendricks
et al., 2017; Gao et al., 2017; Lei et al., 2020c).
Recently, Liu et al. (2020) propose the video-and-
language inference task where a model needs to
infer whether a statement is entailed or contradicted
by a video. While this task requires judging a
statement’s verification w.r.t. existing events, our
task requires predicting future events.

Commonsense Reasoning. Recently, common-
sense reasoning has emerged as an important topic
in both the language (Zellers et al., 2018, 2019b;
Sap et al., 2019) and vision (Vedantam et al., 2015b;
Zellers et al., 2019a; Zadeh et al., 2019; Fang et al.,
2020) communities. Zellers et al. (2018, 2019b)
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build multiple-choice QA datasets for common-
sense inference with text context, Zellers et al.
(2019a); Park et al. (2020) propose datasets for
commonsense-based QA and captioning on still
images. In this work, we focus on commonsense
reasoning with a more complex type of context:
video with dialogue, posing challenges for both
video understanding and commonsense reasoning.

Bias in Datasets. It is known that biases or an-
notation artifacts (Goyal et al., 2017; Gururangan
et al., 2018; McCoy et al., 2019; Tsuchiya, 2018;
Poliak et al., 2018; Zellers et al., 2019a) exist in
standard human annotated datasets (Bowman et al.,
2015; Williams et al., 2018; Antol et al., 2015;
Tapaswi et al., 2016; Jang et al., 2017; Kim et al.,
2017; Lei et al., 2018). For example, negation
words such as nobody, no and never are strong in-
dicators of contradictions (Gururangan et al., 2018)
in MNLI (Williams et al., 2018). Such superfi-
cial patterns are easy for models to exploit, result-
ing in an overestimate of task performance (Goyal
et al., 2017; Gururangan et al., 2018). Zellers et al.
(2019a) propose Adversarial Matching to mitigate
biases in QA, where positive answers are recycled
to serve as negatives for other questions. Nie et al.
(2020) propose a Human-And-Model-in-the-Loop
Entailment Training (HAMLET) adversarial data
collection strategy to gather challenging examples
for NLI. In this work, we adopt both approaches
to construct a less-biased and more challenging
dataset for the multimodal video+dialogue setting.

3 Dataset

The VLEP dataset contains 28,726 examples from
10,234 TV show and YouTube Lifestyle Vlog video
clips. Of these, 50% are collected directly from
human annotators over two rounds: (1) round one:
standard data collection; (2) round two: adversarial
data collection. We collect human examples using
Amazon Mechanical Turk (AMT), with an average
cost of $1.10 per example. More detail about the
annotators and quality checks are presented in Ap-
pendix Section A.2. The other 50% are obtained
from human-annotated examples via Adversarial
Matching (Zellers et al., 2019a). Hence, overall
we build our dataset with 3 collection methods
(standard-human, adversarial-human, adversarial-
matching), allowing a balance between easy and
hard examples while reducing potential biases.

3.1 Video and Language Source

VLEP is built using videos (with English dia-
logues) from two sources: TV shows and YouTube
Vlogs. Both types of videos contain rich physi-
cal interactions and dialogues between people and
are thus ideal sources for collecting interesting
events. We do not use videos from sources like
ActivityNet (Caba Heilbron et al., 2015) since they
are without dialogues and typically contain fewer
events.

TV Show Videos. We use TV show clips from
TVQA (Lei et al., 2018). The clips are typically
60-90 seconds long, and are from 6 popular TV
shows of 3 genres: 1) sitcom: The Big Bang Theory,
How I Met Your Mother, Friends, 2) medical drama:
Grey’s Anatomy, House, 3) crime drama: Castle.

YouTube Lifestyle Vlogs. While TV shows are
good video sources with rich inter-human inter-
actions, they may focus more on scripted con-
tent (Lei et al., 2020b). Thus, we also collect a set
of YouTube lifestyle vlogs as additional sources,
which are typically more natural and live interac-
tive. We first manually identify a list of YouTube
channels that contain videos with rich human inter-
actions and dialogues (in English). We filtered out
those channels with instructional videos (Miech
et al., 2019) or routine videos (Ignat et al., 2019;
Fouhey et al., 2018), as they focus more on a sin-
gle person performing actions, while we desire
videos with richer multi-person interactions and
dialogues. In addition, the actors in instructional
or routine videos typically follow rigid steps (e.g.,
in cooking videos, they usually follow recipes) to
finish a particular task, making it much easier to
predict the future events. In the end, we identified 9
channels that contain a diverse set of lifestyle vlog
videos on various topics: travel, food, daily life
and family, etc. We downloaded all videos from
these channels that are published after 2017, which
were then verified to ensure high quality. The re-
sulting pool contains 971 videos of 10-30 minutes
long. Each video is associated with aligned dia-
logue text, either written by humans or generated
from YouTube’s Automatic Speech Recognition
(ASR) system. We segment the videos into 60-
second clips. For each video, we drop the first
and the last clip, as most of them are high-level
introductions or subscription pleas.
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3.2 Round One: Standard Data Collection

As our task is video event prediction, we aim to col-
lect a set of videos annotated with future event pairs
(i.e., more-likely events and less-likely events, also
referred to as positive events and negative events)
that are likely to happen right after the ‘premise’
video. Each event is written in natural language,
and we require the positive event to be more likely
to happen than the negative event.

With this goal in mind, we create our first annota-
tion task on AMT. We present workers (human writ-
ers) with a 60-90 seconds long video with aligned
dialogue subtitle, to encourage them to write events
that are related to both the visual content and the
dialogue. Workers are required to first select an
interesting event from the video with timestamps,
similar to previous works (Lei et al., 2018, 2020c).
This event is defined as the premise event. We also
require workers to write a premise summary – a nat-
ural language description summarizing the premise
event. Following Lei et al. (2018, 2020c), for re-
ferring a specific person in the video, workers are
instructed to either use the character names (e.g.,
‘Sheldon’) if they are available in the dialogues or
provide a referring expression (Kazemzadeh et al.,
2014) (e.g., ‘the man in blue top’) that uniquely
refers to a person in the video. Next, given the
premise event, workers are required to write two
future events, one more likely (>50% chance) to
happen after the premise event, and one less likely
(<50% chance). For example, in Figure 1, the cor-
rect answers are the more-likely while the wrong
answers are the less-likely. To encourage workers
to write more reasonable future event that ground
to the premise event,2 we also require them to pro-
vide a rationale as to why it is more or less likely.
As it is not the focus of this work, we will release
these rationales to support research on textual ex-
planation generation/classification tasks (Huk Park
et al., 2018; Zellers et al., 2019a).

Each collected example is verified by three hu-
man verifiers, by ranking the future events condi-
tioned on the premise event. We only accept an
example if at least three out of four (one writer +
three verifiers) reach an agreement, as Hendricks
et al. (2017); Nie et al. (2020). In addition, we
also discard examples if one of the verifiers thinks
the events are against our instructions (e.g., wrong
person reference). In total, we collected 6,458 veri-

2Otherwise, workers sometimes write random events that
are not related to the given premise.

Type: Negation
Premise Summary: Amy picks up her phone and reads a text message.
More-likely: Amy tells her friends what the text message says.
Less-likely: Amy says nothing at all to her friends.

Type: Impolite Actions
Premise Summary: Chandler finds out that Joey used his toothbrush.
More-likely: Chandler starts arguing with Joey for using his toothbrush.
Less-likely: Chandler hits Joey in the face with a punch.

Table 1: Example annotation artifacts in the negative
future events (Less-likely events).

fied examples from 2329 TV show clips. We split
them into 70% training, 15% development, and
15% testing splits such that the videos and their
corresponding examples only appear in one split.

3.3 Round Two: Adversarial Data Collection

While being efficient in data collection, we found
the collected negative events in round one are some-
times simple and contain biases or annotation ar-
tifacts (Gururangan et al., 2018). In Table 1, we
show typical examples of annotation artifacts. For
example, we found workers tend to use negation
when writing the less-likely event. This particular
type is similar to the visual priming bias (Zhang
et al., 2016) for yes/no questions in VQA (Antol
et al., 2015) and the negation word bias (Gururan-
gan et al., 2018) in MNLI (Williams et al., 2018).
To quantitatively study the effect of these annota-
tion artifacts, we fine-tune a RoBERTa-base (Liu
et al., 2019) model to classify which event is more
likely to happen, with only the future events from
round one’s training data, i.e., the model has no
access to the premise event. On round one’s Dev.
split, this premise-oblivious model obtains 75.34%
accuracy, which is much higher than chance (50%).

Hence, in order to collect harder and less-biased
negatives, we make use of an adversarial collection
procedure (see Figure 2), in a human-and-model-in-
the-loop process (Nie et al., 2020), where models
are used to provide real-time feedback to crowd-
workers during data collection. Specifically, each
submitted result is sent to the model for evaluation
and writers are prompted3 to rewrite their negative
event if our model predicts a much higher proba-
bility for the more-likely event (pm) than the less-
likely event (pl), i.e., pm − pl > ∆, where ∆ is a
hyperparameter that controls how difficult we want
the collected examples to be and is set to 0.1 em-
pirically. This can be seen as a soft-adversarial
strategy, unlike Nie et al. (2020) where feedback
decisions are made by directly using hard model

3Rewrite for at most twice, in total three trials.
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Model
More-Likely	Event

Less-Likely	EventWriter

Premise	Event

Feedback

Data	Pool
Verifiers

No*

Train

Dev
Test

...
00:35,430	-->	00:36,550
Thanks	Joel,	appreciate	it.
...
Video	(with	dialogues)

Agree
Disagree

2
1

2

2

3

3

4

2 Step	2:	Get	model	feedback

Future	Event	Pair

4 Step	4:	Retrain	model	for	next	round

1 Step	1:	Write	events

3 Step	3:	Verify	events

Figure 2: Illustration of our adversarial data collection procedure. pm and pl are the probabilities of the more-likely
and the less-likely event being happening, respectively. ∆ is a hyperparameter that controls how hard we want the
collected example to be, it also helps to reduce prediction noises from imperfect models. ∆ is set to 0.1 in our
experiment. No* or number of trials reaches the maximum limit of three.

predictions (consider it as a special case of our
soft-adversarial strategy with ∆ = 0). In addition
to controlling the difficulty of the collected exam-
ples, it also helps us to reduce the prediction noise
from imperfect models and avoid forcing workers
to write abnormal events in order to fool the model.

We use two models to provide feedback to the
writers, a future event only model that focuses pri-
marily on reducing the aforementioned annotation
artifacts, and a premise summary + future event
model that can additionally detect and thus reduce
simple negatives that are created as contradictions
of the premise. For example, with the premise
summary, ‘Howard tells Bernadette that he has a
dominant personality’, the negative event ‘Howard
will say that he doesn’t have a dominant person-
ality’ is relatively simple as it directly contradicts
the premise. Both models are fine-tuned as a se-
quence classification task from round one’s training
data, using a pre-trained RoBERTa-base4 model.
The objective is to maximize the probability of the
positive event being the correct answer. For the
future event only model, we only use the future
event for classification, ignoring the premise. For
the premise summary + future event model, we
concatenate the premise summary and future event
text as a single sequence for classification. Note
that we use the premise summary as an overall
proxy to represent both video and dialogue con-
tent to build our adversarial model, considering
video and dialogue understanding is still an open
research problem in itself.5 The accuracy of these

4Empirically, RoBERTa-large does not yield better perfor-
mance but longer response time that affects user experience.

5In Appendix Section A.3, we show that an oracle model

two models on round one’s Dev. split are 75.34%
and 76.68%, respectively. During collection, we
randomly pick one model from these two models
to provide feedback to users. This is similar to
the approach used by Nie et al. (2020) where one
model is randomly picked from a set of random
seeded models. The difference lies in that we use
a set of two models with different inputs (architec-
ture) while Nie et al. (2020) use the same architec-
ture with varying random seeds. This strategy can
be seen as constructing a pseudo-ensemble model,
which provides diverse adversarial feedback to the
crowd-workers and helps avoid annotators exploit-
ing vulnerabilities of a single model (Nie et al.,
2020), while reducing server load.6

In round two, with our adversarial collection pro-
cedure, we collected 7,905 verified examples from
4,418 TV show clips and 3,487 YouTube clips. Sim-
ilar to round one, we split them into 70% training,
15% development, and 15% testing splits.

3.4 Adversarial Matching

With adversarial data collection, we are able to col-
lect harder and less-biased examples. However, this
approach is not scalable due to its high cost. On
average, each verified example in round two costs
$1.70. Inspired by Zellers et al. (2019a) which
proposed to use Adversarial Matching to obtain
less-biased negatives, we use a similar strategy to
create additional examples for our dataset. Given a
premise event and its positive event, the goal of ad-

that uses the premise summary as auxiliary input significantly
outperforms our video+dialogue model.

6As we only need to run one model instead of multiple
models in a standard ensemble approach.
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Split #Videos Pre. Event Avg. Sen. Len. (#words) #Examples
Avg. Len. (s) Pre. Sum. Pos. / Neg.

Train 7,180 6.1 15.2 11.1 / 11.2 20,142
Dev 1,561 6.2 14.7 11.0 / 11.1 4,392
Test 1,493 6.2 15.4 11.0 / 11.1 4,192

Total 10,234 6.1 15.2 11.1 / 11.2 28,726

Table 2: Statistics by Data Split. Pre. Event=Premise
Event, a short video with dialogue. Pre. Sum.=Premise
Summary. Pos. /Neg.=Positive/Negative future event.

Domain Genre #Shows #Videos #Examples(#Channels)

TV show
Sitcom 3 4,117 12,248
Medical 2 1,558 5,198
Crime 1 1,072 4,306

YouTube Vlogs Travel, Food 6 2,406 4,812
Family, Daily 3 1,081 2,162

Total - 15 10,234 28,726

Table 3: Data Statistics by Genre.

versarial matching is to find a negative from other
premise events’ positives, such that the matched
negative is very relevant to the premise event (so
that they are still hard for machines) and at the same
time, not overly similar to the true positive (in case
they incidentally become a positive event to the
premise). Specifically, we use BERTScore (Zhang
et al., 2020) and the recommended RoBERTa-
Large model fine-tuned on MNLI (Williams et al.,
2018) to calculate similarity score Ssim(ei, ej) be-
tween two events ei and ej . For relevance, we use
a RoBERTa-base model that takes as input the con-
catenation of a premise summary pi and a future
event ej and output a relevance score Srel(pi, ej).
This model is trained to distinguish positive events
from randomly sampled events. Next, given dataset
examples {(pi, ei)}Ni=1, we obtain a negative future
event for each premise pi with maximum-weight
bipartite matching (Munkres, 1957; Jonker and Vol-
genant, 1987) on a weight matrix W ∈ RN×N :

Wi,j = λ(Srel(pi, ej)− αSsim(ei, ej)),

λ = (1− 0.5 · 1(pi, ej)),

where α=0.1 is a hyperparameter that controls the
tradeoff between relevance and similarity, the indi-
cator 1(pi, ej) equals 1 if pi and ej are from differ-
ent sources (e.g., different TV shows), otherwise
0. Thus, λ serves as a regularization that penalizes
ej if it is from a different video source than that of
pi – as ej could potentially be an easy negative that
can be distinguished from superficial clues such as
character names in different shows.

Genre Top Unique Verbs

Sitcom change, offer, hear, should, accept, yell,
hang, join, apologize, shut, shout, realize

Medical die, treat, cry, yell, smile, proceed, examine,
approach, argue, save, admit, rush

Crime kill, shoot, point, question, toss, hang,
remove, catch, lie, deny, investigate,

Travel, Food taste, add, pour, dip, cook, describe, cut,
order, serve, stir, prepare, enjoy, buy

Family, Daily drive, jump, wear, point, smile, touch,
climb, dress, set, swim, hide, lay, blow

Table 4: Top unique verbs in each genre.

3.5 Data Analysis
Table 2 shows the overall statistics of the dataset
and data splits details. Each example in our dataset
is paired with a premise event clip, with an average
length of 6.1 seconds. The average length of our
positive event (Pos.) sentences is very close to
that of the negative (Neg.) ones (11.1 vs. 11.2),
suggesting little bias in sentence length. Our videos
are curated from TV shows and YouTube vlogs,
across five major categories with diverse topics,
i.e., sitcom, medical, crime, travel-food, family-
daily. In Table 3 we show data statistics by genre.
Events generally vary by genre. To demonstrate
these differences, we show top unique verbs in
each genre in Table 4. The top unique verbs in
Crime genre are usually close to crime and violence,
while top unique verbs in Family, Daily are usually
related to daily activities such as ‘drive’ and ‘wear’.
For top unique nouns and additional data analysis
(e.g., distribution of examples by reasoning type),
please see Appendix Section A.1. For adversarial
data collection in round two, the average number
of trials is 2.7, i.e., on average the writer has to
write their negative event for 2.7 times. For the
first trial, 59.21% of the examples are defined as
easy by our system, i.e., the positive event has
a much larger probability of happening than the
negative event. With rewriting, only 31.22% of
the examples remain easy. Moreover, in Table 7
row 1, when trained on our final dataset, we show
that our future event only baseline gets much lower
performance on the round two subset than that of
round one (59.62% vs. 74.20%), showing round
two examples are less-biased.

4 Method

Given a video with dialogue text, and two future
event candidates {ei}, i ∈ {1, 2}, our goal is to pre-
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sit down and
have a coffee

X meets Y at 
the station

give Y a ride 
home

unpack at 
home

sit and have a 
snack

X want to
Y want to

Figure 3: An ATOMIC (Sap et al., 2019) example.

dict which future event is more likely to happen. In
the following, we introduce our baseline approach
for this new task.

Video Encoding. We encode each video using
appearance and motion features at 1 FPS. For
appearance, we extract 2048D feature vectors
from the ImageNet (Deng et al., 2009) pre-trained
ResNet-152 (He et al., 2016). For motion, we ex-
tract 2048D feature vectors from the Kinetics (Car-
reira and Zisserman, 2017) pre-trained ResNeXt-
101 (Hara et al., 2018). These features have
shown to perform well in several video and lan-
guage tasks (Miech et al., 2019). We perform L2-
normalization and concatenate the features as the
video representation. We project these representa-
tions into a lower dimension space and add a train-
able positional encoding (Devlin et al., 2019) to
them. We then use a transformer encoder (Vaswani
et al., 2017) to further encode the resulting repre-
sentation, denoted as Ev ∈ RT×d.

Text Encoding. For text, we use the contextu-
alized text features from the RoBERTa-base (Liu
et al., 2019). We first fine-tune the pre-trained
RoBERTa with commonsense knowledge extracted
from the ATOMIC dataset (Sap et al., 2019) (see
details in the paragraph below) and then use the
resulting model for feature encoding. Note that
this model is end-to-end trainable during training.
We concatenate dialogue and future event candi-
date as input to the transformer layers, special to-
kens such as [CLS] (Devlin et al., 2019) is also
added in the process. We use the extracted to-
ken embeddings from the last layer, denoted as
Et

i ∈ RLi×d, i ∈ {1, 2}, where Li is sentence
length (#tokens, including added special tokens)
for the concatenation of dialogue and future event
ei. Similar to how we encode video, the result-
ing text representation is further encoded using
another transformer encoder. Without ambiguity,
we use the same notation to denote the outputs as
Et

i ∈ RLi×d, i ∈ {1, 2}.

video future	event

Transformer	Encoder Transformer	Encoder

The	woman	in
the	white	shirt	...

Multimodal	Transformer	Encoder
... ...

Video	Feature	Encoding
Text	Feature	Encoding

	(with	ATOMIC																)

MLP

... ...
[CLS]

dialogue

Oh	Yeah!
Maybe	a	shake...

Softmax

Figure 4: Model overview. We first separately encode
video and text, and then use a multimodal transformer
encoder to encode information from both modalities.
Please see text for details.

Commonsense-based Text Representations.
Addressing our challenging future event prediction
task requires general world knowledge that is
beyond basic visual and language semantic
understanding. Thus, we propose to inject the
commonsense from the ATOMIC dataset (Sap
et al., 2019) into our framework in a simple way.
ATOMIC contains events with if-then inferences,
e.g., if X meets Y at the station, then X want to
give Y a ride home (see example in Figure 3). We
extract 406K event inferences from the dataset,
and replace the person tokens X and Y with the
names from our dataset (Mitra et al., 2019). We
then use the extracted event inference sentences
to finetune the pre-trained RoBERTa-base model.
The fine-tuned model is then used to encode our
text inputs.

Multimodal Encoding and Event Classification.
To obtain the joint multimodal representation, we
concatenate encoded video Ev and text Et and use
a transformer encoder to encode the concatenated
representations. This encoder allows information
exchange between the two modalities. We use the
representation from the [CLS] token as the joint
representation of video, dialogue and future event
ei, denoted as gi ∈ Rd, i ∈ {1, 2}. We gather
the joint representation vectors for all future event
candidates and pass them through a two-layer MLP
with a softmax layer for classification. We train the
model using cross-entropy loss that maximizes the
scores for the more-likely future events. Figure 4
shows an overview of the overall architecture.
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Model Accuracy (%)

chance 50.00
future only 58.09
video + future 59.03
dialogue + future 66.63
video + dialogue + future 67.46

human (dialogue + future) 76.25
human (video + dialogue + future) 90.50

Table 5: Results on VLEP Test split.

5 Experiments

5.1 Implementation Details

Our models are implemented in PyTorch (Paszke
et al., 2017). To speed up training, we use NVIDIA
Apex for mixed precision training. We set the
hidden size d to be 768 and use a single trans-
former layer for all our transformer encoders. We
use Adam (Kingma and Ba, 2015) optimizer with
β1=0.9, β2=0.999. Since our model has a pre-
trained component (RoBERTa), we use a two-
phase training strategy. Specifically, we first freeze
RoBERTa’s weights up to the second last layer and
then pre-train the rest of model for 3 epochs with
initial learning rate of 1e-4, learning rate warmup
over the first 10% of the steps and linear decay
the learning rate to 0. We then unfreeze all the
weights and finetune the whole model for 3 epochs
with learning rate 5e-5 and linearly decay the learn-
ing rate to 0. We train the model on a single
RTX 2080Ti GPU with batch size 16. We report
multiple-choice question answering accuracy.

5.2 Results

Are video and dialogue modalities useful? Ta-
ble 5 shows the results with different input context.
The model using future event text only as the input
achieves 58.09% accuracy, which is higher than ran-
dom chance (50%), suggesting there exists slight
bias even with our deliberate adversarial collection
and matching but is tolerable. Adding video or
dialogue as additional input improves the accuracy
to 59.03% and 66.63%, respectively. The best per-
formance is achieved when using both video and
dialogue, with an accuracy of 67.46%. In Appendix
Section A.3, we also present an oracle model with
premise summary as auxiliary input.

Human Performance. To obtain human perfor-
mance, we randomly sampled 400 examples from
our test set. We present a premise event (a video
with dialogue subtitles or dialogue subtitles only)

Model Accuracy (%)

video + dialogue + future 67.46

- ATOMIC fine-tuning 66.96

Table 6: Effect of ATOMIC fine-tuning.

Model Adv. Matching Human-Annotated Overall

(50%) R1 (22%) R2 (28%) (100%)

future only 50.00 74.20 59.62 58.09
video + future 54.34 69.21 59.19 59.03
dialogue + future 67.60 70.70 61.53 66.63
video + dialogue + future 68.37 70.59 63.26 67.46

Table 7: Performance breakdown by data collection
method.

and its two corresponding future events to a new
set of AMT workers and ask them to select which
one is more likely to happen after the premise.
Each example is answered by 10 different workers
to reduce crowdworker variance (Rajpurkar et al.,
2018). The final answer is selected by majority
vote. Table 5 shows the results. We observe that
human performance without video (i.e., only dia-
logue+future) is 76.25%, while showing the video
improves the performance to 90.5%. which shows
video information is important for getting the cor-
rect answer. Compared with the best model result
(67.46%), there is still a large useful gap (23%) for
future community work on our challenging task of
multimodal event prediction.

Does commonsense knowledge help? In Ta-
ble 6, we show a model variant that uses text fea-
tures without ATOMIC sentences for fine-tuning.
We see this variant achieves a lower accuracy of
66.96% compared with the fine-tuned accuracy
(67.46%).

Impact of Data Collection Method. Table 7
shows the model performance breakdown by differ-
ent collection methods. For human-annotated data,
we show performance on round one (R1, standard
data collection) and round two (R2, adversarial data
collection). First, we observe that the accuracy of
the future only model matches chance on adversar-
ial matching data while being higher on human-
annotated data. The main reason is the matched
data has less artificial biases than human-annotated
ones. Second, for human-annotated data, across
all models, we see the performance on round two
subset is significantly lower than that of round one,
which demonstrates the effectiveness of using our
adversarial collection procedure.
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00:14,191 --> 00:17,388 
Rachel: Did you lose weight? 

A. Monica says that she needs some time to think about it. 

Premise Event

(Which event is most likely to happen right after the premise?)

B. Monica responds by telling her how much she lost. √

Future Events

(a) (b)

00:40,642 --> 00:44,407
Zach Benton: It's funny, the first time I saw this picture, I didn't think I could feel any worse.

A. Zach will cherish the photo in his hand. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. Zach will give the picture back to Esposito. 

Future Events

(c) (d)

00:19,610 --> 00:29,470 
out he's gonna cut it up chop it up so we can all feast upon it you always

A. The man in the tank top throws the leg of meat back into the fire. 

Premise Event

(Which event is most likely to happen right after the premise?)

B. A person that is a bystander takes the leg and eats it. √

Future Events

00:46,903 --> 00:49,774 
(oil frying)

A. He chews the food until it is gone. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. The chef drains the oil out of the strainer.

Future Events

Figure 5: Prediction examples from our best model. Top row shows correct predictions, bottom row shows failure
cases. Left column shows human annotated examples, right column shows adversarial matching examples. Ground
truth answers are in bold and green, model predictions are indicated by X.

word throws face leave without

PMI (R1) 1.38 1.28 1.25 1.23
PMI (R2) 0.83 0.67 0.66 0.81

Table 8: Top words by PMI in standard collection (R1)
and their values in adversarial collection (R2). The val-
ues are calculated using PMI(word, less-likely).

Gururangan et al. (2018) shows lexical choice
is a strong indicator of the inference class in NLI.
To check how our adversarial collection affects the
use of words, we use pointwise mutual information
(PMI) as in Gururangan et al. (2018). In Table 8
we show top words that are associated with nega-
tive class (less-likely event) in standard collection
versus their values in our adversarial collection pro-
cess. We find that the PMI values of these top nega-
tive words (e.g., ‘throws‘, ‘without‘, that frequently
occur in negative less-likely events) in standard col-
lection clearly drop in adversarial collection, e.g.,
‘throws‘ drops from 1.38 to 0.83, making it less
indicative of the negative.

Qualitative Examples. We show 4 prediction ex-
amples using our best model (video + dialogue +
future) in Figure 5. Top row shows two correct
prediction examples, where our model is able to
predict basic human intention and reaction. Bot-
tom row shows two incorrect predictions, where
wrong predictions are mainly caused by the lack of
commonsense. For example, to correctly pick the
more likely event in Figure 5(c), the model needs
to understand that the ‘photo’ is an evidence of a

police investigation. Figure 5(d) shows an exam-
ple that requires the model to infer the food is not
ready for eat yet. More examples are presented in
Appendix Section A.4.

6 Conclusion

We introduce a new task, Video-and-Language
Event Prediction (VLEP) - given a video with
aligned dialogue, and two future events, machines
is required to predict which event is more likely
to happen. To support this task, VLEP dataset is
collected. We present a strong transformer-based
baseline that incorporates information from video,
dialogue, and commonsense knowledge, each of
which is necessary for this challenging task.
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Genre Top Unique Nouns

Sitcom apartment, group, couch, bottle, game, date,
joke, kitchen, story, wine, seat, hug

Medical patient, doctor, office, surgery, parent,
elevator, hospital, nurse, team, case, cane

Crime gun, picture, photo, paper, information,
evidence, police, case, suspect, ground

Travel, Food host, meat, bite, plate, bowl, chef, piece,
sauce, fish, dish, soup, noodle, spoon

Family, Daily kid, dad, child, dog, son, toy, father,
daughter, family, wife, video, candy, hair

Table 9: Top unique nouns in each genre.

Video+Dialogue

Video

Dialogue

55%

31%

14%

Reaction

Intention

Causal
23%

34%

43%

Figure 6: Distribution of examples by premise under-
standing type (left) and by reasoning type (right).

A Appendices

A.1 Additional Data Analysis
Our videos are curated from two sources, TV shows
and YouTube lifestyle vlogs, across five major cat-
egories, i.e., sitcom, medical, crime, travel-food,
family-daily. Events generally vary by genre. One
way to show the difference is by checking the top
unique nouns in each genre. To obtain the top
unique nouns, we first tokenize and lemmatize the
future event sentences. Each resulting token is
also tagged with a part-of-speech tag. Next, for
each genre, we take the top unique nouns as the
ones among the most frequent 100 nouns from one
genre but do not appear in those from the other gen-
res combined. We show the top unique nouns in
each genre in Table 9. Interestingly, the top unique
nouns in crime genre are closer to crime and vio-
lence, while in family-daily, top unique nouns are
relatively more family relevant.

Figure 6 (left) shows the distribution of examples
by premise understanding type, i.e., what modal-
ities are needed to understand the premise event.
Most of the premise events require both video and
dialogue understanding. Figure 6 (right) shows the
distribution of examples by commonsense reason-
ing type. We categorize commonsense reasoning
into three types by examining the relation between
the premise event and the positive future event: (1)
intention, e.g., if X brings two cups of coffee, then

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Premise Clip Length (seconds)
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Figure 7: Distribution of premise event length.
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Figure 8: Distribution of premise summary length.

X (intends to) give Y a cup of coffee. (2) reaction,
e.g., if X hands Y a form and describes a procedure,
then Y signs the form and hands it back. (3) causal,
e.g., if X says they hit a bump, then X gets unbal-
anced and falls off the boat. The two distributions
are obtained by manually annotating 100 randomly
sampled examples from VLEP Dev. split.

Next, we show the distribution of premise event
length and premise summary length in Figure 7 and
Figure 8, respectively. In addition, we also show
the distribution of positive future event length and
negative event length in Figure 9 and Figure 10.

A.2 Additional Data Collection Details

We hire workers from Amazon Mechanical Turk
(AMT) to annotate our data. To ensure our data
quality, we only allow workers from English-
speaking countries to participate in our task. We
require workers to have at least 500 HITs approved
with an approval rate of 95%. Furthermore, we
design a qualification test with 10 multiple-choice
questions to ensure that workers well understand
our annotation requirement. We show an example
question from our qualification test in Figure 11.
The workers have to correctly answer at least 7
questions to pass the test. In total, 518 workers
participated the test, with a pass rate of 56%. Dur-
ing the data collection, we set up an automatic tool
to check if all required annotations have been per-
formed. We also manually review the submitted
results and provide prompt feedback to them, en-
couraging better annotation.

Our data collection instructions and interface for
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Figure 9: Distribution of positive future event length.
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Figure 10: Distribution of negative future event length.

round two (adversarial data collection) are shown
in Figure 12 and Figure 13, respectively. Round
one collection details are similar to that of the round
two, except that we do not require workers to fool
our basic models (robot). In our annotation pro-
cess, the actual future events in the videos are not
hidden from the workers to ease the collection. The
workers can either write the actual future event as
the more likely event, or they can hypothesize one
when the actual future event in the given video is
surprising/rare (such as some events in sitcoms).
To ensure the quality of the collected examples,
we conduct a strict filtering step in which each ex-
ample is verified by three extra workers (verifiers)
and we only accept examples where at least three
out of four (one writer + three verifiers) reach an
agreement, as Hendricks et al. (2017); Nie et al.
(2020).

A.3 More Results

Oracle Premise Results. As an oracle test, we
apply the collected premise summary as an auxil-
iary input to the model, removing certain obstacles
of video-dialogue understanding in our baseline
model. We show this oracle model performance in
Table 10. Our model with premise summary (ora-
cle) achieves 75.64%, which is significantly higher
than the one without it (67.46%), indicating the
desire for better video-dialogue understanding.

Model Accuracy (%)

video + dialogue + future 67.46

+ premise summary (oracle) 75.64

Table 10: Oracle performance with premise summary.

Future Event Generation Results. Given the
videos, we can also set up an alternative task of
using a captioning-style model to generate future
event descriptions. We use the MultiModal Trans-
former from Lei et al. (2020c) as our baseline for
this task. This model uses a standard transformer
encoder-decoder architecture for caption genera-
tion. The video embeddings and dialogue embed-
dings are concatenated as inputs (Lei et al., 2020a)
to the transformer encoder. We use the default
model and training configurations from Lei et al.
(2020c). With this system, we evaluate generation
performance with video and dialogue as inputs.
Our video+dialogue model has CIDEr-D (Vedan-
tam et al., 2015a): 19.57, BLEU@4 (Papineni et al.,
2002): 1.80, Rouge-L (Lin, 2004): 16.42, and ME-
TEOR (Denkowski and Lavie, 2014): 7.58. Note
that we only use this generation task to demon-
strate that it is possible to generate future event
sentences from videos. This may not be as suitable
as our default multiple choice setup to serve as an
benchmark, since generation is known to be rela-
tively more difficult to evaluate (Liu et al., 2016).
Besides, it also requires multiple references (Vedan-
tam et al., 2015a) to be more accurate. Therefore,
we recommend future work to use human evalua-
tion if you pursue a generation-based setup on our
dataset.

A.4 More Qualitative Examples
We show more correct and incorrect predictions
from our best model (video + dialogue + future) in
Figure 14 and Figure 15, respectively.
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Figure 11: Example question from our qualification test. Workers have to correctly answer 7 out of 10 questions
in the test to participate in our annotation task.
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Figure 12: Annotation instructions for round two (adversarial data collection).

Figure 13: Annotation interface for round two (adversarial data collection).
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…

A. Amy gets comfortable and starts talking to Rachel. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. Rachel continues looking at her magazine..

Future Events

…

A. Castle joins Beckett walking down the hallway. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. Castle puts his leg out to trip Beckett.

Future Events

…

A. Sheldon then grabs onto Amy's hand. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. Amy thinks it's romantic that Sheldon named an asteroid after her. 

Future Events

00:49,851 --> 00:52,445 
Phoebe: They have a liking problem with you...

A. Her boyfriend will be hurt by what she has said to him. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. Her friends go have some cookies.

Future Events

(a) (b)

(c) (d)

Figure 14: Correct prediction examples from our best model. Left column shows human annotated examples, right
column shows adversarial matching examples. Ground truth answers are in bold and green, model predictions are
indicated by X.

00:09,430 --> 00:13,160 
happy children what happened what happened tell father what happened

A. They continue to talk through the tense moment. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. The dad makes the little boy apologize to his sister.

Future Events

00:36,193 --> 00:39,026 
Ross: Look, can you do something for me? …

A. Monica gets up and turns on the radio. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. Monica goes and tells Rachel how sorry Ross is.

Future Events

00:00:10,679 --> 00:00:12,259 
that's it insanely you're supposed to break up all the cheese yes

A. The person takes a piece of cheese and eats it. √

Premise Event

(Which event is most likely to happen right after the premise?)

B. The person mixes the cheese into the salad. 

Future Events

(a) (b)

(c) (d)

…

A. Chandler reaches for the phone, picks it up and tells the person to go away.

Premise Event

(Which event is most likely to happen right after the premise?)

B. Chandler will adjust position and sit up. √

Future Events

Figure 15: Failure examples from our best model. Left column shows human annotated examples, right column
shows adversarial matching examples. Ground truth answers are in bold and green, model predictions are indicated
by X.


