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Abstract

Lexically-constrained generation requires the
target sentence to satisfy some lexical con-
straints, such as containing some specific
words or being the paraphrase to a given
sentence, which is very important in many
real-world natural language generation appli-
cations. Previous works usually apply beam-
search-based methods or stochastic search-
ing methods to lexically-constrained genera-
tion. However, when the search space is too
large, beam-search-based methods always fail
to find the constrained optimal solution. At
the same time, stochastic search methods al-
ways cost too many steps to find the cor-
rect optimization direction. In this paper,
we propose a novel method G2LC to solve
the lexically-constrained generation as an un-
supervised gradient-guided optimization prob-
lem. We propose a differentiable objective
function and use the gradient to help deter-
mine which position in the sequence should
be changed (deleted or inserted/replaced by an-
other word). The word updating process of
the inserted/replaced word also benefits from
the guidance of gradient. Besides, our method
is free of parallel data training, which is flex-
ible to be used in the inference stage of any
pre-trained generation model. We apply G2LC
to two generation tasks: keyword-to-sentence
generation and unsupervised paraphrase gener-
ation. The experiment results show that our
method achieves state-of-the-art compared to
previous lexically-constrained methods.

1 Introduction

In many natural language generation applications,
there are usually some constraints required to be
satisfied by the generated sequences. The con-
straints can be classified into two types:

1. Hard constraints: some specific words or
phrases must occur in the target sentence. For

example, the facts in abstractive summariza-
tion (See et al., 2017a). In detail, when do-
ing summarization, it is always required to
keep some key information like the facts. So,
the facts are hard constraints for the summa-
rization generation. Another example is the
keywords (name or topic) in dialogue gener-
ation (Li et al., 2016). These keywords are
usually determined by the context of a dia-
logue, and are required to occur in the next
utterance.

2. Soft constraints: such as that the target sen-
tence must have a similar meaning to a given
sentence. For example, the synonymous con-
straint in paraphrase generation (Prakash et al.,
2016; Li et al., 2019).

Previous works for lexically-constrained genera-
tion can be divided into two branches: enhanced
beam search (Hokamp and Liu, 2017; Post and Vi-
lar, 2018) and stochastic search (Miao et al., 2019;
Liu et al., 2019). Among the various enhanced
beam search methods, grid beam search (Hokamp
and Liu, 2017) is the most representative approach,
which proposed to add candidate sequences that
meet the lexical constraints to the beam in each
step to constrain the search space. Dynamic beam
allocation methods (Post and Vilar, 2018; Hu et al.,
2019) are the extension of grid beam search, which
groups the candidates that meet the same amount
of constraints into banks to accelerate the inference
process. However, the reason why beam search
based methods work well with machine translation
tasks is that the number of potential candidates in
each step is relatively small. For general natural
language generation tasks with a larger sentence
space, beam search based methods will cost too
much time to find a solution or even failed.

Stochastic search methods are very promising
to solve the above problems. CGMH (Miao et al.,
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2019) uses Metropolis-Hastings sampling to deter-
mine a series of editing actions to a given proto-
type sentence, including insertion, deletion, and
replacement. UPSA (Liu et al., 2019) is a discrete
optimization method, which focuses on generat-
ing paraphrased sentences in an unsupervised way.
UPSA creates a discrete objective function to eval-
uate semantic similarity and language fluency for
a given candidate sentence, and use simulated an-
nealing to search for the optimum solution with
three editing actions (insertion, deletion, and re-
placement). However, in each of the stochastic
search steps, many decisions are randomly chosen,
such as which position is going to be edited, and
which word is going to be replaced with. Then, an
accepted rate is applied to decide whether this ac-
tion should be taken. This stochastic trial-and-error
strategy will potentially lead to a waste of search
steps.

In this paper, we propose a novel method named
G2LC for lexically-constrained generation. G2LC
proposes a differentiable objective function that is
able to evaluate the semantic similarity, the lan-
guage fluency, and whether the constraints are sat-
isfied. We use back-propagation to obtain the gra-
dient on the representation of each word, then we
propose to take the position with the largest gra-
dient norm as the editing position for insertion,
replacement, or deletion. When we choose to in-
sert or replace, we first use a fuzzy word as the
inserted or replacement word, which is then to be
updated by an optimizer, such as Adagrad (Duchi
et al., 2011). The word token will be replaced with
a new word if the updated word representation is
closed enough to the embedding of that new word.

Our G2LC can be applied to a large variety of
tasks. In the experiment, we apply G2LC to two
tasks: keyword-to-sentence generation and unsu-
pervised paraphrase generation. The experiment
results show that our method achieved state-of-the-
art performance compared to previous lexically-
constrained generation methods1.

Our contributions can be summarized as follows:

• We propose a differentiable objective function
for multiple keyword/keyphrase constraints
inspired by the convolution operation.

• We propose to use gradients to determine the
editing position and the new word for replace-
ment or insertion in each search step. This

1The code is available at https://sites.google.
com/view/lcgcode/%E9%A6%96%E9%A1%B5

will make the searching process easier to find
the optimum result.

• We make our approach possible to assist ex-
isting generation models to conduct lexically-
constrained generation without any parallel
corpus for training. This can be applied to a
large variety of generation tasks.

2 Related Works

Earlier works about lexically-constrained genera-
tion are mainly relying on auxiliary inputs to con-
strain the decoder outputs. For example, with the
desired prefix, machine translation models are de-
signed to search for the best suffix for the target
sentence output (Foster and Lapalme, 2002; Bar-
rachina et al., 2009; Green, 2014; Wuebker et al.,
2016; Knowles and Koehn, 2016). To make the
keyword able to occur in the middle of the target
sentence, Mou et al. (2016) proposed a backward-
forward generation method which guarantees to
contain only one keyword. For multiple keyword
constraints, Cheng et al. (2016) and Domingo et al.
(2016) proposed an interactive post-editing method,
but these methods tend to bind the lexical con-
straints to the original model, which will lead to the
retraining of the whole model if we would like to
use existing generation model to conduct lexically-
constrained generation.

Enhanced beam search is proposed as a plug-and-
play method to lexically-constrained generation.
Grid beam search (Hokamp and Liu, 2017) con-
duct beam search in two dimensions searching for
the candidate sentences that satisfied the given lex-
ical constraints. Anderson et al. (2017) did a sim-
ilar searching process using finite state automata.
Dynamic beam allocation methods (Post and Vilar,
2018; Hasler et al., 2018; Hu et al., 2019) are the ex-
tension of grid beam search, which groups the can-
didates that meet the same amount of constraints
into banks to accelerate the inference process. Al-
though enhanced beam search works well in the
tasks with limited search space such as machine
translation, it will cost a lot of time on searching
candidate sentences or even failed in general gen-
eration tasks when there is a much larger search
space.

Stochastic search is also a plug-and-play
method that can be applied to large search space.
CGMH (Miao et al., 2019) extends Gibbs sam-
pling with word insertion and deletion, then
use Metropolis-Hastings sampling to choose new

https://sites.google.com/view/lcgcode/%E9%A6%96%E9%A1%B5
https://sites.google.com/view/lcgcode/%E9%A6%96%E9%A1%B5
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words for the editing position. For each searching
step, an accept rate is calculated to decide whether
this step should be conducted. The sampling pro-
cess should be continued until the Markov chain
converges to a stationary distribution. UPSA (Liu
et al., 2019) also uses a sampling method to decide
editing actions and choose new words. Instead of
the Markov chain Monte Carlo (MCMC) approach
in Miao et al. (2019), UPSA models lexically-
constrained generation as a discrete optimization
problem and use simulated annealing to solve it.
Without the help of gradient, such approaches usu-
ally require more search steps to find the correct
optimization paths. By contrast, our method is
a gradient-guided method, which uses gradient’s
norm and direction to decide the editing position
and the new word for replacement or insertion.

Nearly all generation model can be extended by
plug-and-play method, including machine transla-
tion (Zhu et al., 2020), table-to-text generation (Sha
et al., 2018; Liu et al., 2018), dialogue response
generation (Xing et al., 2017; Shi et al., 2019),
and Neural Turing Machine (NTM) driven meth-
ods (Graves et al., 2014; Sha et al., 2020). There
exist two methods: (1) directly replace the orig-
inal searching method. For example, enhanced
beam search (Hokamp and Liu, 2017; Post and
Vilar, 2018) replaced the generation model’s orig-
inal beam search method. (2) modify the gener-
ated word token sequence. For example, stochas-
tic search methods (Miao et al., 2019; Liu et al.,
2019) modify the sequence to maximize a designed
score function. Our proposed method can also be
taken as a plug-in for existing generation meth-
ods, which belongs to the second plug-in method
described above. In our method, the original gener-
ation model is used as a part of the score function.
The largest difference between our method and
previous works is that all of our score functions
are differentiable, and the gradients can be used to
indicate the edit positions and actions.

3 Approach

Although we also use the gradient for optimizing,
our approach is inverse to the normal neural net-
work training procedure. In our method, all model
weights are separately trained and then fixed, in-
stead, the words’ representations are taken as the
parameters to be trained. So, our objective must
ensure to be differentiable w.r.t the words’ repre-
sentations (which is the input).

3.1 Differentiable Cost Function
In this section, we would like to introduce the de-
sign of differentiable cost functions for different
objectives.

3.1.1 Lexical Constraint Objective
We assume that there are multiple key phrases
C = {c1, . . . , cNc} in one generation process, in-
cluding unigrams and multi-grams. Assume that
the sentence tokens are w1, . . . , wn (n is the sen-
tence length), and the word representations are
y1, . . . , yn, respectively. Different from conven-
tional deep models, in our method, yi, i = 1, . . . , n
are trainable parameters instead of simply inputs or
outputs. So, the exact value of yi will be updated
during the optimizing process. We will use e(wi)
to represent the “fixed” word embedding of word
token wi in this paper.

Given a constraint phrase c with length m, we
first transform it into word embedding matrixMc ∈
Rmd (d is the embedding dimension). Since we
require that each key phrase must occur in the target
sentence, the most direct method is to compare the
key phrase with each subsequence of length m in
the sentence. Inspired by convolution operation,
we propose to use a sliding window of size m to
split the sentence into n − m slices. Then, we
calculate the difference between the slices and the
constraint phrase’s embedding matrix. To make the
key phrase occur in the sentence at least once, the
smallest difference must reach 0. Therefore, the
smallest 2-norm of these differences Dc is defined
as the keyword constraint objective for constraint c
as is shown in Equation 1.

Dc =
n−m
min
i=0

∥∥∥y[i : i+m]−Mc

∥∥∥
2
, (1)

where x[i : i + m] represents the i-th slice with
length m in the sentence, ‖ · ‖2 represents the 2-
norm.

Then, the keyword constraint objective for all
keyword constraints is the sum of each objective.

Lc(y1, . . . , yn) =
∑
c′∈C

Dc′ . (2)

3.1.2 Semantic Similarity Objective
For unsupervised paraphrase generation, we pro-
pose to separately train a paraphrasing recognition
model, which discriminates whether two input sen-
tences have the same meaning. Given two sen-
tences X = {x1, . . . , xn} and Y = {y1, . . . , yn},
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we design the paraphrasing recognition model as
a deep neural network using the architecture de-
scribed in Tan et al. (2018). Different from them,
the output layer was changed to a binary classifi-
cation representing paraphrasing or not. Then, the
semantic similarity objective is defined as:

Lss = 1− P (1|X,Y ; θss), (3)

where P (1|X,Y ; θss) represents the probability
that X and Y have the same meaning, θss is the
separately trained parameters which is fixed during
the searching process.

3.1.3 Language Fluency Objective
The basic requirement of a generated sentence is to
be fluent. We apply a separately trained language
model to calculate the likelihood of the given sen-
tence, which is similar to previous works (Miao
et al., 2019; Liu et al., 2019).

However, in our method, to make the objective
differentiable to the input (words’ representation),
we apply the language model to sentences in vec-
tor level instead of token level. So, the language
fluency objective is defined as follows:

LLM = −
∑
i

log p(yi|y<i), (4)

where yi is vector, so cross entropy cannot be di-
rectly used in the calculation of p(yi|y<i). We pro-
pose to take the word vocabulary as latent variables
and obtain the probability as follows:

p(yi|y<i) =
∑
w∈V

p(yi|w)p(w|y<i), (5)

where p(w|y<i) can be directly obtained by the lan-
guage model. The first item p(yi|w) is calculated
using Equation 62.

p(yi|w) =
exp

(
− ||yi − e(w)||/T

)∑
w′∈V exp

(
− ||yi − e(w′)||/T

) ,
(6)

where T is a hyperparameter representing the tem-
perature which is set to 0.3 to make sure that
P (w|w) extremely close to 13.

2Since p(yi|w) = p(w|yi)p(yi)
p(w)

∝ p(w|yi), we ignored the
constants and directly use the calculation process of p(w|yi),
which is defined by the distance between words in the embed-
ding space in this paper.

3Given an embedding of word w, we need to be very sure
that it belongs to word w itself. So that P (w|w) should be as
close to 1 as possible.

3.1.4 Plug in Existing Generation Model
We can plug our method into any separately trained
generation model. Given a language generation
model P (Y |X; θg) with the parameters θg pre-
trained and fixed, we can design the plug-in ob-
jective similar to the language fluency objective
under the condition of the encoder part X .

Lplug = −
∑
i

logP (yi|y<i, X). (7)

In previous methods, beam search based meth-
ods (Hokamp and Liu, 2017; Post and Vilar, 2018)
can certainly work together with the existing gen-
eration model because they are the decoder part
themselves. Our plug-in method can be taken as
an extension of beam search based methods, and is
more flexible to be applied on other kind of meth-
ods. The simulation annealing method (Liu et al.,
2019) and the MCMC methods (Miao et al., 2019)
are both potentially able to apply our method to be
a plug-in via a discrete version of Lplug.

3.2 Gradient-guided Editing
The most direct idea of searching for the best sen-
tence is to optimize the representation of all in-
put words according to an optimizer (such as Ada-
grad (Duchi et al., 2011), Adam (Kingma and Ba,
2014), etc.) until it converges. However, simply
update the word representations according to the
continuous optimization method will lead to local
minima problems. So, we directly edit the word
tokens in the sequence to help it escape the local
minima. Inspired by previous works (Miao et al.,
2019; Liu et al., 2019), we also use three edit ac-
tions: insert, delete, and replace. In each optimiz-
ing step, we first choose a position in the sequence
for editing. Then, we choose which action to take,
insert, delete, or word replacement.

The whole search process is composed of many
sequence editing actions. We propose to use the
gradient of the differentiable score function w.r.t
input sentence as the guidance of sequence editing.
We focus on three main problems on sequence edit-
ing in this section: (1) How to decide the position
in the sequence for editing? (2) How to decide the
editing action? (3) How to refine the inserted or
replaced words?

3.2.1 Edit Position Selecting
With each input of word sequence y1, . . . , yn, we
calculate the differentiable score function J , and
use back propagation to obtain the gradient w.r.t
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Constraints: Mike drink coke

w1 w2 w3 w4 w5 w6

J(·)

∂J

∂w1

∂J

∂w2

∂J

∂w3

∂J

∂w4

∂J

∂w5

∂J

∂w6

Word:

Word
representation:

Gradient:

}

Differentiable 
objective
 function:

Gradient
norm:

Edit position

Jean loves to drink lemonade .

Figure 1: The process of choosing editing position.

each word ∂J
∂yi

. Intuitively, for a variable, the larger
the gradient is, the more urgent it is to be updated.
Similarly, the 2-norm of each gradient || ∂J∂yi ||2 can
be taken as a measure of each gradient vector’s
“length” in the searching space. So, we take the
position with the largest gradient norm as the ad-
ditional editing position. This process is shown in
Figure 1.

3.2.2 Edit Action Sampling
After the editing position k is determined, we
randomly sample an action with probability
[pins, pdel, prep]. Intuitively, a better action with
a lower cost should have larger probability. The
probabilities are obtained using the following pro-
cedure.

First we need to calculate the cost function for
each action. For insertion, the cost function is
Lins = L(y1, . . . , yk−1, y∗, yk, . . . , yn), where y∗
represents the inserted word’s embedding. Here,
we do not know what word should be inserted, so y∗
is just a fuzzy word vector which is the average em-
bedding of a subset of the whole vocabularyW (de-
tailed later). Similarly, for replacement, we replace
the word yk to y∗, and then calculate the cost func-
tion Lrep = L(y1, . . . , yk−1, y∗, yk+1, . . . , yn).
For deletion, we just delete the word at posi-
tion k and calculate the cost function Ldel =
L(y1, . . . , yk−1, yk+1, . . . , yn). Then, we normal-
ize the three costs4 as Equation 8.

Lnorm
ins = −(Lins − E(L))/Std(L)

Lnorm
del = −(Ldel − E(L))/Std(L)

Lnorm
rep = −(Lrep − E(L))/Std(L),

(8)

where E(L) and Std(L) stands for the mean and
standard deviation of the normalized costs. Finally,
the probabilities are obtained by softmax:

[pins, pdel, prep] = Softmax([Lnorm
ins , Lnorm

del , Lnorm
rep ]). (9)

4We take a negative operation to the normalized costs
because better action tend to have lower cost.

If the insertion action is chosen, we have to de-
cide whether to insert y∗ in the front or back of the
position. We simply make them equal probability
and sample for the decision.

Note that when deciding the subsetW , we use
the pre-trained language model to obtain the top
50 possible words to be filled in the ∗ place. This
is similar to the method in CGMH (Miao et al.,
2019), and UPSA (Liu et al., 2019). However, our
idea in this paper is to let the gradient do what it’s
supposed to do. When two words occur far away
in the word space, gradients will not help much in
changing one of them to another, but they can help
to refine the word representation to a nearby word.
So, we use the language model to coarsely update
the word, and then use the gradient to fine-tune the
word representation (detailed in Section 3.2.3).

3.2.3 Word Selection and Update

After a new fuzzy word is inserted or replaced,
we propose to update the fuzzy word under the
guidance of gradients. Under the gradient decent
optimization method, the update of each word
vector is y(t+1)

∗ = y
(t)
∗ − η ∂J

∂y∗
. Note that we

can use any optimization method here, including
Adam (Kingma and Ba, 2014), Adagrad (Duchi
et al., 2011), LBFGS (Liu and Nocedal, 1989), etc.

After the word vectors’ update, we need to up-
date the word tokens. Here, we calculate the proba-
bility of a word vector to be a word token P (w|y∗),
and select the word w∗ with the largest probability
as the candidate word as is shown in Equation 10.

w∗ = argmax
w∈V

P (w|y∗)

= argmax
w∈V

exp(y>∗ w)∑
w′∈V exp(y

>
∗ w
′)
,

(10)

where V stands for the whole vocabulary. If
P (w∗|y∗) is above a threshold5 and w∗ is not the
same as the original word, we will replace the fuzzy
word to w∗ and also assign w∗’s word embedding
to the vector y∗. The gradient updating process can
be conducted for several steps until the fuzzy word
is replaced to any real word.

In conclusion, the searching process is illustrated
in Algorithm 1.

5Here, we set the threshold to 0.9 in practice.
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Input: Initial word sequence: W = [w1, . . . , wn],
Initial word embeddings: Y = [y1, . . . , yn]

Data: Epochs: N
Output: The search result W∗
for i← 1 . . . N do

Calculate L(Y ) and ∂L(Y )
∂Y

;
Select the edit position k according to Figure 1;
Calculate [pins, pdel, prep] according to Equation 9;
Sample an action according to multinomial

distribution [pins, pdel, prep];
CalculateW according to language model;
if action=“insert” then

Sampling: in the front or in the back;
W ← [w1, . . . , ∗, . . . , wn];
y∗ ← 1

|W|
∑

w∈W e(w);
Y ← [y1, . . . , y∗, . . . , yn];

end
else if action=“delete” then

W ← [w1, . . . , wk−1, wk+1, . . . , wn];
Y ← [y1, . . . , yk−1, yk+1, . . . , yn];

end
else if action=“replace” then

W ← [w1, . . . , wk−1, ∗, wk+1, . . . , wn];
y∗ ← 1

|W|
∑

w∈W e(w);
Y ← [y1, . . . , yk−1, y∗, yk+1, . . . , yn];

end
while Y contains fuzzy word do

Update Y : Y ← Y − η ∂L(Y )
∂Y

;
end

end
return W∗ ←W ;

Algorithm 1: G2LC searching process

4 Experiments

4.1 Constraint decoding

4.1.1 Dataset & Preprocessing

We use keyword-to-sentence task to evaluate the
performance of our method on constraint decoding.
Keyword-to-sentence task is extremely important
in topic-driven dialogue response generation (Xing
et al., 2017), where we need to generate a response
with a few hints (usually a keyword as a hard con-
straint or a topic word as a soft constraint).

The language model is trained using One-Billion-
Word Corpus (Chelba et al., 2013)6. As is consis-
tent with previous work (Miao et al., 2019), we also
sample a 3k-sentence set to provide keyword con-
straints. For each sentence, we randomly sample
1∼4 keywords as test constraints. The architecture
of the language model is a forward 2-layer LSTM
RNN. In this task, the target sentence needs to sat-
isfy the lexical constraints while ensuring language
fluency. Therefore, the differentiable loss function

6http://www.statmt.org/lm-benchmark/

is as follows:

L = λcLc + λLMLLM, (11)

where λc and λLM are hyperparameters, which are
set to 1 and 10 in our experiment, respectively.

4.1.2 Competing Methods
We compared our method with the following state-
of-the-art approaches:

(1) Sequence to backward-forward method (seq-
B/F) is proposed by Mou et al. (2016), which takes
one keyword as input, and generate the sequence
before the keyword as well as the sequence after the
keyword using a backward and a forward generator,
respectively.

(2) Asynchronously sequence to backward-
forward method (asyn-B/F) is another method pro-
posed by Mou et al. (2016), which generates the
forward “half” sentence under the condition of the
backward “half” sentence.

(3) Grid-beam search (GBS) method is proposed
by Hokamp and Liu (2017), which applies an en-
hanced beam search to find a valid solution in the
constrained search space of the generator.

(4) Dynamic Beam Allocation (DBA) method is
proposed by Post and Vilar (2018), which is a much
faster beam search based method.

(5) Metropolis-Hastings Sampling (CGMH)
method is proposed by Miao et al. (2019), which
uses a series of editing operations to achieve a sta-
tionary distribution of Markov chain thus generat-
ing the lexically-constrained sentence.

For GBS and DBA method, we just use the
trained language model as the decoder and use
their method to search for the target sentence. For
our method, we simply use a sequence composed
of the keywords as the initial sentence, which is
the same as CGMH. We run our algorithm for 100
epochs, and finally, select the sentence with the
smallest loss as the final result.

4.1.3 Evaluation Metrics
The language fluency of generated target sentences
is measured by negative log-likelihood (NLL) loss,
which is evaluated by a third party language model
(a trigram Kneser-Ney Language Model (Heafield,
2011)). This language model is trained using the
English monolingual corpus in WMT18 7, which
is again consistent with previous work (Miao et al.,
2019).

7http://www.statmt.org/wmt18/
translation-task.html

http://www.statmt.org/lm-benchmark/
http://www.statmt.org/wmt18/translation-task.html
http://www.statmt.org/wmt18/translation-task.html
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NLL Human
#keyword 1 2 3 4 1 2 3 4
seq-B/F 7.80 - - - 0.11 - - -
asyn-B/F 8.30 - - - 0.09 - - -

GBS 7.42 8.72 8.59 9.63 0.32 0.55 0.49 0.55
DBA 7.41 8.58 8.54 9.25 0.43 0.53 0.54 0.59

CGMH 7.04 7.57 8.26 7.92 0.45 0.61 0.56 0.65
G2LC 7.02 7.46 8.01 7.76 0.47 0.73 0.65 0.67

Table 1: The NLL loss and human evaluation score of
the generated sentence with 1∼4 keywords.

For human evaluation, we asked 6 data graders
to help us evaluate the language fluency for each
target sentence. The labeled score is between 0
(not fluent) and 1 (extremely fluent). The detailed
annotation method is shown in Appendix A. The
experiment result is shown in Table 1.

According to Table 1, under the condition of
1∼4 keywords, our method G2LC outperformed
the previous methods in both the NLL loss and the
human evaluation score. Our inter-rater agreement
is acceptable due to Krippendorff (2004) with Krip-
pendorff’s alpha values 0.73, 0.72, 0.78, 0.80. All
results are significant due to the Wilcoxon Signed
Rank Test (p < 0.05). Compared to CGMH, our
method can not only use the gradient norm to lo-
cate the editing position more accurately but also
our method can use the gradient to fine-tune the
inserted or replaced words. Therefore, our gradient-
guided method can achieve a better result than
CGMH. Note that in the human evaluation, the
fluency of single keyword is lower than the fluency
of 2, 3, or 4 keywords. The reason is that fewer key-
words will lead to larger search space, so the task
of searching a sentence based on only one keyword
is harder than based on 2, 3, or 4 keywords.

Some of the generated results of our method are
listed in Table 2. We can see that for these given
keywords, our method can generate a sensitive flu-
ent sentence including these keywords.

4.2 Unsupervised Paraphrase Generation

4.2.1 Datasets & Implementation details
We use the Quora question pair dataset8 as our
testbed of unsupervised paraphrase generation.
This dataset contains 140K paraphrased sentence
pairs and 260K non-paraphrased sentence pairs.
We follow the experiment settings of Miao et al.
(2019) and Liu et al. (2019) to hold out 3K for the
validation set and 30K for the test set.

8https://www.kaggle.com/c/
quora-question-pairs

Keywords Generated sentence
computer the computer you want is here
couple the couple made a conversation
claim, street claim that we are on street by accident
friends, home her friends are at home
death, medical, care the farmers that diagnosed with alcohol

death can suspend medical care
police, central, bank the police at central bank is sleeping
sunday,agents, worked,
service

the sunday telegraph agents worked
on the service

attempt, copy, painting,
denounced

the attempt to copy the painting was
denounced

Table 2: The example results of keywords-to-sentence
generation.

For the training of the paraphrasing recognition
model (Lss), we mix the rest paraphrased sentence
pairs and the non-paraphrased sentence pairs to-
gether, and then take out 1K and 3K for valida-
tion and testing, respectively. The paraphrasing
recognition model can be designed in any architec-
ture (Sha et al., 2015, 2016; Tan et al., 2018). The
accuracy of the trained paraphrasing recognition
model achieved 85%. We also trained another ver-
sion of the paraphrasing recognition model using
the SNLI dataset9 for a cross-domain experiment.

In the paraphrase generation task, the target sen-
tence should be the paraphrase of the input sen-
tence, also we require the target sentence to ensure
language fluency. We also conduct experiments
that require the target sentence to satisfy the lexical
constraints simultaneously. Therefore, the differen-
tiable loss function is as follows:

Lrec = λLMLLM + λsLss, (12)

where λLM, and λss are predefined hyperparame-
ters, which are set to 1, and 2 in our experiment,
respectively. Lss is the loss of the paraphrasing
recognition model.

For the training of the paraphrasing generation
model (Lplug), we take the rest paraphrased sen-
tence pairs as the train/valid/test dataset, the valid
set has 1K sentence pairs and the test set has 3K
sentence pairs. We evaluate the performance of
the paraphrasing generation model by BLEU value,
which achieves 17.02 on the test set.

We can also generate the target sentence using
the paraphrasing generation model, the differen-
tiable loss function is as shown in Equation 13.

Lgen = λLMLLM + λpLplug, (13)

9https://nlp.stanford.edu/projects/
snli/

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
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Model iBLEU BLEU ROUGE-1 ROUGE-2 NLL

Supervised

ResidualLSTM 12.67 17.57 59.22 32.40 -
VAE-SVG-eq 15.17 20.04 59.98 33.30 -
Pointer generator 16.79 22.65 61.96 36.07 -
Transformer 16.25 21.73 60.25 33.45 -
DNPG 18.01 25.03 63.73 37.75 -

Supervised
(Domain-adapted)

Pointer generator 5.04 6.96 41.89 12.77 -
Shallow fusion 6.04 7.95 44.87 14.79 -
MTL 4.90 6.37 37.64 11.83 -
DNPG 10.39 16.98 56.01 28.61 -

Unsupervised

VAE 8.16 13.96 44.55 22.64 7.74
CGMH 9.94 15.73 48.73 26.12 7.46
UPSA 12.02 18.18 56.51 30.69 6.97
G2LC (Recognizer) 14.34 20.13 58.90 32.79 6.56
G2LC (Recognizer, Cross) 13.21 19.95 58.02 30.76 6.54
G2LC (Generator) 14.46 23.27 59.65 33.08 6.12
G2LC (Generator, Cross) 13.44 21.68 58.89 32.85 6.23

Table 3: The comparison of overall performance between our proposed method and previous methods. We use
sentence-level BLEU as is consistent with Liu et al. (2019).

where λLM, and λp are again predefined hyperpa-
rameters, which are set to 1, and 2 in our exper-
iment, respectively. Here, the paraphrasing gen-
eration model is used as a plug-in loss function
Lplug, which requires the target sentence to have a
high probability under the condition of the input
sentence.

4.2.2 Competing Methods
We compare the performance of our method with
three branches of approaches as follows:

(1) Supervised methods are usually Seq2Seq
methods, including ResidualLSTM (Prakash et al.,
2016), VAE-SVG-eq (Gupta et al., 2018), pointer
generator (See et al., 2017b), the Transformer net-
work (Vaswani et al., 2017), and the current state-
of-the-art approach DNPG (Li et al., 2019).

(2) Domain-adapted supervised methods trained
their model using one corpus and then conduct the
inference stage on another corpus. These methods
include shallow fusion (Gulcehre et al., 2015) and
a multi-task learning (MTL) method (Domhan and
Hieber, 2017). This kind of method is necessary
to be compared with because our model also uses
another corpus to train the paraphrase recognition
model and paraphrase generation model for the loss
function Lss and Lplug, respectively.

(3) Unsupervised methods do not require any par-
allel data for training. We have three unsupervised
competing methods: VAE (Kingma and Welling,

2013), CGMH (Miao et al., 2019), and UPSA (Liu
et al., 2019). VAE is trained using non-paraphrased
sentences by minimizing reconstruction loss and
KL loss. In the inference stage, sentence vectors
are sampled from the latent space and then gener-
ated to sentences. CGMH seeks to achieve the sta-
tionary state on the Markov chain using Metropolis
hasting sampling algorithm. UPSA applies sim-
ulated annealing method to maximize a discrete
score function, which is the state-of-the-art method
among all the unsupervised methods.

We have the following methods for comparison:

• G2LC (Recognizer) is optimized by Lrec,
which use paraphrase recognizer Lss as part of
a score function. The paraphrase recognizer
Lss is trained by Quora dataset.

• G2LC (Recognizer, Cross) is also optimized
by Lrec, but the paraphrase recognizer Lss is
trained by SNLI dataset.

• G2LC (Generator) is optimized by Lgen,
which is a plug-in of a pretrained paraphrase
generator, and Lplug is part of the score func-
tion. The paraphrase generator Lplug is trained
by Quora dataset.

• G2LC (Generator, Cross) is also optimized
by Lgen, but the paraphrase generator Lplug is
trained by SNLI dataset.
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Method Relevance Fluent
VAE 0.53 0.64
CGMH 0.62 0.70
UPSA 0.75 0.73
G2LC (Recognizer) 0.79 0.77
G2LC (Generator) 0.81 0.78

Table 4: The human evaluation result of our method.

4.2.3 Evaluation Metrics
We use the standard metrics of paraphrase
generation (BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004)) for evaluation. However, in
the paraphrase generation task, only compare how
similar is the generated and reference sentence is
not enough, the diversity between the generated
and original sentence should also be considered.
So, we use iBLEU (Sun and Zhou, 2012) as the ma-
jor metric, which penalizes the similarity between
the generated and original sentence. Li et al. (2019)
and Liu et al. (2019) also applied this metric.

We also asked 6 data graders to help us evaluate
the language fluency for each target sentence, and
evaluate the relevance between each target sentence
and their corresponding input sentence. The de-
tailed annotation method is shown in Appendix A.

4.2.4 Results
In Table 3, we listed many variants of our method.
G2LC (Recognizer) constrains the paraphrasement
by the paraphrase recognizing model, which is
trained by the Quora dataset. In comparison,
the recognizing model Lss in G2LC (Recognizer,
Cross) is trained by the SNLI dataset. We can
see that the generation performance of the cross-
domain loss outperforms the previous methods in
all evaluation metrics. When Lss is trained on the
Quora dataset, the performances are even higher,
which is easy to understand because the test data is
selected from the same domain. Also, we trained
two versions of paraphrasing generation model
Lplug using Quora and SNLI datasets and reported
the results in the lines of G2LC (Generator) and
G2LC (Generator, Cross). We can see that G2LC
with Lplug is slightly better than G2LC with Lss,
which tells us that the loss calculated by the para-
phrasing generation model is a better evaluator for
the quality of the target sentence.

Table 4 shows the human evaluation result of our
method. We sampled 300 sentences from the gener-
ated sentences and asked 6 data graders to judge the
relevance score and fluent score of these sentences.
Both of the scores range from 0 (the worst) to 1

Input Generated sentence
how do i control my anxiety
while under situations of extreme
pressure

how do i control my anxiety
when i am under extreme stress

what are the easiest ways to make
good money using the internet

what are the easiest ways that can
make money on the internet

why did britain vote to leave the
european union

why did britain leave the euro-
pean union

what can you tell about a person
through their handwriting

what can you tell about a person
by their handwriting

how do i earn more by investing
in share market

how do i make money by invest-
ing in share market

Table 5: The example results of paraphrase generation.

(the best). All of our inter-rater agreement are ac-
ceptable (with Krippendorff’s alpha values > 0.70)
due to Krippendorff (2004). Due to the resource
limit, we do not conduct the human evaluation for
the cross-domain methods. According to Table 4,
our methods achieved better performance on both
of the human evaluation metrics.

Table 5 shows some examples generated by our
method G2LC (Generator). With the guide of gra-
dients, the generated sentences are different from
the input sentence in some words but are still para-
phrase to the input sentence.

5 Conclusion & Future Works

In this paper, we propose a gradient guided method
to conduct unsupervised lexical constraint gener-
ation. The lexical constraints include hard con-
straints (keywords) and soft constraints (paraphras-
ing). We first defined a series of differentiable loss
functions which represents the fluency of the gen-
erated sentence as well as whether the constraints
are satisfied. Then, we use the value of the gra-
dient norm to decide which word in the sentence
has the most urgent need to be edited, including be-
ing inserted in the front or the back, being deleted,
and being changed. We applied our method in
two tasks, keyword-to-sentence generation, and
unsupervised paraphrasing. Our method achieved
state-of-the-art performance on both of these tasks.
Using post-editing methods for lexical constraint
generation can be taken as an initial step of control-
ling the generation result. Future research works
can be conducted to make the generation process
more robust and interpretable.
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Hasan, and Minh-Thang Luong. 2016. Models and
inference for prefix-constrained machine translation.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 66–75, Berlin, Germany. As-
sociation for Computational Linguistics.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2017. Topic aware
neural response generation. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-
gence, pages 3351–3357.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Houqiang Li, and Tie-Yan Liu.
2020. Incorporating bert into neural machine trans-
lation. arXiv preprint arXiv:2002.06823.

Appendices

A Human Evaluation Question Marks

In both tasks, we ask the data graders to grade
each sentence with a fluent score. In unsupervised
paragraph generation task, we ask the data graders
to annotate each pair of sentence with a relevance
score. The data graders are not necessary to give
one of these 5 scores, they can also give some mid
scores if need be.

A.1 Fluency

Q: How fluent do you think the sentence is?
Please choose a score according to the following

description. Note that the score is not necessary
the same as listed, you can give scores like 0.32 or
0.49 , if you deem appropriate.

• 1.00: Extremely fluent.

• 0.75: Can be understood with several gram-
matical errors.

• 0.50: Can be understood by some extent, but
with many grammatical errors .

• 0.25: Can not be understood, but some seg-
ments are fluent.

• 0.00: Not readable.

A.2 Relevance
Q: How relevant do you think the given two sen-
tences is?

Please choose a score according to the following
description. Note that the score is not necessary
the same as listed, you can give scores like 0.32 or
0.49 , if you deem appropriate.

• 1.00: They are exactly the same meaning.

• 0.75: They have similar meaning, but some
details are not identical.

• 0.50: Although the two sentence have some
semantic meaning in common, they have too
much different details.

• 0.25: Most of the meaning are not the same,
but some details are identical.

• 0.00: They are totally different.
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