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Abstract
Semantic change detection concerns the task
of identifying words whose meaning has
changed over time. Current state-of-the-art ap-
proaches operating on neural embeddings de-
tect the level of semantic change in a word
by comparing its vector representation in two
distinct time periods, without considering its
evolution through time. In this work, we pro-
pose three variants of sequential models for de-
tecting semantically shifted words, effectively
accounting for the changes in the word repre-
sentations over time. Through extensive ex-
perimentation under various settings with syn-
thetic and real data we showcase the impor-
tance of sequential modelling of word vectors
through time for semantic change detection.
Finally, we compare different approaches in
a quantitative manner, demonstrating that tem-
poral modelling of word representations yields
a clear-cut advantage in performance.

1 Introduction

Identifying words whose lexical meaning has
changed over time is a primary area of research
at the intersection of natural language processing
and historical linguistics. Through the evolution of
language, the task of “semantic change detection”
(Tahmasebi et al., 2018; Tang, 2018; Kutuzov et al.,
2018) can provide valuable insights on cultural evo-
lution over time (Michel et al., 2011). Measuring
linguistic change is also relevant to understand-
ing the dynamics in online communities (Danescu-
Niculescu-Mizil et al., 2013) and the evolution of
individuals (McAuley and Leskovec, 2013). Re-
cent years have seen a surge in interest in this area
since researchers are now able to leverage the in-
creasing availability of historical corpora in digital
form and develop models that detect the shift in a
word’s meaning through time.

However, two key challenges in the field still
remain. Firstly, there is little work in existing lit-

erature on model comparison (Schlechtweg et al.,
2019; Dubossarsky et al., 2019; Shoemark et al.,
2019). Partially due to the lack of (longitudinal)
labelled datasets, existing work assesses model per-
formance mainly in a qualitative manner, without
quantitative comparisons against prior work. There-
fore, it becomes difficult to assess what constitutes
an appropriate approach for semantic change de-
tection. Secondly, on a methodological front, a
large body of related work detects semantically
shifted words by pairwise comparisons of their rep-
resentations in distinct time periods, ignoring the
sequential modelling aspect of the task. Since se-
mantic change is a time-sensitive process (Tsaka-
lidis et al., 2019), considering consecutive vector
representations through time – instead of two bins
of word representations (Schlechtweg et al., 2018,
2020) – can be crucial to improving model perfor-
mance (Shoemark et al., 2019).

Here we tackle both challenges by approaching
semantic change detection as an anomaly identifica-
tion task. Working on embedding representations
of words in the English language, we learn their
evolution through time via an encoder-decoder ar-
chitecture. We hypothesize that once such a model
has been successfully trained on temporally sen-
sitive sequences of word representations, it will
accurately predict the evolution of the semantic
representation of any word through time. Words
that have undergone semantic change will be those
that yield the highest errors by the prediction model.
Our work makes the following contributions:

• we develop three variants of an LSTM-based
architecture to measure the level of semantic
change of a word by tracking its evolution
through time in a sequential manner: (a) a
word representation autoencoder, (b) a future
word representation decoder and (c) a hybrid
approach combining (a) and (b);



8486

• we show the effectiveness of our models under
thorough experimentation with synthetic data;

• we compare our models against current prac-
tices and competitive baselines using real data,
demonstrating important gains in performance
and highlighting the importance of sequential
modelling of word vectors through time;

• we release our code, to help set up a bench-
mark for model comparison within the domain
in a quantitative fashion.1

2 Related Work

One can distinguish two directions within the lit-
erature on semantic change detection: (a) learn-
ing word representations over discrete time inter-
vals (bins) and comparing the resulting vectors and
(b) jointly learning word representations across
time (Bamler and Mandt, 2017; Rosenfeld and Erk,
2018; Yao et al., 2018; Rudolph and Blei, 2018).
Such representations can be generated via different
approaches, such as topic- (Frermann and Lapata,
2016; Perrone et al., 2019), graph- (Mitra et al.,
2014) and neural-based models (e.g., word2vec)
– work by Tahmasebi et al. (2018) provides an
overview of such approaches. In this work we
focus on (a) due to scalability issues in learning
diachronic representations from very large corpora,
as in our case, and – without loss of generality – we
utilise pre-trained, neural-based representations.

Related work in (a) derives word representations
Wi (i ∈ [0,..,|T − 1|]) across |T | time intervals and
performs pairwise comparisons for different values
of i. Early work used frequency- or co-occurrence-
based representations (Sagi et al., 2009; Cook and
Stevenson, 2010; Gulordava and Baroni, 2011; Mi-
halcea and Nastase, 2012). However, leveraging
word2vec-based representations (Mikolov et al.,
2013) has become the common practice in recent
years. Due to the stochastic nature of word2vec,
Orthogonal Procrustes (OP) (Schönemann, 1966)
is often applied to the resulting vectors, aiming
at aligning the pairwise representations (Kulkarni
et al., 2015; Hamilton et al., 2016; Del Tredici
et al., 2019; Shoemark et al., 2019; Tsakalidis
et al., 2019; Schlechtweg et al., 2019). Given two
word matrices Wk, Wj at times k and j respec-
tively, OP finds the optimal transformation matrix
R = argmin

Ω;ΩT Ω=I

‖ΩWk −Wj‖F and the semantic

1Code is available at: https://github.com/
adtsakal/semantic_change_evolution

shift level of a word w during this time interval
is defined as the cosine distance between the two
aligned matrices (Hamilton et al., 2016). By oper-
ating in a linear pairwise fashion, such approaches
ignore the time-sensitive and possibly non-linear
nature of semantic change.

By contrast, Kim et al. (2014), Kulkarni et al.
(2015), Dubossarsky et al. (2019) and Shoemark
et al. (2019) derive time series of a word’s level
of semantic change to detect semantically shifted
words. Even though these methods incorporate
temporal modelling, they either rely heavily on
the linear transformation R (Kulkarni et al., 2015;
Shoemark et al., 2019) or focus primarily on the
generation of temporally-sensitive representations
as a means towards capturing semantic change
(Kim et al., 2014; Dubossarsky et al., 2019). A
key contribution of our work is that we do not base
our methods on pre-defined transformations, but
instead propose a model for learning how (any type
of) pre-trained word representations vary across
time, effectively exploiting the full sequence of a
word’s evolution.

Finally, the comparative evaluation of seman-
tic change detection models is still in its infancy.
Most related work assesses model performance
based on artificial tasks (Cook and Stevenson,
2010; Kulkarni et al., 2015; Rosenfeld and Erk,
2018; Dubossarsky et al., 2019; Shoemark et al.,
2019) or on a few hand-picked examples (Sagi
et al., 2009), without cross-model comparison. The
recently introduced shared tasks SemEval Task 1
(Schlechtweg et al., 2020) and DIACR-Ita (Basile
et al., 2020) aim at bridging this gap; however, the
respective datasets consist of documents split in
two distinct time periods, thus not facilitating the
study of the sequential nature of semantic change.
Setting a benchmark for model comparison with
real-world and sequential word representations is
crucial in this field.

3 Methods

We formulate semantic change detection as an
anomaly detection task in the evolution of pre-
trained word embeddings. We assume that pre-
trained word vectorsWt ∈ [W0, ...,W|T−1|], where
Wt ∈ R|V |×d (|V |: vocabulary size; d: word repre-
sentation size) in a historical corpus over |T | time
periods, evolve according to a non-linear function

https://github.com/adtsakal/semantic_change_evolution
https://github.com/adtsakal/semantic_change_evolution
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f(Wt).2 By approximating f , we obtain the level
of semantic shift of a word w at time t by measur-
ing the similarity between its word representation
wt against f(wt). A low similarity score for a
given word implies an inaccurate model prediction
(anomaly) and thus a high level of semantic change
for the given word. Therefore, we can obtain a
ranking of the words based on their semantic shift
level by ordering them in ascending order of their
similarity scores between wt and f(wt). We ap-
proximate f via temporally sensitive deep neural
models: (a) an autoencoder, which aims to recon-
struct a word’s trajectory up to a given point in time
i [w0, ..., w|i|] (section 3.1); and (b) a future pre-
dictor, which aims to predict future representations
of the word [w|i+1|, ..., w|T−1|] (section 3.2). The
two models can be trained individually or (c) in a
joint multi-task setting (section 3.3). These models
benefit from accounting for sequential word rep-
resentations across time [W0, ...,W|T−1|], which
is better suited for detecting semantically shifted
words compared to the common practice of com-
paring only the first and last word representations
[W0, W|T−1|] (Shoemark et al., 2019).

Encoded 
Sequence

§3.1: Reconstructing 
Word Representations

§3.2: Predicting Future 
Word Representations
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Figure 1: Overview of our proposed model: the se-
quence of the representation of a set of word vectors
(vocabulary) over different time steps W0:i−1 is en-
coded through two LSTM layers and then passed over
to a reconstruction (3.1) decoder and a future prediction
decoder (3.2). The model is trained by utilising either
decoder in isolation, or both of them in parallel (3.3).

3.1 Reconstructing Word Representations
Given an input sequence of vectors representing
the words in a vocabulary across i points in time

2Note: t in Wt indicates the time period from when the
associated pre-trained word vectors are taken (e.g., year 2000).

W0:i−1 = [W0,W1, ...,Wi−1], the goal of the
autoencoder is to reconstruct the input sequence
W0:i−1. Since the task of semantic change includes
a natural temporal dimension, we model our au-
toencoder via RNNs (see Figure 1). The encoder
is composed of two LSTM layers (Hochreiter and
Schmidhuber, 1997) with Dropout layers operating
on their outputs, for regularisation (Srivastava et al.,
2014). The first layer encodes the input sequence
of W0:i−1 and returns the hidden states as input to
the second layer. The output of the second layer
is the final encoded state, which is then copied |i|
times and fed as input to the decoder. The decoder
has the same architecture as the encoder, albeit with
additional dense layers on top of the second LSTM
layer to make the final reconstruction W r

0:i−1 on
the |i| time steps. The model is trained by minimis-
ing the mean squared error (MSE) loss function:

Lr =
1

i

i−1∑
j=0

MSE(Wj ,W
r
j ). (1)

After training, the words that yield the highest error
rates in a given test set of word representations
through time are considered to be the ones whose
semantics have changed the most during the given
time period. This is compatible with prior work
based on word alignment (Hamilton et al., 2016;
Tsakalidis et al., 2019), where the alignment error
of a word indicates its level of semantic change.

3.2 Predicting Future Word Representations

Reconstructing the word vectors can reveal which
words have changed their semantics in the past
(i.e., up to time i− 1, see 3.1). If we are interested
in predicting changes in the semantics of future
word representations (i.e., after time i − 1), we
can consider a future word representation predic-
tion task: given the sequence of past word repre-
sentations W0:i−1 = [W0,W1, ...,Wi−1] over the
first i time points, we predict the future represen-
tations of the words in the vocabulary Wi:T−1 =
[Wi,Wi+1, ...,WT−1], for a sequence of overall
length |T | (see Figure 1). We follow the same
model architecture as in section 3.1, with the only
difference being the number of time steps (T − i)
used in the decoder to make |T − i| predictions.
The model is trained using the loss function Lf :

Lf =
1

T − i

T−1∑
j=i

MSE(Wj ,W
f
j ). (2)
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3.3 Joint Model

The two models can be combined into a joint one,
where, given an input sequence of representations
of the vocabulary W0:i−1 over i points in time, the
goal is both to (a) reconstruct the input sequence
and (b) predict the future word |T − i| representa-
tions Wi:T−1. The complete model architecture is
provided in Figure 1: the encoder is identical to the
one used in 3.1 and 3.2. However, the bottleneck is
now copied |T | times and passed to the decoders of
the reconstruction (|i| times) and future prediction
(|T − i| times). The loss function Lrf here is the
summation of the individual losses in Eq. 1 and 2:

(3)

Lrf =
1

i

i−1∑
j=0

MSE(Wj ,W
r
j )

+
1

T − i

T−1∑
j=i

MSE(Wj ,W
f
j ).

There are two main reasons for modelling semantic
change in this multi-task setting. Firstly, we benefit
from the finer granularity of the two decoders due
to their handling of only part of the sequence in a
more fine-grained manner, compared to the indi-
vidual task models. Secondly, the joint model is
insensitive to the value of i in Eq. 3 compared to
Eq. 1 and 2, as discussed next.

3.4 Model Equivalence

The three models perform different operations;
however, setting the operational time periods appro-
priately in Eq. 1-3 can result in model equivalence
(i.e., performing the same task). Specifically, to
detect the words whose semantics have changed
during [0, T − 1], the autoencoder (Eq. 1) needs
to be fed and reconstruct the full sequence across
[0, T − 1] (i.e., i=T -1). Reducing this interval (re-
ducing i) would limit its operational time period.
On the contrary, an increase in the value of i in
Eq. 2 of the future prediction model shortens the
time period during which it can detect the words
whose semantics have changed the most – to detect
the words whose semantics have changed within
the full sequence [1, T − 1], it requires only the
word representations W0 in the first time interval.
Therefore, setting the parameter i can be crucial for
the performance of the individual models. By con-
trast, the joint model in section 3.3 is able to detect
the words that have undergone semantic change, re-
gardless of the value of i (see Eq. 3), since it is still

able to operate on the full sequence – we showcase
these effects in section 5.2.

4 Experiments with Synthetic Data

Tasks run on artificial data have been used for
evaluation purposes in related work (Gale et al.,
1992; Schütze, 1998; Cook and Stevenson, 2010;
Kulkarni et al., 2015; Rosenfeld and Erk, 2018; Du-
bossarsky et al., 2019; Shoemark et al., 2019). In
this section, we work with artificial data as a proof-
of-concept of our proposed models – we compare
against state-of-the-art and other baseline methods
with real data in the next section. Here we employ
a longitudinal dataset of word representations (4.1)
and artificially alter the representations of a small
set of words across time (4.2). We then train (4.3)
our models and evaluate them on the basis of their
ability to identify those words that have undergone
(artificial) semantic change (4.4).

4.1 Dataset

We employ the UK Web Archive dataset (Tsaka-
lidis et al., 2019), which contains 100-dimensional
representations of 47.8K words for each year in
the period 2000-2013. These were obtained by em-
ploying word2vec (i.e., skip-gram with negative
sampling (Mikolov et al., 2013)) on the documents
published in each year independently. Note that our
models can be applied to any type of pre-trained
embeddings. Each year corresponds to a time step
in our modelling. The dataset contains 65 words
whose meaning has changed within 2001-13, as
indicated by the Oxford English Dictionary. These
are removed for the purposes of this section, to
avoid interference with the artificial data modeling.
We use one subset (80%) of the remaining longitu-
dinal word representations for training our models
and the rest (20%) for evaluation purposes.

4.2 Artificial Examples of Semantic Change

We generate artificial examples of words with
changing semantics, by following a paradigm in-
spired by Rosenfeld and Erk (2018). We uniformly
at random select 5% of the words in the test set to
alter their semantics. For every selected “source”
word α, we select a “target” word β (details about
the selection process of β are provided in the next
paragraph). We then alter the representation w(α)

t

of the source word α at each point in time t so
that it shifts towards the representation w(β)

t of the
target word at this point in time as:
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w
∗(α)
t = λtw

(α)
t + (1− λt)w(β)

t . (4)

Following Rosenfeld and Erk (2018), we model λt
via a sigmoid function. λt receives values within
[0, 1] and acts as a decay function that controls the
speed of change in the source word’s semantics to-
wards the target. Thus, the semantic representation
of α is not altered during the first time points and
then it gradually shifts towards the representation
of β (for middle values of t), where it stabilizes to-
wards the last time points. Since the duration of the
semantic shift of a word may vary, we experiment
under different scenarios (see “Conditioning on Du-
ration of Change” below). Alternative modelling
approaches of artificial semantic change have been
presented in Shoemark et al. (2019) – e.g., forcing
a word to acquire a new sense while also retaining
its original meaning. We opted for the “stronger”
case of semantic shift (Eq. 4) as a proof-of-concept
for our models. In section 5 we experiment with
real-world data, without any assumptions about the
form of the function underlying semantic change.

Conditioning on Target Words The selection
of the target words should be such that they allow
the representation of the source word to change
through time (Dubossarsky et al., 2019). This will
not be the case if we select a pair of {α, β} {source,
target} words whose representations are very simi-
lar (e.g., synonyms). Thus, for each source word
α we select uniformly at random a target word β
s.t. the cosine similarity of their representations at
the initial time point (i.e., in the year 2000) falls
within a certain range (c − 0.1, c]. Higher val-
ues of c enforce a lower semantic change level
for α through time, since its representation will be
shifted towards a similar word β, and vice versa. To
assess model performance across different levels
of semantic change, we experiment with varying
c = {0.0, 0.1, ..., 0.5}.

Conditioning on Duration of Change The du-
ration of semantic change affects the value of λt in
Eq. 4. We conventionally set λ07 = 0.5, s.t. the ar-
tificial word representation w∗(α)

07 of a source word
α in 2007 (i.e., the midpoint between 2001-2013)
to be equal to 0.5(w

(α)
07 + w

(β)
07 ). We then experi-

ment with four different duration [start, end] ranges
for the semantic change: (a) “Full” [2001-13], (b)
“Half” [2005-10], (c) “OT” (One-Third) [2006-09]
and (d) “Quarter” [2007-08]. A longer lasting se-
mantic change duration implies a smoother transi-
tion of word α towards the meaning of word β, and

vice versa (see Figure 2). By generating synthetic
examples of varying semantic change duration we
are able to measure model performance under dif-
ferent conditions.

Figure 2: The different functions used to model λt in
Eq. 4, indicating the speed and duration of semantic
change of our synthetic examples (see section 4.2).

4.3 Artificial Data Experiment
Our task is to rank the words in the test set by
means of their level of semantic change. We first
train our three models on the training set and then
we apply them on the test set. Finally, we measure
the level of semantic change of a word by means of
the average cosine similarity between the predicted
and actual word representations at each time step
of the decoder. Model performance is assessed via
rank-based metrics (Basile and McGillivray, 2018;
Tsakalidis et al., 2019; Shoemark et al., 2019).

Model Training We define and train our models
as follows:

• seq2seqr: the autoencoder (section 3.1) re-
ceives and reconstructs the full sequence of
the word representations in the training set:
[W00, ...,W13]→ [W r

00, ...,W
r
13].

• seq2seqf : the future prediction model (sec-
tion 3.2) receives the representation of the
words in the training set in the year 2000
and learns to predict the rest of the sequence:
[W00]→ [W f

01, ...,W
f
13].

• seq2seqrf : the multi-task model (sec-
tion 3.3) is fed with the first half of the se-
quence of the word representations in the train-
ing set and jointly learns to (a) reconstruct the
input sequence and (b) predict the word rep-
resentations in the future: [W00, ...,W06] →
{[W r

00, ...,W
r
06], [W f

07, ...,W
f
13]}.
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We have a different number of timesteps for
seq2seqr and seq2seqf in their input, so that
the decoder in each model operates on the maxi-
mum possible output sequence, thus exploiting the
semantic change of the words over the whole time
period (see section 3.4). seq2seqrf is expected
to be insensitive to the number of input time steps,
therefore we conventionally set it to half of the
overall sequence. We keep 25% of our training set
for validation purposes and train our models using
the Adam optimiser (Kingma and Ba, 2015). We
select the best parameters after 25 trials using the
Tree of Parzen Estimators algorithm of the hyper-
opt module (Bergstra et al., 2013), by means of
the maximum average (i.e., per time step) cosine
similarity in the validation set.3

Testing and Evaluation After training, each
model is applied to the test set, yielding its pre-
dictions for every word through time.4 The level
of semantic change of a word is then calculated
via the average cosine similarity between the ac-
tual and the predicted word representations through
time, with higher values indicating a better model
prediction (thus, a lower level of semantic change).
The words are ranked on ascending order of their
average cosine similarity, with the first ranks indi-
cating words whose representations have changed
the most (low cosine similarity). For evaluation,
similarly to Tsakalidis et al. (2019), we employ the
average rank across all of the semantically changed
words (in %, denoted here as µr), with lower scores
indicating a better model. We prefer µr to the mean
reciprocal rank, because the latter emphasises the
first rankings. Since semantic change detection is
an under-explored task in quantitative terms, we
aim at getting better insights on model performance
by working with an averaging metric. For the same
reason we avoid using classification-based metrics
that are based on a cut-off point (e.g., recall at k
(Basile and McGillivray, 2018)). We do make use
of such metrics in the cross-model comparison with
real data (section 5.2).

4.4 Results

Model Comparison Figure 3 presents the results
of the three models on our synthetic data across
all (c, λ) combinations. seq2seqrf performs

3For the complete list of parameters that were tested in all
models/baselines in our work, refer to Appendix A.

4Note that the future prediction model does not make a
prediction for the first time step (year 2000).

consistently better than the individual (seq2seqr,
seq2seqf ) models in µr, showing that combining
the two models under a multi-task setting benefits
from the joint and finer-grained parameter tuning of
the two components. seq2seqr performs slightly
better than seq2seqf , probably due to the autoen-
coder having to output a longer sequence (i.e., due
toW r

00), which helps explore the temporal variation
of the words more effectively.

Figure 4 shows the cosine similarity between
the predicted and actual representation of each
synthetic word per time step for the “Full” case
when c=0.0 (highest level of change, see sec-
tion 4.2). seq2seqr reconstructs the input se-
quence of synthetic examples more accurately than
the future prediction component (average cosine
similarity per year (avg cos): .65 vs .50). It
particularly manages to reconstruct the synthetic
word representations during the years 2006-2008
(avg cos06:08=.75), which are the points when
λt varies more rapidly (see Figure 2); however,
it fails to reconstruct equally well their repre-
sentations before (avg cos00:05= .65) and after
(avg cos09:13= .59) this sharp change. On the con-
trary, seq2seqf predicts more accurately the syn-
thetic word representations during the first years
(avg cos01:05 = .74), when the change in their se-
mantics is minor, but (correctly) fails after the
semantic change is almost complete (i.e., when
λt ≤ .25, avg cos09:13= .24). seq2seqrf bene-
fits from the individual components’ advantage: it
appropriately reconstructs the artificial examples
in the first years (avg cos00:05 = .85) so that their
semantic shift is highlighted more clearly during
(avg cos06:08= .62) and after the process is almost
complete (avg cos09:13= .26). Finally, avg cos in
seq2seqrf highly correlates with λt (ρ=.987),
potentially providing insights on how to measure
the speed of semantic change of a word.

Effect of Conditioning Parameters Regardless
of the duration of the semantic change process, an
increase in the value of c results in model perfor-
mance degradation. This is expected, since the in-
crease of c implies that the level of semantic change
of the source words is lower, as discussed in 4.2,
thus making the task of detecting them more diffi-
cult. Nevertheless, our worst performing model in
the most challenging setting (c=0.5, Full, seq2seqf )
achieves µr=28.17, which is clearly better than the
µr expected by a random baseline (µr=50.00).

The decrease of the duration of semantic change
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(a) Full (b) Half (c) OT (d) Quarter

Figure 3: µr of our models on the synthetic dataset for different values of the threshold c (x-axis) and the different
periods of duration of semantic change (one per chart, see 4.2). Lower µr values indicate a better performance.

(a) seq2seqr (b) seq2seqf (c) seq2seqrf

Figure 4: Cosine similarity between the actual and
the predicted vectors of the synthetic words that have
undergone artificial semantic change (rows), per year
(columns). Light colours indicate inaccurate model pre-
dictions of the word vectors – i.e., indicating that the
associated words have undergone semantic change.

has a positive effect on our models (see Figure 3).
This is more evident in the cases of high value of c,
where seq2seqr (µr: 26.09-18.21 in the Full-to-
Quarter cases), seq2seqf (µr: 28.17-22.48) and
seq2seqrf (µr:20.38-13.09) show clear gains in
performance. This indicates that our models can
capture the semantic change in small subsequences
of the time-series. Studying this effect in datasets
of longer duration is an important future direction.

5 Model Comparison with Real Data

5.1 Experimental Setting
We approach the task in a rank-based manner, as
in section 4. However, here we are interested in
detecting real-world examples of semantic change
in words and comparing our models against strong
baselines and current practices.

Data and Task We employ the UK Web Archive
dataset (see section 4.1). We keep the same 80/20
train/test split as in section 4 and incorporate in
the test set the 65 words with known changes in
meaning according to the Oxford English Dictio-
nary. We train our models as in section 4.3, aiming
at detecting the 65 words in the test set. We use
µr (as in section 4) and recall at k (Rec@k, k=5%,
10%, 50%) as our evaluation metrics. We refrain

from using precision at k, since Oxford English
Dictionary is not expected to have a full coverage
of the semantically shifted words. Lower µr and
higher Rec@k scores indicate better models.

Models We compare the three variants from sec-
tion 3 against four types of baselines:
– A random word rank generator (RAND). We report
average metrics after 1K runs on the test set.

– Variants of Procrustes Alignment, as a common
practice in past work: Given word representations
in two different years [W0, Wi] centered around
the origin and s.t. tr(WkW

T
k ) = 1, PROCR trans-

forms Wi into W ∗i s.t. the squared differences
between W0 and W ∗i are minimised. We also
use the PROCRk and PROCRkt variants (Tsakalidis
et al., 2019), which first detect the k most stable
words across either [W0, Wi] (PROCRk) or [W0, ...,
WT−1] (PROCRkt) to learn the alignment and then
transform Wi into W ∗i . Words are ranked based on
the cosine distance between [W0, W ∗i ].

– Models leveraging the first and last word represen-
tations only. We use a Random Forest (Breiman,
2001) regression model (RF) that predicts Wi,
given W0. We also use the same architectures pre-
sented in sections 3.1-3.2, trained on [W0, Wi] (ig-
noring the full sequence): LSTMr reconstructs the
sequence [W0, Wi]; LSTMf predictsWi, givenW0,
similarly to RF. Words are ranked in ascending or-
der of the (average, for LSTMr) cosine similarity
between their predicted and actual representations.
– Models operating on the time series of distances.
Given a sequence of vectors [W0, ..., Wi], we con-
struct the time series of cosine distances that result
by PROCR. Then, we use two global trend models
(Shoemark et al., 2019): GTc ranks the words by
means of the absolute value of the Pearson corre-
lation of their time series; GTβ fits a linear regres-
sion model for every word and ranks the words
by the absolute value of the slope. Finally, we
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µr Rec@5 Rec@10 Rec@50
’00-’13 avg±std ’00-’13 avg±std ’00-’13 avg±std ’00-’13 avg±std

[=[
Pa

st
W

or
k/

B
as

el
in

es
! RAND 49.97 50.01±0.04 5.00 4.99±0.03 10.01 9.98±0.04 50.02 49.97±0.08

PROCR 30.63 28.51±2.68 18.46 14.32±5.00 27.69 29.94±4.64 78.46 80.47±3.79
PROCRk 31.01 28.67±2.73 21.54 14.91±4.75 27.69 30.18±4.42 75.38 79.53±4.50
PROCRkt 31.91 28.47±2.85 20.00 14.32±4.23 27.69 28.88±4.45 70.77 80.00±4.53
RF 30.01 30.45±4.15 10.77 15.62±4.30 21.54 27.46±7.16 78.46 77.63±6.42
LSTMr 27.87 27.83±2.65 12.31 15.98±5.94 29.23 30.30±6.39 80.00 80.12±4.72
LSTMf 28.62 28.61±3.47 16.92 17.40±5.60 32.31 31.83±6.07 76.92 78.82±4.83
GTc 47.87 44.04±1.54 7.69 7.41±2.26 16.92 14.13±3.76 52.31 57.90±2.94
GTβ 38.09 36.16±1.74 13.85 14.83±4.14 24.62 23.36±3.94 66.15 69.37±3.26
PROCR˙∗ 25.01 27.99±3.03 21.54 15.15 ±4.52 32.31 28.40±3.75 81.54 80.24±3.49

[=[

O
ur

s! seq2seqr 24.75 28.36±3.38 21.54 19.05±4.47 38.46 29.94±6.64 84.62 81.42±4.64
seq2seqf 23.86 27.17±4.16 26.15 22.01±6.72 46.15 34.32±10.13 84.62 81.18±5.07
seq2seqrf 24.28 24.29±0.67 29.23 25.77±2.28 36.92 39.49±2.11 84.62 85.00±1.16

Table 1: Model comparison when operating on the entire time sequence
(2000-13) and averaged across time (2000-01, ..., 2000-13). Past work and
baseline models shown in the table are defined in section 5.1 (“Models”).

Figure 5: µr of our models for
varying value of i (Eq. 1–3).5For
the complete results, refer to Ap-
pendix B.

employ PROCR∗, ranking words based on the aver-
age cosine distance within [0, i]; this is similar to
the “Mean Distances” model used in Rodina et al.
(2019), with the difference that the distances at
time point i are calculated by measuring the cosine
distance resulting from the alignment against the
initial time point 0 and not against i− 1.6

We report the performance of the models (a)
when they operate on the full interval [2000-13]
and (b) averaged across all intervals [2000-01, ...,
2000-13]. In (b), our models use additional (fu-
ture) information compared to our baselines; when
seq2seqf is fed with the word sequences of
[2000, 2001], it makes a prediction for the years
[2002, ..., 2013] – such information cannot be lever-
aged by the baselines. Thus, for (b), we only per-
form intra-model (and intra-baseline) comparisons.

5.2 Results

Our models vs baselines Results are shown in
Table 1. The three proposed models consistently
achieve the lowest µr and highest Rec@k when
working on the whole time sequence (’00-’13
columns). The comparison between {seq2seqr,
LSTMr} and {seq2seqf , LSTMf} in the years
2000-13 showcases the benefit of modelling the
full sequence of the word representations across
time, compared to using the first and last represen-
tations only. Our models provide a relative boost of
4.6% in µr and [35.7%, 42.8%, 5.8%] in Rec@k
(for k=[5, 10, 50]) compared to the best perform-

5Example (2005 in x-axis): The sequence of the word
representations until 2005 is the input to all of our models.
Then, seq2seqr reconstructs the word representations up to
2005, seq2seqf predicts the future representations (2006,
..., 2013) and seq2seqrf performs both tasks jointly.

6We refrain from evaluating the GT models when i ≤2,
due to the very short time interval that does not allow for corre-
lations to appear in the data, leading to very poor performance.

ing baseline. seq2seqf and seq2seqrf models
outperform the autoencoder (seq2seqr) in most
metrics, while seq2seqrf yields the most stable
results across all runs. We explore these differences
in detail in the last paragraph of this section.

Intra-baseline comparison Models operating
only on the first and last word representations fail to
confidently outperform the Procrustes-based base-
lines, demonstrating again the weakness of operat-
ing in a non-sequential manner. The LSTM mod-
els achieve low µr on the 2000-13 experiments;
however, the difference with the rest of the base-
lines in µr across all years is negligible. The intra-
Procrustes model comparison shows that the benefit
of selecting a few anchor words to learn a better
alignment (PROCRk, PROCRkt) shown in Tsaka-
lidis et al. (2019) in examining semantic change
over two consecutive years might not apply when
examining a longer time period. Finally, contrary to
Shoemark et al. (2019), we find that time sensitive
models operating on the word distances across time
(GTc, GTβ) perform worse than the baselines that
leverage only the first and last word representations.
This difference is attributed to the low number of
time steps in our dataset that does not allow the GT
models to exploit long-term correlations (i.e., con-
sidering the average distance across time (PROCR∗)
performs better), but also highlights the importance
of leveraging the full word sequence across time.

Effect of input/output lengths Figure 5 shows
the µr of our three variants when we alter the length
of the input and output (see section 3.4). The per-
formance of seq2seqr increases with the input
size since by definition the decoder is able to de-
tect words whose semantics have changed over a
longer period of time (i.e., within [2000, i], with
i increasing), while also modelling a longer se-
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Figure 6: Cosine distances (actual vs predicted vectors)
of each semantically shifted word (as indicated by the
Oxford English Dictionary), per year. Lighter colours
indicate better model performance – thus, lower level
of semantic change predicted by our joint model.

quence of a word’s representation through time.
On the contrary, the performance of seq2seqf
increases alongside the decrease of the number
of input time steps. This is expected since, as i
decreases, seq2seqf encodes a shorter input se-
quence and the decoding (and hence the semantic
change detection) is applied on the remaining (and
increased number of) time steps within [i+1, 2013].
These findings provide empirical evidence that both
models can achieve better performance if trained
over longer sequences of time steps. Finally, the
stability of seq2seqrf showcases its input length-
invariant nature, which is also clearly evident in
all of the averaged results (standard deviation in
avg±std columns) in Table 1: in its worst perform-
ing setting, seq2seqrf still manages to achieve

results that are close to the best performing model
(µr=25.17, Rec@k=[21.54, 36.92, 83.08] for the
three thresholds) and always better (or equal to)
the best performing baseline shown in Table 1 in
Rec@k. This is a very attractive aspect of the
model as it removes the need to manually define
the number of time steps to be fed to the encoder.

Words with shifted meaning Figure 6 shows
the cosine distances between the actual and pre-
dicted vectors of the 65 words that acquired a
new meaning between 2001-2013. The distances
are calculated by applying the seq2seqrf model
(trained as in section 4.3) on the test set. The words
are ranked based on their average cosine distance
throughout the years such that the words in the first
rows form more challenging examples for detect-
ing their semantic shift. Despite that some of these
words have acquired an additional meaning in the
context of social networks (e.g., “like”, “unlike”),
this is not effectively captured by their vectors. Util-
ising contextual representations (Giulianelli et al.,
2020) in our models can be more effective for cap-
turing such cases in future work.

6 Conclusion and Future Work

We introduce three sequential models for semantic
change detection that effectively exploit the full
sequence of a word’s representations through time
to determine its level of semantic change. Through
extensive experiments on synthetic and real data we
showcase the effectiveness of the proposed mod-
els under various settings and in comparison to
state-of-the-art on the UK Web Archive dataset.
Importantly, we show that their performance in-
creases alongside the duration of the time period
under study, confidently outperforming competitive
models and common practices on semantic change.

Future work can use anomaly detection ap-
proaches operating on our model’s predicted word
vectors to detect anomalies in a word’s represen-
tation across time. We also plan to investigate dif-
ferent architectures, such as Variational Autoen-
coders (Kingma and Welling, 2014), and incorpo-
rate contextual representations (Devlin et al., 2019;
Hu et al., 2019) to detect new senses of words. A
limitation of our work is that it has been tested on
a single dataset, where 65 words have undergone
semantic change; testing our models in datasets of
different duration and in different languages will
provide clearer evidence of their effectiveness.
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A List of Hyperparameters

Our models We test the following hyper-
parameters for our seq2seqr/f/rf models:

• encoder LSTM0, number of units: [128, 256,
512] ([32,64,128,256,512] for seq2seqf ).

• encoder LSTM1, number of units: [32, 64]

• decoder LSTM0, number of units: [32, 64]
(x2, for the case of seq2seqrf – for (a) the
autoencoding and (b) future prediction com-
ponent)

• decoder LSTM1, number of units: [128,
256, 512] (x2, for the case of seq2seqrf ;
[32,64,128,256,512] for seq2seqf ).

• dropout rate in dropout layers: [.1, .25, .5]

• batch size: [32, 64, 128, 256, 512, 1024]

• number of epochs: [10, 20, 30, 40, 50]

We optimise our parameters using the Adam op-
timiser in keras, using the default learning rate
(.001).

Baselines We experiment with the following
hyper-parameters per model:

• LSTMr/f : we follow the exact same settings
as in our seq2seqr and seq2seqf models, re-
spectively.

• RF: we experiment with the number of trees
([50, 100, 150, 200]) and select the best model
based on the maximum average cosine simi-
larity across all predictions, as in our models.

• PROCRk/kt: we experiment with different rate
[.001, .01, .05, .1, .2, ... .9] of anchor (or
diachronic anchor) words on the basis of the
size of the test set. We select to display in our
results the best model based on the average
performance in the test set (k=.9 for PROCRk,
k=.5 for PROCRkt).

• GTc: we explore different correlation met-
rics (Spearman Rank, Pearson Correlation,
Kendall Tau) and select to display the best one
(Pearson Correlation) on the basis of its aver-
age performance on the test set across all ex-
periments. Due to the very poor performance
of all metrics when operating on a small num-
ber of time-steps (≤ 2), we only provide the
results in Table 1 (avg±std columns) when
these models operate on longer sequences.

• PROCR, PROCR∗, GTβ , RAND: there are no
hyper-parameter to tune in these models. In
terms of preprocessing, for all PROCR-based
baselines, we first subtract the mean and then
we divide each matrix by its Frobenius norm,
so that the resulting (transformed) matrices
are in the same space.

B Complete Results on Real Data

The complete list of results (µr) of all models in all
of the experiments with real data (section 5, Table 1
and Figure 5) are provided in Table 2. The interpre-
tation of the “year” for each model is provided in
Table 3.
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year PROCR PROCRk PROCRkt RF LSTMr LSTMf GTβ GTc PROCR∗ seq2seqr seq2seqf seq2seqrf
2000 - - - - - - - - - - 23.86 -
2001 34.26 34.54 34.43 37.35 33.67 36.43 - - 34.26 33.66 23.52 23.67
2002 32.70 32.64 32.41 34.94 31.20 32.98 - - 32.98 34.06 23.39 23.42
2003 29.24 29.56 29.41 36.94 30.32 32.57 37.59 43.34 31.02 32.44 23.84 23.47
2004 25.46 25.35 25.03 27.25 24.66 26.08 35.43 42.98 28.68 30.01 24.21 23.50
2005 29.04 29.40 28.65 31.43 28.98 29.17 38.47 44.47 28.23 29.05 24.77 23.93
2006 27.73 27.89 27.38 28.86 26.61 26.55 38.74 44.45 27.71 28.58 25.62 24.28
2007 26.70 26.75 26.64 30.16 25.45 26.39 34.16 41.93 26.98 28.09 26.53 25.17
2008 28.30 28.34 27.87 32.77 26.25 27.86 35.02 42.86 26.72 27.38 27.30 24.44
2009 26.10 26.04 25.81 23.27 24.97 23.73 34.23 43.24 26.15 25.71 29.50 24.72
2010 27.95 27.96 27.38 28.25 28.18 28.19 36.04 44.77 25.81 25.84 30.91 24.83
2011 25.71 25.85 25.74 28.15 26.07 26.24 34.78 43.99 25.31 24.65 33.65 25.14
2012 26.77 27.34 27.44 26.51 27.52 27.12 35.18 44.53 24.94 24.42 36.09 24.93
2013 30.63 31.01 31.91 30.01 27.87 28.62 38.09 47.87 25.01 24.75 - -

AVERAGE 28.51 28.67 28.47 30.45 27.83 28.61 36.16 44.04 27.99 28.36 27.17 24.29

Table 2: Complete µr scores across all runs.

Model Explanation Example (year=2006)
PROCR
PROCRk
PROCRkt

Date to use for aligning the word
vectors with their corresponding
ones in the year 2000.

The model aligns the word vectors in the year
2006 with the word vectors in the year 2000.

LSTMr

The date indicating the word vectors to
reconstruct, along with those in the first
time-step.

LSTMr receives as input the word vectors in the
years 2000 and 2006 and reconstructs them.

LSTMf ,
RF

The date indicating the word vectors to
predict.

LSTMf /RF receives the word vectors in the year
2000 & predicts the word vectors in the year 2006.

PROCR∗,
GTc,
GTβ

Cut-off date to use for constructing
the time series of the cosine distances.

The time series of cosine distances of every word
are constructed based on the years [2000-2006].

seq2seqr
Cut-off date in the input, indicating
the range of years to reconstruct.

seq2seqr is fed with the word representations
in the years [2000-2006] and reconstructs them.

seq2seqf
Cut-off date in the input, affecting
the range of years to predict.

seq2seqf predicts the word vectors during the
years [2007-2013], given the vectors during the
years [2000-2006] as input.

seq2seqrf
Cut-off date in the input, indicating
the range of years to reconstruct &
affecting the range of dates to predict.

seq2seqrf receives the word vectors during the
years [2000-2006] and (a) reconstructs them & (b)
predicts their representations in [2007-2013].

Table 3: Explanation of the variable “year” in Table 2.


