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Abstract
Evaluation of grammatical error correction
(GEC) systems has primarily focused on es-
says written by non-native learners of English,
which however is only part of the full spectrum
of GEC applications. We aim to broaden the
target domain of GEC and release CWEB, a
new benchmark for GEC consisting of website
text generated by English speakers of varying
levels of proficiency. Website data is a com-
mon and important domain that contains far
fewer grammatical errors than learner essays,
which we show presents a challenge to state-
of-the-art GEC systems. We demonstrate that
a factor behind this is the inability of systems
to rely on a strong internal language model
in low error density domains. We hope this
work shall facilitate the development of open-
domain GEC models that generalize to differ-
ent topics and genres.

1 Introduction

Grammatical error correction (GEC) is the task of
automatically editing text to remove grammatical
errors; for example: [A link to registration can also
be found at on the same page.]. GEC systems so
far have primarily focused on correcting essays
produced by English-as-a-second-language (ESL)
learners, providing fast and inexpensive feedback
to facilitate language learning. However, this is
only one target domain in the full spectrum of GEC
applications. GEC models can also help to improve
written communication outside of the formal edu-
cation setting. Today the largest medium of written
communication is the internet, with approximately
380 new websites created every minute.1 Ensuring
grammatical correctness of websites helps facilitate
clear communication and a professional commer-
cial presentation. Therefore, it is important that

∗Research conducted at Siteimprove.
1https://www.millforbusiness.com/
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Figure 1: Percentage of erroneous tokens per domain.
CWEB-G/S are our newly devised datasets.

GEC models perform well in the open-domain set-
ting and generalize, not only to writing produced
in the educational context, but also to language
production “in the wild”. Website data specifically
represent a broad and diverse range of writing and
constitute a major part of what people read and
write on an everyday basis.

This work highlights two major prevailing chal-
lenges of current approaches to GEC: domain adap-
tation and low precision in texts with low error den-
sity. Previous work has primarily targeted essay-
style text with high error density (see Figure 1);
however, this lack of diversity means that it is not
clear how systems perform on other domains and
under different error distributions (Sakaguchi et al.,
2017).2

Current publicly available datasets are restricted
to non-native English essays [e.g. FCE (Yan-
nakoudakis et al., 2011); CoNLL14 (Ng et al.,

2Leacock et al. (2010) highlighted the variations in the
distribution of errors in non-native and native English writings.

https://www.millforbusiness.com/how-many-websites-are-there/
https://www.millforbusiness.com/how-many-websites-are-there/
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Error type Example sentence

VERB:SVA They develop positive relationships with swimmers and members, and promotes promote
programs in order to generate more participation.

MORPH / ORTH In a small agriculture agricultural town on the east side of Washington state State called
Yakima.

PREP [. . . ] the distance between the two should be on of the order of 50 microns.

Table 1: Example sentences from the CWEB dataset. Erroneous text is struck through and corrections are in bold.

2014)], student essays [W&I+LOCNESS (Bryant
et al., 2019; Granger, 1998)] or target a specific
domain [scientific writing; AESW (Daudaravicius
et al., 2016)]. Supervised systems trained on
specific domains are less likely to be as effective at
correcting distinctive errors from other domains,
as is the case for systems trained on learner data
with different native languages (Chollampatt
et al., 2016; Nadejde and Tetreault, 2019). The
recent BEA 2019 shared task (Bryant et al., 2019)
encouraged research in the use of low-resource
and unsupervised approaches; however, evaluation
primarily targeted the restricted domain of student
essays. We show that when applied to data
outside of the language learning domain, current
state-of-the-art systems exhibit low precision
due to a tendency to over-predict errors. Recent
work tackled the domain adaptation problem,
and released GEC benchmarks from Wikipedia
data and online comments [GMEG Wiki+Yahoo
(Napoles et al., 2019)]. However, these datasets
present a high density of errors and represent a
limited subset of the full distribution of errors in
online writing.

Contributions: We (i) release a new dataset,
CWEB (Corrected Websites), of website data that
is corrected for grammatical errors;3 (ii) system-
atically compare it to previously released GEC
corpora; (iii) benchmark current state-of-the-art
GEC approaches on this data and demonstrate that
they are heavily biased towards existing datasets
with high error density, even after fine-tuning
on our target domain; (iv) perform an analysis
showing that a factor behind the performance
drop is the inability of systems to rely on a strong
internal language model in low error density
domains.

We hope that the new dataset will contribute
towards the development of robust GEC models in
the open-domain setting.

3https://github.com/SimonHFL/CWEB

CWEB-S CWEB-G Total

D
ev

sent. 2,862 3,867 6,729
tokens 68,857 79,689 148,546
edits 895 1595 2490

Te
st

sent. 2,864 3,981 6,845
tokens 68,459 80,684 149,143
edits 1004 1679 2683

To
ta

l sent. 5,726 7,848 13,574
tokens 137,316 160,373 297,689

websites 453 625 1,078
parag. 659 630 1,289

Table 2: Distribution of sentences and tokens in the
CWEB dataset.

2 CWEB Dataset

We create a new dataset of English texts from ran-
domly sampled websites, and annotate it for gram-
matical errors. The source texts are randomly se-
lected from the first 18 dumps of the Common-
Crawl4 dataset and represent a wide range of data
seen online such as blogs, magazines, corporate
or educational websites. These include texts writ-
ten by native or non-native English speakers and
professional as well as amateur online writers.

Text Extraction To ensure English content, we
exclude websites with country-code top-level do-
mains; e.g., .fr, .de. We use the jusText5 tool to
retrieve the content from HTML pages (removing
boilerplate elements and splitting the content into
paragraphs). We heavily filter the data by removing
paragraphs which contain non-English6 and incom-
plete sentences. To ensure diversity of the data,
we also remove duplicate sentences. Among the
million sentences gathered, we select paragraphs
randomly.

We split the data with respect to where they

4https://commoncrawl.org/
5https://github.com/miso-belica/

jusText
6Using the langdetect package.

https://github.com/SimonHFL/CWEB
https://commoncrawl.org/
https://github.com/miso-belica/jusText
https://github.com/miso-belica/jusText
https://github.com/Mimino666/langdetect
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# sents type-token tok/sent err. sents (%) edits/sent # annotators sent-K NEs/sents

JFLEG 747 0.44 18.9 86.4 3.6 4 0.53 0.35

FCE 2,695 0.39 15.6 67.8 2.6 1 -† 0.59

CoNLL14 1,312 0.39 22.9 75.8 2.7 2 0.25 0.31

W&I-A 1,036 0.43 18.0 80.5 3.6 1 -† 0.58
W&I-B 1,285 0.45 18.4 72.1 2.7 1 -† 0.52
W&I-C 1,068 0.47 20.1 53.8 1.9 1 -† 0.78

LOCNESS 988 0.47 23.4 52.2 1.8 1 -† 0.77

GMEG wiki 992 0.55 26.9 82.3 2.5 4 0.43 2.83
GMEG yahoo 1,000 0.46 16.9 50.5 2.7 4 0.51 0.59

AESW 52,124 0.52 23.9 36.1 1.6 1 -† 0.93

CWEB-S 2,864 0.56 23.9 24.5 1.5 2 0.39 1.44
CWEB-G 3,981 0.53 20.3 25.6 1.9 2 0.44 1.04

Table 3: Statistics on GEC Corpora; type–token is the average ratio of vocabulary size by the total number of
tokens (calculated as an average over a sliding window of 1, 000 tokens); ratio of edits per sentence is calculated on
erroneous sentences; sent-K is sentence-level Cohen’s Kappa score (†: calculated for datasets with > 1 annotator);
NEs stands for Named Entities (extracted using Spacy).

come from: sponsored7 (CWEB-S) or generic8

(CWEB-G) websites. The sponsored data repre-
sent a more focused domain (professional writing)
than the generic one which includes writing from
various proficiency levels.

Annotation The data is corrected for errors by
two expert annotators, trained for correcting gram-
matical errors in English text: not attempting to
rewrite the text nor make fluency edits, but rather
to make minimal edits – minimum number of edits
to make the text grammatical. During error an-
notation, the annotators have access to the entire
paragraph in which a sentence belongs, therefore
using the context of a sentence to help them in
the correction. Examples of erroneous sentences
from our data are shown in Table 1. Annotator
agreement is calculated at the sentence level using
Cohen’s Kappa, i.e. we calculate whether annota-
tors agree on which sentences are erroneous. This
approach is preferable to relying on exact match-
ing of error corrections, as as there are often many
different ways to correct a sentence (Bryant and
Ng, 2015). Kappa is 0.39 and 0.44 for sponsored
(CWEB-S) and generic website (CWEB-G) data re-
spectively, and Table 3 presents how our agreement
results compare to those of existing GEC datasets.
The table also includes a number of other statis-
tics, and the different datasets are further analyzed,
compared and contrasted in Section 5.

7top-level domains: .gov, .edu, .mil, .int, and .museum.
8top-level domains: .com, .info, .net, .org.

The texts are tokenized using SpaCy9 and au-
tomatically labeled for error types (and converted
into the M2 format) using the ERRor ANnotation
Toolkit (ERRANT) (Bryant et al., 2017).

Release For each dataset, we release a develop-
ment and a test set: we propose a roughly equal di-
vision of the data into the two splits, which presents
a fair amount of errors to evaluate on (see Table 2).

To avoid copyright restrictions, we split the col-
lected paragraphs into sentences and shuffle all
sentences in order to break the original and co-
herent structure that would be needed to repro-
duce the copyrighted material. This approach
has successfully been used in previous work for
devising web-based corpora (Schäfer, 2015; Bie-
mann et al., 2007). The data is available at https:
//github.com/SimonHFL/CWEB.

3 GEC Corpora

We compare our data with existing GEC corpora
which cover a range of domains and proficiency lev-
els. Table 3 presents a number of different statistics
and Table 4 their error-type frequencies.10

3.1 English as a second language (ESL)

JFLEG (Napoles et al., 2017) The JHU Fluency-
Extended GUG corpus consists of sentences writ-
ten by English language learners (with different
proficiency levels and L1s) for the TOEFL® exam,

9https://spacy.io/
10See links to downloadable versions in Appendix A

https://github.com/SimonHFL/CWEB
https://github.com/SimonHFL/CWEB
https://spacy.io/
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JFLEG FCE 2.1 CoNLL14 W&I LOCNESS GMEG AESW CWEB

A B C Wiki Yahoo G S

PUNCT 147.7 112.3 65.5 244.8 188.2 100.4 152.3 230.0 194.0 80.6 48.9 48.7
VERB 233.5 176.7 200.5 300.0 202.5 79.4 19.9 48.1 24.2 17.8 23.4 13.1
OTHER 295.6 138.3 158.1 237.3 136.7 57.4 43.3 93.8 98.0 42.7 31.6 21.0
DET 180.7 149.1 134.9 159.1 124.1 65.8 16.4 40.3 22.6 33.7 20.9 19.7
NOUN 167.7 105.4 116.8 139.8 89.0 49.9 32.4 63.6 26.2 16.8 19.6 12.8
PREP 107.1 113.8 92.7 137.2 114.4 64.9 28.1 37.1 21.1 11.4 15.6 9.8
SPELL 242.5 107.8 26.0 79.3 36.3 16.3 51.0 86.9 68.0 5.1 3.8 2.4

ALL 1675.6 1084.9 919.6 1561.2 1050.7 504.1 400.6 732.3 635.3 239.2 208.9 147.2

Table 4: Number of error occurrences for the most frequent error types (per 10, 000 token).

covering a range of topics. Texts have been cor-
rected for grammatical errors and fluency.

FCE (Yannakoudakis et al., 2011) consists of
1, 244 error corrected texts produced by learners
taking the First Certificate in English exam, which
assesses English at an upper-intermediate level. We
use the data split made available for the BEA GEC
shared task 2019 (Bryant et al., 2019).

CoNLL14 (Ng et al., 2014) consists of (mostly
argumentative) essays written by ESL learners
from the National University of Singapore, which
are annotated for grammatical errors by two native
speakers of English.

Write&Improve (W&I) (Bryant et al., 2019)
Cambridge English Write & Improve (Yan-
nakoudakis et al., 2018) is an online web platform
that automatically provides diagnostic feedback to
non-native English-language learners, including an
overall language proficiency score based on the
Common European Framework of Reference for
Languages (CEFR).11 The W&I corpus contains
3, 600 texts across 3 different CEFR levels – A (be-
ginner), B (intermediate), and C (advanced) – that
have been annotated for errors.12

3.2 Other Corpora
LOCNESS (Bryant et al., 2019; Granger, 1998)
The LOCNESS corpus consists of essays written
by native English students. A sample of 100 es-
says has been annotated for errors with a 50:50
development/test split.13

GMEG Wiki (Napoles et al., 2019) is devised
based on edits in the Wikipedia revision history,

11https://www.cambridgeenglish.org/
exams-and-tests/cefr/

12Since error corrections on test sets are not publicly avail-
able, we carry out our analyses on the development sets.

13See footnote 12.

and the writing therefore represents formal articles.
Note that collecting sentences based on edits in the
Wikipedia revision history introduces a substantial
bias.14 This means that evaluation results on this
benchmark are not truly representative of how a
system would perform when applied to realistic
online data and full-length articles.

GMEG Yahoo (Napoles et al., 2019) comprises
paragraphs of informal web posts gathered from
answers in the Yahoo! Answers platform. The
style is informal, and contains slang terms and non-
conventional mechanics.

AESW (Daudaravicius et al., 2016) was released
as part of the Automated Evaluation of Scientific
Writing Shared Task. It is a collection of text
extracts from published journal articles (mostly
in physics and mathematics) along with their
(sentence-aligned) corrected counterparts.15

4 System Performance

We evaluate performance on GEC benchmarks for
two approaches to GEC that currently have state-
of-the-art performance on CoNLL14. The first ap-
proach, that we refer to as GEC-PSEUDODATA and
is proposed by Kiyono et al. (2019),16 uses a
transformer-based seq2seq model. The second ap-
proach uses the PIE system (Awasthi et al., 2019)17

which leverages a BERT-based architecture for lo-
cal sequence transduction tasks. Both models are

14Sentences that have been edited are more likely to contain
grammatical errors, and grammatical errors will therefore be
over-represented. This is reflected in the 82.3% erroneous
sentence rate (see Table 3).

15We exclude sentences that use AESW’s normalization
scheme (e.g. citations replaced with CITE ), as the models
we use are not trained with these special tokens.

16www.github.com/butsugiri/
gec-pseudodata; We use the PRETLARGE+SSE
(finetuned) model.

17www.github.com/awasthiabhijeet/PIE

https://www.cambridgeenglish.org/exams-and-tests/cefr/
https://www.cambridgeenglish.org/exams-and-tests/cefr/
www.github.com/butsugiri/gec-pseudodata
www.github.com/butsugiri/gec-pseudodata
www.github.com/awasthiabhijeet/PIE
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JFLEG FCE CoNLL14 W&I LOCNESS GMEG AESW CWEB

A B C Wiki Yahoo G S G+S

GEC-PSEUDODATA system

P 55.73 55.11 44.96 54.89 54.86 44.53 47.09 52.81 37.57 14.05 21.34 17.27 19.97
R 38.73 41.61 29.03 37.92 35.14 32.04 34.13 23.02 32.26 13.24 23.00 15.75 20.28
F0.5 51.13 51.75 40.35 50.38 49.32 41.31 43.77 41.89 36.00 13.88 21.58 16.91 19.98

PIE system

P 51.04 49.55 43.47 50.24 49.12 39.12 32.77 44.71 33.08 8.78 14.29 5.73 10.80
R 35.21 36.34 27.93 36.10 31.20 27.13 23.11 19.66 26.97 9.67 18.91 8.78 15.11
F0.5 46.74 46.19 38.95 46.59 44.06 35.94 30.24 35.58 31.29 8.94 14.98 6.15 11.43

Table 5: Scores of two SOTA GEC systems on each domain. For both systems performance is substantially lower
on CWEB than ESL domains. Scores are calculated against each individual annotator and averaged

pre-trained on synthetic errors and fine-tuned on
learner data from the train section of FCE (Yan-
nakoudakis et al., 2011), Lang-8 (Mizumoto et al.,
2011), and NUCLE (Dahlmeier et al., 2013) and
for GEC-PSEUDODATA additionally on the W&I
train split (Bryant et al., 2019).

Performance is evaluated using the F0.5 metric
calculated by ERRANT (Bryant et al., 2017).18

However, the more annotators a dataset has, the
higher score a system will get on this data (Bryant
and Ng, 2015). In order to perform a fair com-
parison of systems across datasets with a different
number of annotators, we calculate the ERRANT
score against each individual annotator and then
take the average to get the final score.

Evaluation results are presented in Table 5.
Across all datasets, we observe lower scores with
the PIE system (−6.05 F0.5 on average), while
GEC-PSEUDODATA is consistently better. Overall
F0.5 ranges from around 30 to 52 for most datasets;
however, when the models are evaluated on CWEB
and AESW, we observe a substantial drop in per-
formance, with the lowest F0.5 score being the PIE
system on CWEB-S (6.15). Precision, in particular,
suffers due to the systems over-correcting sentences
that should remain unchanged.

Using the GEC-PSEUDODATA system, on av-
erage, we find a higher F0.5 on ESL corpora (JF-
LEG, FCE, CoNLL, W&I) compared to non-ESL
ones (47.4 vs. 29.0). This demonstrates that GEC
systems trained on language learning data do not
perform as well on other domains and further work
is needed to improve their generalization.

18www.github.com/chrisjbryant/errant

P R F0.5

CWEB-G 42.09 16.56 32.01
CWEB-S 35.91 12.96 26.46
CWEB (G+S) 39.89 15.2 30.0

Table 6: Scores of the GEC-PSEUDODATA system fine-
tuned on CWEB data. Fine-tuning yields substantial
improvements, but scores are still worse than on ESL
domains. Scores are calculated against each individual
annotator and averaged.

4.1 Fine-tuning

We investigate the extent to which the GEC-
PSEUDODATA system can be adapted to our do-
main, and fine-tune it using our development sets.19

We take 1, 000 sentences from each of the develop-
ment sets of CWEB-G and CWEB-S and use them
as a development set for this experiment. The re-
maining 4, 729 sentences of our development sets
are used as training data for fine-tuning the GEC
system.

In Table 6, we can see that fine-tuning sub-
stantially improves performance (around +10.0
F0.5 across all CWEB sets). In particular, preci-
sion is improved (+20.8/+18.6 on CWEB-G/S) at
the expense of recall (−6.4/−2.8 on CWEB-G/S).
However, performance is still low compared to
the language learning domain (F0.5 of at least 41),
further indicating that there is scope for develop-
ing more robust and general-purpose, open-domain
GEC systems. For the purpose of future bench-
marking, Appendix B lists the system's ERRANT
scores based on both annotators – as opposed to
the average of individual annotator scores reported
in Table 6.

19We use the fine-tuning parameters of Kiyono et al. (2019).

www.github.com/chrisjbryant/errant
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5 Analysis

In order to assess the impact our new dataset can
have on the GEC field, we carry out analyses to
show 1) to what degree the domain of our data
is different from existing GEC corpora, and how
existing GEC systems are affected by the domain
shift; and 2) that a factor behind the performance
drop on CWEB data is the inability of systems to
rely on a strong internal language model in low
error density domains.

5.1 Domain Shift
Moving from error correction in learner texts to
error correction in diverse, online texts, many of
which are written by professional writers, amounts
to a drift in data distribution. In general, distribu-
tional drift comes in different flavors; given two
distributions P (X,Y) and Q(X,Y):

Covariate shift concerns change in the marginal
distribution of the independent variable, i.e.,
P (X) 6= Q(X). In the context of grammatical
errors, this refers to the degree to which the type
of sentences written varies between domains. Ta-
ble 3 clearly shows covariate shift effects: see, for
example, differences in vocabulary variation (mea-
sured by the type–token ratio) and the frequency of
named entities.

Label bias describes the change in distribution
of the dependent variable, i.e., P (Y) 6= Q(Y). In
terms of GEC, this refers to the difference in er-
ror distributions across domains. In Table 3, we
can see that CWEB data contains errors that are
substantially more sparse than other domains – a
smaller proportion of sentences are erroneous, and
these erroneous sentences also contain fewer edits
compared to other domains. Additionally, looking
at Table 4, we can see that almost all error types are
substantially less frequent in our data than in exist-
ing benchmarks – for example, spelling errors are
38 times more prevalent in GMEG Wiki compared
to CWEB-S.

Moving from learner text to web data involves
both forms of drift: covariate shift and label bias.
We further analyze the effects of these shifts on
system performance.

5.1.1 Impact of Error Density
To demonstrate that the error density of corpora has
a substantial impact on the performance of GEC
systems, we vary the proportion of erroneous sen-
tences in each dataset by either removing correct
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Figure 2: Precision as a function of the proportion of
erroneous sentences in 3 different domains; comparing
the GEC-PSEUDODATA (PSEUDO) and PIE systems.

sentences or by adding correct sentences of the
same domain.20 By fixing the frequency of errors
across datasets, we can observe, in isolation, how
the systems are affected by co-variate shift across
domains. Precision as a function of the proportion
of erroneous sentences for selected datasets21 is
presented in Figure 2 (recall is unchanged).

For each domain, we observe precision being
highly sensitive to the proportion of errors. This in-
dicates that differences in error distribution across
domains (i.e. label bias) is likely to be a large con-
tributor to performance drop. We also observe the
effect of covariate shift across the datasets: while
the percentage of erroneous sentences is the same,
precision differs for the different datasets which
suggests that covariate shift across domains has an
impact on the performance of the system.

5.1.2 Analysis of Gold Edits
In addition to error density, the type of errors
present in the dataset also has an impact on the
performance of GEC systems. We investigate how
errors and their corresponding corrections differ
across domains. In particular, we look at how gold
edits in different domains change the sentence in
terms of two factors: 1) How much do edits change
the semantics of the sentence, and 2) to what degree
do edits improve the sentence.

20For each dataset, we apply the gold corrections on incor-
rect sentences, creating new examples of in-domain, correct
sentences, which are then randomly selected for inclusion.

21Scores for all datasets can be found in Appendix D.
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Figure 3: Average semantic similarity and perplexity ratio (sentence improvement) of sentences before and after
being edited, plotted per dataset. The analysis is limited to sentences containing exactly one edit.

We limit our analysis to sentences containing
exactly one edit, as we are interested in how indi-
vidual edits change a sentence, regardless of how
domains differ in amounts of erroneous sentences
and in the number of edits per sentence (Table 3).

Regarding 1), to measure the semantic change of
a sentence after an edit is introduced, we use sen-
tence embeddings generated by Sentence-BERT
(Devlin et al., 2019) and calculate the cosine sim-
ilarity between the original sentence and its cor-
rected counterpart. Regarding 2), the degree of
sentence improvement is calculated as the ratio of
the perplexity of GPT-2 (Radford et al., 2019) on a
sentence after and before it has been edited.

∆P =
PPL(edited sentence)

PPL(original sentence)

A lower ratio suggests that the edited sentence is
an improvement, since its perplexity is lower than
the original sentence.

Using the outputs of machine learning models as
a proxy for semantic change and sentence improve-
ment inevitably introduces biases, but nevertheless
provide valuable insights into domain differences.

Corpus Level In Figure 3, the average semantic
similarity and perplexity ratio is plotted for each
dataset. It is evident that ESL datasets consist of
edits with a higher degree of semantic change and
sentence improvements than datasets from more ad-
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Figure 4: Difference in semantic similarity and perplex-
ity ratio between CWEB-S and FCE for the most fre-
quent error types (M: missing; R: replace; U: unneces-
sary).

vanced speakers. CWEB and AESW in particular
stand out, with edits that largely retain the seman-
tics of a sentence and that result in more subtle
improvements.

Error type level In order to gain further insight
on what is driving the differences between datasets,
we look separately at how edits of each error type
change the sentence. We compare FCE and CWEB-
S, which lie at opposite ends in Figure 3. For each
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P R F0.5

JFLEG 57.55 21.59 43.07

FCE 51.33 17.39 36.92

CoNLL14 40.30 16.56 31.17

W&I-A 45.79 15.10 32.55
W&I-B 43.17 14.46 30.90
W&I-C 33.02 9.81 22.42

LOCNESS 42.09 16.09 31.81

GMEG Wiki 52.36 13.35 32.99
GMEG Yahoo 62.50 16.45 39.45

AESW 10.18 3.58 7.44

CWEB-G 15.20 5.96 11.54
CWEB-S 8.94 1.33 4.17

Table 7: Scores of a language model based GEC sys-
tem. The lower scores on CWEB and AESW indicate
an inability to rely on language modelling in low error-
density domains.

dataset, we obtain an average of semantic similarity,
S, and perplexity ratio, P , separately for sentences
of each error type. Then, for each error type, the
difference, ∆, between scores in the two datasets
is calculated.

∆S = SCWEB-S − SFCE

∆P = PCWEB-S − P FCE

Figure 4 plots these differences for the most com-
mon error types. We can observe that, for all error
types, edits in CWEB-S result in both a lower de-
gree of semantic change and sentence improvement
than edits in FCE. This is particularly evident for
the error types R:OTHER, R:SPELL and R:VERB.
These are open class errors, where the error and
correction can be quite different. It is therefore
reasonable that differences in edits’ degree of se-
mantic change and perplexity improvement across
domains are particularly observed in these cases.22

5.2 Language Model Importance
We also investigate the degree to which systems
can rely on a strong internal language model repre-
sentation when evaluated against different domains.
We examine this by looking at the performance of
a purely language model based GEC system over
the different datasets.

We build on the approach of Bryant and Briscoe
(2018), using confusion sets to generate alternative

22Score differences for the R:SPELL error type seem to be
driven by a different propensity of spelling errors being of a
typographical vs. phonetical nature in the two datasets.

False Positive Examples Perplexity ratio

All types of work are callings called
to individuals.

0.34

Get started at with ACC 0.51
That is was actually kind of fun! 0.69

Table 8: Examples of false positives on the CWEB
dataset that improve perplexity substantially – even
more than the average gold edit in CWEB (0.86 per-
plexity ratio).

versions of an input sentence and then deciding if
any of the alternatives are preferable to the original
version, based on language model probabilities.
The authors use an n-gram language model, which
we replace with GPT-2 (Radford et al., 2019) to
see how a strong neural language model performs –
this approach is similar to Alikaniotis and Raheja
(2019). Hyperparameters are tuned for each dataset
(see Appendix C for details).

Table 7 displays the results on the different
datasets. Recall and, in particular, precision is sub-
stantially lower on CWEB and AESW compared
to other datasets. In general, scores are higher in
domains with a higher proportion of errors and
those containing edits which result in high perplex-
ity improvements. In these cases systems can rely
on a rough heuristic of replacing low probability
sequences with high probability ones. However,
in CWEB, where errors are fewer and more sub-
tle, this leads to low precision, as perplexity alone
cannot differentiate an erroneous sequence from a
sequence that is rare but correct. Table 8 displays
several examples of this, where false positive cor-
rections suggested by the language model based
GEC system have large perplexity improvements.

This analysis suggests that the inability to rely on
a strong internal language model representation can
negatively impact SOTA system performance on
CWEB and on low error density domains in general.
This would mean that having large amounts of error
examples for training is more important in high-
level domains.

6 Conclusion

We release a new GEC benchmark, CWEB, consist-
ing of website text generated by English speakers at
varying levels of proficiency. Comparisons against
existing benchmarks demonstrate that CWEB dif-
fers in many respects: 1) in the distribution of sen-
tences (higher vocabulary variation and named en-
tity frequency); 2) in error density (lower); and 3)
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in the types of edits and their impact on language
model perplexity and semantic change.

We showed that existing state-of-the-art GEC
models achieve considerably lower performance
when evaluated on this new domain, even after fine-
tuning. We argue that a factor behind this is the
inability of systems to rely on a strong internal
language model in low error density domains.

We hope that the dataset shall broaden the target
domain of GEC beyond learner and/or exam writ-
ing and facilitate the development of robust GEC
models in the open-domain setting.
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Roland Schäfer. 2015. Processing and querying large
web corpora with the COW14 architecture. In Pro-
ceedings of the 3rd Workshop on Challenges in the
Management of Large Corpora, CMLC-3. Institut
für Deutsche Sprache.

Helen Yannakoudakis, Øistein E Andersen, Ardeshir
Geranpayeh, Ted Briscoe, and Diane Nicholls. 2018.
Developing an automated writing placement system
for ESL learners. Applied Measurement in Educa-
tion, 31(3):251–267.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A New Dataset and Method for Automatically
Grading ESOL Texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, ACL
2011. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D19-5504
https://doi.org/10.18653/v1/D19-5504
https://doi.org/10.18653/v1/D19-5504
https://doi.org/10.1162/tacl_a_00282
https://doi.org/10.1162/tacl_a_00282
https://doi.org/10.1162/tacl_a_00282
http://aclweb.org/anthology/E17-2037
http://aclweb.org/anthology/E17-2037
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.18653/v1/W17-5019
https://doi.org/10.18653/v1/W17-5019
https://ids-pub.bsz-bw.de/files/3826/Schaefer_Processing_and_querying_large_web_corpora_2015.pdf
https://ids-pub.bsz-bw.de/files/3826/Schaefer_Processing_and_querying_large_web_corpora_2015.pdf
https://doi.org/10.1080/08957347.2018.1464447
https://doi.org/10.1080/08957347.2018.1464447
http://aclweb.org/anthology/P11-1019
http://aclweb.org/anthology/P11-1019


8477

A Dataset Download Links

• JFLEG: https://github.com/keisks/jfleg

• FCE: https://www.cl.cam.ac.uk/research/nl/bea2019st/#data

• CoNLL14: https://www.comp.nus.edu.sg/˜nlp/conll14st.html

• Write&Improve-A/B/C: https://www.cl.cam.ac.uk/research/nl/bea2019st/#data

• LOCNESS: https://www.cl.cam.ac.uk/research/nl/bea2019st/#data

• GMEG Yahoo/Wiki: https://github.com/grammarly/GMEG

• AESW: http://textmining.lt/aesw/aesw2016down.html

B Non-averaged Fine-tuning Scores

P R F0.5

CWEB-G 53.88 34.24 48.33
CWEB-S 43.65 31.1 40.39
CWEB (all) 50.25 33.2 45.57

Table 9: Scores of the GEC-PSEUDODATA system fine-tuned on CWEB data, calculated against both annotators.

C Language Model GEC Hyperparameter Tuning

A threshold, τ , determines the degree of probability improvement needed before an alternative sentence is
preferred. For each dataset, we find τ , in the 0.9 to 1.0 range, resulting in the best development set F0.5.
For CoNLL14, we tune on CoNLL13; for W&I, we use the dedicated training sets; for LOCNESS, there
is no training set available and so we tune on the W&I subset of advanced texts (W&I-C).

JFLEG FCE CoNLL14 W&I LOCNESS GMEG AESW CWEB

A B C Wiki Yahoo G S

τ 0.97 0.97 0.98 0.98 0.98 0.97 0.97 0.96 0.91 0.96 0.96 0.93

Table 10: Best performing threshold τ for each domain.

D Precision as a Function of the Proportion of Erroneous Sentences

https://github.com/keisks/jfleg
https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
https://www.comp.nus.edu.sg/~nlp/conll14st.html
https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
https://www.cl.cam.ac.uk/research/nl/bea2019st/#data
https://github.com/grammarly/GMEG
http://textmining.lt/aesw/aesw2016down.html
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