
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 8203–8214,
November 16–20, 2020. c©2020 Association for Computational Linguistics

8203

New Protocols and Negative Results
for Textual Entailment Data Collection

Samuel R. Bowman∗

Center for Data Science, Department of Linguistics, and Department of Computer Science
New York University
bowman@nyu.edu

Jennimaria Palomaki, Livio Baldini Soares, Emily Pitler
Google Research

{jpalomaki,liviobs,epitler}@google.com

Abstract

Natural language inference (NLI) data has
proven useful in benchmarking and, especially,
as pretraining data for tasks requiring language
understanding. However, the crowdsourcing
protocol that was used to collect this data has
known issues and was not explicitly optimized
for either of these purposes, so it is likely far
from ideal. We propose four alternative proto-
cols, each aimed at improving either the ease
with which annotators can produce sound train-
ing examples or the quality and diversity of
those examples. Using these alternatives and a
fifth baseline protocol, we collect and compare
five new 8.5k-example training sets. In evalua-
tions focused on transfer learning applications,
our results are solidly negative, with models
trained on our baseline dataset yielding good
transfer performance to downstream tasks, but
none of our four new methods (nor the recent
ANLI) showing any improvements over that
baseline. In a small silver lining, we observe
that all four new protocols, especially those
where annotators edit pre-filled text boxes, re-
duce previously observed issues with annota-
tion artifacts.

1 Introduction

The task of natural language inference (NLI; also
known as textual entailment) has been widely used
as an evaluation task when developing new meth-
ods for language understanding tasks, and it has
recently become clear that high-quality NLI data
can be useful in transfer learning as well, driv-
ing much of the recent use of the task: Several
recent papers have shown that training large neu-
ral network models on natural language inference
data, then fine-tuning them for other language un-
derstanding tasks often yields substantially better
results on those target tasks (Conneau et al., 2017;
Subramanian et al., 2018). This result holds even
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Figure 1: The annotation interfaces we evaluate.

when starting from large models like BERT (De-
vlin et al., 2019) that have already been pretrained
extensively on unlabeled data (Phang et al., 2018;
Clark et al., 2019; Liu et al., 2019b; Wang et al.,
2019b).

The largest general-purpose corpus for NLI, and
the one that has proven most successful in this
setting, is the Multi-Genre NLI Corpus (MNLI
Williams et al., 2018). MNLI was designed infor-
mally for use in a benchmark task (with no con-
sideration of transfer learning), and in any case,
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no explicit experimental research went into its de-
sign. Further, data collected under MNLI’s data
collection protocol has known issues with annota-
tion artifacts which make it possible to perform
much better than chance using only one of the two
sentences that make up each example (Tsuchiya,
2018; Gururangan et al., 2018; Poliak et al., 2018).

This work experimentally evaluates four poten-
tial changes to the original MNLI data collection
protocol that are designed to improve either the
ease with which annotators can produce sound
training examples or the quality and diversity of
those examples. We collect a baseline dataset of
8.5k examples that follows the MNLI protocol with
our annotator pool, followed by four additional
datasets of the same size which isolate each of our
candidate changes. (See Figure 1 for a schematic.)
We then compare all five in a set of experiments,
focused on transfer learning, that look at our abil-
ity to use each of these datasets to improve per-
formance on the eight downstream language un-
derstanding tasks in the SuperGLUE (Wang et al.,
2019b) benchmark.

All five of our datasets are consistent with the
task definition that was used in MNLI, which is in
turn based on the definition introduced by Dagan
et al. (2006). In this task, each example consists
of a pair of short texts: a premise and a hypoth-
esis. The model is asked to read both texts and
make a three-way classification decision: Given
the premise, would a reasonable person infer that
hypothesis must be true (entailment), that it must
be false (contradiction), or that there is not enough
information to judge (neutral)? While it is certainly
not clear that this design is optimal for any applica-
tion, we leave a more broad-based exploration of
task definitions for future work.

Our BASE data collection protocol follows
MNLI closely in asking annotators to read a
premise sentence and then write three correspond-
ing hypothesis sentences in empty text boxes corre-
sponding to the three different labels (entailment,
contradiction, and neutral). When an annotator
follows this protocol, they produce three sentence
pairs at once, all sharing a single premise.

Our PARAGRAPH protocol tests the effect of
supplying annotators with complete paragraphs,
rather than sentences, as premises. Longer texts
offer the potential for discourse-level inferences,
the addition of which should yield a dataset that
is more difficult, more diverse, and less likely to

contain trivial artifacts. However, one might ex-
pect that asking annotators to read full paragraphs
should increase the time required to create a single
example; time which could potentially be better
spent creating more examples.

Our EDITPREMISE and EDITOTHER proto-
cols test the effect of pre-filling a single seed text
in each of the three text boxes that annotators are
asked to fill out. By reducing the raw amount of typ-
ing required, this could allow annotators to produce
good examples more quickly. By encouraging them
to keep the three sentences similar, it could also
indirectly facilitate the construction of minimal-
pair-like examples that minimize artifacts, in the
style of Kaushik et al. (2020). We test two variants
of this idea: One uses a copy of the premise sen-
tence as a seed text and the second retrieves a new
sentence from an existing corpus that is similar to
the premise sentence, and uses that.

Our CONTRAST protocol tests the effect of
adding artificial constraints on the kinds of hypoth-
esis sentences annotators can write. Giving annota-
tors difficult and varying constraints could encour-
age creativity and prevent annotators from falling
into patterns in their writing that lead to easier or
more repetitive data. However, as with the use of
longer contexts in PARAGRAPH, this protocol risks
substantially slowing the annotation process. We
experiment with a procedure inspired by that used
to create the language-and-vision dataset NLVR2
(Suhr et al., 2019), in which annotators must write
sentences that show some specified relationship
(entailment or contradiction) to a given premise,
but do not show that relationship to a second simi-
lar distractor premise.

Because we see transfer learning as the primary
application area for which it would be valuable
to collect additional large-scale NLI datasets, we
focus our evaluation on this setting, and do not
collect or designate test sets for the experimen-
tal datasets we collect. In transfer evaluations on
the SuperGLUE benchmark (Wang et al., 2019b),
our BASE dataset and the datasets collected under
our four new protocols offer substantial improve-
ments in transfer ability over a plain RoBERTa
or XLNet model, comparable to the gains seen
with an equally-sized sample of MNLI. However,
BASE reliably shows the strongest transfer results.
This finding, combined with a low variance across
runs, strongly suggests that none of these four in-
terventions improves the suitability of NLI data
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for transfer learning. We also observe that BASE,
PARAGRAPH, EDITPREMISE, and EDITOTHER all
require very similar amounts of annotator time, re-
ducing the potential downside of PARAGRAPH, but
also invalidating the primary motivation behind ED-
ITPREMISE and EDITOTHER. While our primary
results are negative, we also observe that all four of
these methods produce data of comparable subjec-
tive quality to BASE while significantly reducing
the incidence of previously reported annotation ar-
tifacts.

2 Related Work

Existing NLI datasets have been built using a
wide range of strategies: FraCaS (Cooper et al.,
1996) and several targeted evaluation sets were
constructed manually by experts from scratch. The
RTE challenge corpora (Dagan et al., 2006, et seq.)
primarily used expert annotations on top of exist-
ing premise sentences. SICK (Marelli et al., 2014)
was created using a structured pipeline centered
on asking crowdworkers to edit sentences in pre-
scribed ways. MPE (Lai et al., 2017) uses a similar
strategy, but constructs unordered sets of sentences
for use as premises. SNLI (Bowman et al., 2015)
introduced the method, also used in MNLI, of ask-
ing crowdworkers to compose labeled hypotheses
for a given premise. SciTail (Khot et al., 2018) and
SWAG (Zellers et al., 2018) used domain-specific
resources to pair up existing sentences as poten-
tial entailment pairs for annotation, with SWAG
additionally using trained models to select the ex-
amples most worth annotating. There has been
little work directly evaluating and comparing these
many methods. In that absence, we focus on the
SNLI/MNLI approach, because it has been shown
to be effective for the collection of pretraining data
and because its reliance on only crowdworkers and
unstructured source text makes it simple to scale.

Two recent papers have investigated methods
that could augment the base MNLI protocol we
study here. ANLI (Nie et al., 2020) collects new
examples following this protocol, but adds an in-
centive for crowdworkers to produce sentence pairs
on which a baseline system will perform poorly.
Kaushik et al. (2020) introduce a method for ex-
panding an already-collected dataset by making
minimal edits to existing examples that change
their labels, with the intent to better teach models to
isolate the factors that are causally responsible for
the label assignments. Both of these papers offer

MNLI (Training Set)

P: Conceptually cream skimming has two basic dimensions
- product and geography.
H: Product and geography are what make cream skimming
work.
neutral

BASE

P: The board had also expressed concerns about the
amounts of cash kept by SNC’s Libyan office, at that time
approximately $10 million, according to the company’s
chief financial officer.
H: According to the board, the Libyan office should be
holding more cash on hand.
contradiction

PARAGRAPH

P: The paper, along with the ”Washington Blade”, was
acquired by Window Media, LLC in 2001, and both were
then sold to HX Media in 2007. Kat Long succeeded
Trenton Straube as editor-in-chief in February 2009. The
paper ceased publication in July 2009.
H: Kal Long succeeded Trenton Straube as editor-in-chief
in March 2019.
contradiction

EDITPREMISE

P: This standpoint is believed to promote Deaf people’s
right to collective space within society to pass on their
language and culture to future generations.
H: This standpoint is believed to demote Deaf people’s
right to collective space within society.
contradiction

EDITOTHER

P: Shobhona Sharma (born 5 February 1953) is a profes-
sor specializing in immunology, molecular biology, and
biochemistry at the Tata Institute of Fundamental Research,
Mumbai.
H: Shobhona Sharma is also professor of mathematics at
the Tata Institute of Fundamental Research, Mumbai.
neutral

CONTRAST

P: Bengt Erik Johan Renvall (September 22, 1959 – August
24, 2015) was a Swedish dancer and choreographer active
in the United States from 1978.
H: He was a dancer in America in the 1970s.
entailment

Table 1: Randomly selected examples from the datasets
under study. Neither the MNLI training set nor any of
our collected data are filtered for quality in any way,
and errors or debatable judgments are common in both.

methodological changes that are potentially com-
plementary to the changes we investigate here, and
neither evaluates the impact of their methods on
transfer learning. Since ANLI is large and roughly
comparable with MNLI, we include it in our trans-
fer evaluations here.

In addition to NLVR2 (which motivated our
CONTRAST protocol), WinoGrande (Sakaguchi
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et al., 2019) also showed promising results from the
use of artificial constraints during the annotation
process for another style of dataset.

The observation that NLI data can be effective in
pretraining was first reported for SNLI and MNLI
by Conneau et al. (2017) on models pretrained
from scratch on NLI data. This finding was repli-
cated in the setting of multi-task pretraining by
Subramanian et al. (2018). This was later extended
to the context of intermediate training—where a
model is pretrained on unlabeled data, then on
relatively abundant labeled data (MNLI), and fi-
nally scarce task-specific labeled data—by Phang
et al. (2018), Clark et al. (2019), Liu et al. (2019a),
Yang et al. (2019), and Liu et al. (2019b) across a
range of large pretrained models models and tar-
get language-understanding tasks. Similar results
have been observed with transfer from the other
reasoning-oriented datasets (Sap et al., 2019; Bha-
gavatula et al., 2020), especially to target tasks cen-
tered on common sense. Another related body of
work (Mou et al., 2016; Bingel and Søgaard, 2017;
Wang et al., 2019a; Pruksachatkun et al., 2020) has
explored the broader empirical landscape of which
supervised NLP tasks can offer effective pretrain-
ing for other supervised NLP tasks.

3 Data Collection

The annotation interface for our tasks is similar
to that used for SNLI and MNLI: We provide a
premise from a preexisting text source and ask hu-
man annotators to provide three hypothesis sen-
tences: one that says something true about the fact
or situation in the prompt (entailment), one that
says something that may or may not be true about
the fact or situation in the prompt (neutral)—with
the additional instruction that this sentence should
discuss the same topic as the prompt but could be
either true or false because the prompt does not
provide enough information to be sure—and one
that definitely does not say something true about
the fact or situation in the prompt (contradiction).

We evaluate five variants of this interface:

BASE We show annotators a premise sentence
and ask them to compose one new sentence for
each label.

PARAGRAPH We use the same instructions as
BASE, but with full paragraphs, rather than single
sentences, as the supplied premises.

EDITPREMISE We pre-fill three text boxes with
editable copies of the premise sentence, and ask an-
notators to edit each text field to compose sentences
that match the three different labels. Annotators
may delete the pre-filled text.

EDITOTHER We follow the same procedure
as EDITPREMISE, but rather than pre-filling the
premise as a seed sentence, we instead use a simi-
larity search method to retrieve a new sentence that
is similar to the premise.

CONTRAST We again retrieve a second sentence
that is similar to the premise, but we display it as a
contrasting premise rather than using it to seed an
editable text box. We then ask annotators to com-
pose two new sentences: One sentence must be true
only about the fact or situation in the first premise
(that is, contradictory or neutral with respect to the
contrasting premise). The other sentence must be
false only about the fact or situation in the first
premise (and true or neutral with respect to the con-
trasting premise). This yields an entailment pair
and a contradiction pair, both of which use only the
first premises, with the contrasting premise serving
only as a constraint on the annotation process. We
could not find a sufficiently intuitive way to col-
lect neutral sentence pairs under this protocol and
opted to use only two classes rather than increase
the difficulty of an already unintuitive task.

3.1 Text Source
MNLI uses the small but stylistically diverse
OpenANC corpus (Ide and Suderman, 2006) as
its source for premise sentences, but uses nearly
every available sentence from its non-technical sec-
tions, making it impractical for our use. To avoid
re-using premise sentences, We instead draw on
English Wikipedia.1

Similarity Search The EDITOTHER and CON-
TRAST protocols require pairs of similar sentences
as their inputs. To construct these, we assemble
a heuristic sentence-matching system intended to
generate pairs of highly similar sentences that can
be minimally edited to construct entailments or con-
tradictions: Given a premise, we retrieve its closest
10k nearest neighbors according to dot-product sim-
ilarity over Universal Sentence Encoder (Cer et al.,

1We use the 2019-06-20 downloadable version, remove
markup and tables with Apertium’s WikiExtractor feature
(Forcada et al., 2011), sentence-tokenize it with SpaCy (Hon-
nibal and Montani, 2017), and randomly sample sentences (or
paragraphs) for annotation.
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Label Length Unique
µ (σ) µ (σ)

MNLI 8.5k

premise all labels 23.2 (15.8) —
hypothesis entailment 11.4 (4.8) 4.5 (4.8)
hypothesis neutral 12.5 (4.8) 7.2 (4.8)
hypothesis contradiction 11.0 (4.3) 5.8 (4.3)

MNLI Gov. 8.5k

premise all labels 25.1 (13.4) —
hypothesis entailment 12.6 (5.1) 4.4 (5.1)
hypothesis neutral 13.0 (5.3) 7.1 (5.3)
hypothesis contradiction 12.0 (4.5) 5.7 (4.5)

BASE

premise all labels 23.3 (11.4) —
hypothesis entailment 10.6 (5.6) 2.3 (5.5)
hypothesis neutral 10.5 (5.5) 4.5 (5.5)
hypothesis contradiction 10.2 (5.1) 4.0 (5.1)

PARAGRAPH

premise all labels 66.7 (60.0) —
hypothesis entailment 13.0 (8.1) 2.3 (8.1)
hypothesis neutral 12.9 (8.1) 4.1 (8.1)
hypothesis contradiction 12.5 (7.9) 3.3 (7.9)

EDITPREMISE

hypothesis entailment 15.0 (8.9) 2.5 (8.9)
hypothesis neutral 17.0 (9.8) 4.3 (9.8)
hypothesis contradiction 15.3 (9.2) 3.3 (9.2)

EDITOTHER

hypothesis entailment 12.6 (6.3) 3.2 (6.3)
hypothesis neutral 13.0 (6.8) 6.2 (6.8)
hypothesis contradiction 12.7 (6.4) 4.7 (6.4)

CONTRAST

hypothesis entailment 7.9 (5.1) 2.5 (5.1)
hypothesis contradiction 7.7 (4.9) 3.5 (4.9)

Table 2: Key text statistics. Premises are drawn from
essentially the same distribution in all our tasks except
PARAGRAPH, so are shown only once. The Unique col-
umn shows the number of tokens that appear in a hy-
pothesis but not in the corresponding premise.

2018) embeddings. Using a parser and an NER
system, we then select those neighbors which share
a subject noun phrase in common with the premise
(dropping premises for which no such neighbors
exist). From those filtered neighbors, we retrieve
the single non-identical neighbor that has the high-
est overlap with the premise in both raw tokens and
entity mentions, preferring sentences with similar
length to the hypothesis.2

2For dependency parse and named entity recognition an-
notations, we use the Google Natural Language API: https:
//cloud.google.com/natural-language/.

3.2 The Annotation Process

We start data collection for each protocol with a
pilot of 100 items, which are not included in the
final datasets. We use these to refine task instruc-
tions and to provide feedback to our annotator pool
on the intended task definition. We continue to
provide regular feedback throughout the annota-
tion process to clarify ambiguities in the protocols
and to discourage the use of systematic patterns—
such as consistently composing shorter hypotheses
for entailments than for contradictions—that could
make the resulting data artificially easy.

Annotators are allowed to skip prompts which
they deem unusable for any reason. These gener-
ally involve either non-sentence strings that were
mishandled by our sentence tokenizer or premises
with inaccessible technical language. Skip rates
ranged from about 2.5% for EDITOTHER to about
10% for CONTRAST (which can only be completed
when the two premises are both comprehensible
and sufficiently different from one another).

A pool of 19 professional annotators located in
the United States worked on our tasks, with about
ten working on each protocol. As a consequence of
this relatively small annotation team, many annota-
tors worked under more than one protocol, which
we ran consecutively. This introduces a modest
potential bias against BASE, in that annotators start
the later tasks having seen somewhat more feed-
back.

Because of our focus on collecting training data
for transfer learning applications, we do not use any
kind of second-pass annotation process for quality
control, and we neither designate a test set nor rec-
ommend the use of our released datasets for system
evaluation. We aim to use our limited annotation
time budget to collect the largest and best possible
sample of (pre)training data, and we are motivated
by work like Khetan et al. (2018) which calls into
question the value of second-pass quality-control
annotations for training data.

3.3 The Resulting Data

Using each protocol, we collect a training set of
exactly 8,500 examples and a small validation set
of at least 300 examples.3 Table 1 shows examples.

Hypotheses are mostly fluent, full sentences that
adhere to writing conventions for US English. In

3available for download at https://
github.com/google-research-datasets/
Textual-Entailment-New-Protocols

https://cloud.google.com/natural-language/
https://cloud.google.com/natural-language/
https://github.com/google-research-datasets/Textual-Entailment-New-Protocols
https://github.com/google-research-datasets/Textual-Entailment-New-Protocols
https://github.com/google-research-datasets/Textual-Entailment-New-Protocols
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constructing hypotheses, annotators often reuse
words or phrases from the premise, but rearrange
them, alter their inflectional forms, or substitute
synonyms or antonyms. Hypotheses tend to differ
from premises both grammatically and stylistically.

Table 2 shows some statistics for the collected
text. The two methods that use seed sentences tend
to yield longer hypotheses and tend not to show a
clear relationship between hypothesis–premise to-
ken overlap and label. CONTRAST tends to produce
shorter hypotheses.

Time Cost Annotators completed each of the five
protocols at a similar rate, taking 3–4 minutes per
prompt. This goes against our expectations that
the longer premises in PARAGRAPH should sub-
stantially slow the annotation process, and that the
pre-filled text in EDITPREMISE and EDITOTHER

should speed annotation. Since the relatively com-
plex CONTRAST produces only two sentence pairs
per prompt rather than three, it yields fewer exam-
ples per minute.

Label–Word Associations Table 3 shows the
four words in each dataset that are most predic-
tive of example labels, using the smoothed PMI
method of Gururangan et al. (2018). We also in-
clude results for two baselines: 8.5k-example sam-
ples from MNLI, and from MNLI’s the government
documents single-genre section, which is meant to
to be maximally comparable to the single-genre
datasets we collect.

BASE shows similar associations to MNLI, but
all four of our interventions reduce these associa-
tions at least slightly. The use of seed sentences,
especially in EDITPREMISE, largely eliminates the
strong association between negation and contradic-
tion seen in MNLI, and no new strong associations
appear to take its place.

4 Modeling Experiments

We run three types of machine learning experi-
ments: Sanity check experiments where we train
and test on the NLI task—both in a standard set-
ting and in a hypothesis-only limited-input setting
to measure relevant annotation artifacts—and our
primary evaluation experiments in which we train
models on NLI before evaluating them on other
tasks through transfer learning.

These experiments generally compare models
trained on ten NLI datasets: Each of the five 8.5k-
example training sets introduced in this paper; the

Word Label PMI Counts

MNLI 8.5k

no contradiction 0.931 407/461
any contradiction 0.809 169/208
never contradiction 0.749 75/90
nothing contradiction 0.721 43/47

MNLI Gov. 8.5k

never contradiction 0.837 152/178
no contradiction 0.828 342/426
any contradiction 0.721 128/169
nothing contradiction 0.712 56/66

BASE

never contradiction 0.935 231/255
also neutral 0.587 64/93
any contradiction 0.585 46/64
no contradiction 0.561 75/116

PARAGRAPH

never contradiction 0.608 49/67
than neutral 0.526 95/156
went neutral 0.489 46/73
lot neutral 0.470 14/15

EDITPREMISE

years neutral 0.461 135/239
ago neutral 0.443 17/21
eight contradiction 0.437 13/15
refused contradiction 0.437 13/15

EDITOTHER

refused contradiction 0.565 24/28
hardly contradiction 0.507 16/17
later neutral 0.482 48/77
also neutral 0.448 99/178

MNLI Gov. 8.5k (two-class)

no contradiction 0.754 437/461
any contradiction 0.689 193/208
only contradiction 0.633 215/249
never contradiction 0.625 86/90

CONTRAST (two-class)

only contradiction 0.677 176/228
never contradiction 0.635 73/90
no contradiction 0.616 102/135
not contradiction 0.571 156/226

Table 3: The top four words most associated with spe-
cific labels in each dataset, sorted by the PMI between
the word and the label. The counts column shows how
many of the instances of each word occur in hypotheses
matching the specified label. We compare the two-class
CONTRAST with a two-class version of MNLI Gov.

full 393k-example MNLI training set; the full 1.1m-
example ANLI training set (which combines the
SNLI training set, the MNLI training set, and
the supplemental ANLI training examples);4 8.5k-

4In these runs, we use only the original ANLI validation
set for evaluation and early stopping.
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example samples from the MNLI training set and
from the combined ANLI training set, meant to
control for the size differences between these ex-
isting datasets and our baselines; and finally an
8.5k-example sample from the government section
of the MNLI training set, meant to control (as much
as possible) for the difference between our single-
genre Wikipedia datasets and MNLI’s relatively
diverse text.

Our models are trained starting from pretrained
RoBERTa (large variant) or XLNet (large, cased;
Yang et al., 2019). RoBERTa was at or near the
state of the art on most of our target tasks as of the
launch of our experiments. XLNet is competitive
with RoBERTa on most tasks, it offers a natural
replication, and because of its substantially dif-
ferent design, it mitigates issues with evaluating
ANLI that arise because ANLI was collected with
a model-in-the-loop procedure using RoBERTa.

We run our experiments using jiant 1.2 (Wang
et al., 2019d), which implements the SuperGLUE
tasks, MNLI, and ANLI, and in turn builds on
transformers (Wolf et al., 2019), AllenNLP
(Gardner et al., 2017), and PyTorch (Paszke et al.,
2017). To make it possible to train these large mod-
els on single consumer GPUs, we use small-batch
(b = 4) training and a maximum total sequence
length of 128 word pieces.5 We train for up to 2
epochs for the very large ReCoRD, 10 epochs for
the very small CB, COPA, and WSC, and 4 epochs
for the remaining tasks. Except where noted, all
results reflect the median final performance from
three random restarts of training.6

Direct NLI Evaluations As a preliminary san-
ity check, Table 4 shows the results of evaluating
models trained in each of the settings described
above on their own validation sets, on the MNLI
validation set, and on the expert-constructed GLUE
diagnostic set (Wang et al., 2019c). As NLI clas-
sifiers trained on CONTRAST cannot produce the
neutral labels used in MNLI, we evaluate them sep-
arately and compare them with two-class variants
of the MNLI models.

Our BASE data yields a model that performs
somewhat worse than a comparable MNLI Gov.

5We cut this to a slightly lower number on a few individual
runs as needed to satisfy memory constraints. Note that this
potentially limits the gains observable for PARAGRAPH, which
has a longer mean premise length of 66.7 words.

6Scripts implementing our experiments are available
at https://github.com/nyu-mll/jiant/tree/
nli-data.

Training Data Self MNLI GLUE Diag.

BASE 84.8 81.5 40.5
PARAGRAPH 78.3 78.2 31.7
EDITPREMISE 82.9 79.8 35.5
EDITOTHER 82.5 82.6 33.9
MNLI8.5k 87.5 87.5 44.6
MNLIGov8.5k 87.7 85.4 40.7
ANLI8.5k 35.7 85.6 39.8
MNLI 90.4 90.4 49.2
ANLI 61.5 90.1 49.7

MNLI (two-class) 94.0 94.0 –
MNLI8.5k (two-class) 92.4 92.4 –
CONTRAST 91.6 80.6 –

Table 4: NLI modeling experiments with RoBERTa,
reporting results on the validation sets for MNLI and
for the task used for training each model (Self), and
the GLUE diagnostic set (shown as Matthews Corr.).
We compare the two-class CONTRAST with a two-class
version of MNLI.

8.5k model, both on the full MNLI validation set
and on the GLUE diagnostic set. This suggests,
at least tentatively, that the new annotations are
significantly less consistent with the MNLI label-
ing standard. This is disconcerting, but does not
interfere with our key comparisons. Precise com-
parisons between MNLI and our new data on in-
domain test sets are not possible, since only MNLI
has in-domain evaluation data that has undergone
substantial quality control.

The main conclusion we draw from these re-
sults is that none of the first three interventions
improve performance on the out-of-domain GLUE
diagnostic set, suggesting that they do not help
in the collection of high-quality training data that
is consistent with the MNLI label definitions. We
also observe that the newer ANLI data yields worse
performance than MNLI on the out-of-domain eval-
uation data when we control for dataset size.

Hypothesis-Only Models To further investigate
the degree to which our hypotheses contain arti-
facts that reveal their labels, Table 5 shows results
with single-input versions of our models trained
on hypothesis-only versions of the datasets under
study and evaluated on the datasets’ validation sets.

Our first three interventions, especially EDIT-
PREMISE, show much lower hypothesis-only per-
formance than BASE. This drop is much larger
than the drop seen in our standard NLI experiments
in the Self column of Table 4. This indicates that
these results cannot be explained away as a conse-
quence of the lower label consistency of the evalu-
ation sets for these three new datasets. This adds

https://github.com/nyu-mll/jiant/tree/nli-data
https://github.com/nyu-mll/jiant/tree/nli-data
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Training Data Self MNLI

BASE 57.9 52.2
PARAGRAPH 48.3 47.0
EDITPREMISE 40.4 39.4
EDITOTHER 45.1 50.7
MNLI8.5k 56.8 56.8
MNLIGov8.5k 63.7 53.9
ANLI8.5k 34.3 54.4
MNLI 62.0 62.0
ANLI 53.2 61.6

MNLI (two-class) 72.6 72.6
MNLI8.5k (two-class) 62.4 62.4
CONTRAST 56.9 55.9

Table 5: Results from RoBERTa hypothesis-only NLI
classifiers on the vaidation sets for MNLI and for the
datasets used in training.

further evidence, alongside our PMI results, that
these interventions reduce the presence of such ar-
tifacts. While we do not have a direct baseline for
the two-class CONTRAST in this experiment, com-
parisons with MNLI 8.5k are consistent with the
encouraging PMI results seen above.

Transfer Evaluations For our primary evalua-
tion, we use the training sets from our datasets in
STILTs-style intermediate training (Phang et al.,
2018): We fine-tune a large pretrained model on
our collected data using standard fine-tuning proce-
dures, then fine-tune copies of the resulting model
again on each of the target task datasets we use.
We then measure the aggregate performance of the
resulting models across those evaluation datasets.

We evaluate on the target tasks in the Super-
GLUE benchmark (Wang et al., 2019b): which con-
sists of standardized splits and metrics for the ques-
tion answering tasks BoolQ (Clark et al., 2019),
MultiRC (Khashabi et al., 2018), ReCoRD (Zhang
et al., 2018); the entailment and reasoning tasks
CommitmentBank (CB; De Marneffe et al., 2019),
Choice of Plausible Alternatives (COPA; Roem-
mele et al., 2011), Recognizing Textual Entailment
(RTE; Dagan et al., 2006; Bar Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009), and
the Winograd Schema Challenge (WSC; Levesque
et al., 2012); and the word sense disambiguation
task WiC (Pilehvar and Camacho-Collados, 2019).
These tasks were selected to be difficult for BERT
but relatively easy for crowdworkers, and are meant
to replace the largely-solved GLUE benchmark
(Wang et al., 2019c).

SuperGLUE does not include labeled test data,
and does not allow for substantial ablation analyses

on its test sets. Since we have no single final model
whose performance we aim to show off, we do not
use the test sets. We train our WSC model in the
standard way without adding data or modifying
the format (as in Kocijan et al., 2019; Liu et al.,
2019b). Without these modifications, few of our
models exceed chance accuracy.

Results are shown in Table 6. Our first obser-
vation is that our overall data collection pipeline
worked well for our purposes: Our BASE data
yields models that transfer substantially better than
the plain RoBERTa or XLNet baseline, and at least
slightly better than 8.5k-example samples of MNLI,
MNLI Government or ANLI. However, all four of
our interventions yield worse transfer performance
than BASE. The variances across runs are small,
and this pattern is consistent across both RoBERTa
and XLNet, and across most individual target tasks.
We believe that this is a genuine negative result: At
least under the broad experimental setting outlined
here, we find that none of these four interventions
is helpful for transfer learning.

We chose to collect 8,500-example samples be-
cause of the prior observation that this approxi-
mate amount was sufficient to show clear results
on transfer learning, and we reproduce that find-
ing here: Both MNLI 8.5k and the BASE dataset
yield large improvements over plain RoBERTa or
XLNet through transfer learning. If any of our in-
terventions were to be helpful in general, we would
expect them to be harmless or helpful in our regime
relative to BASE. This is not what we observe.

We believe that this is the first study to evaluate
ANLI as a pretraining task in transfer learning, and
we observe that the large combined ANLI train-
ing set yields consistently better transfer than the
original MNLI dataset. However, we observe (to
our surprise) that this result reverses when we con-
trol for ANLI’s larger size, with an 8.5k-example
sample of MNLI yielding consistently better perfor-
mance than an equivalently small sample of ANLI.

Our best overall result uses only 8.5k NLI train-
ing examples, suggesting either that this size is
enough to maximize the gains available through
NLI pretraining, or that the potential for models
to forget skills learned in pretraining makes using
larger intermediate datasets more challenging.

Finally, we replicate the finding from Phang
et al. (2018) that intermediate-task training with
NLI data substantially reduces the variance across
restarts seen in target task tuning.
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Intermediate- Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Training Data µ (σ) Acc. F1/Acc. Acc. F1a/EM F1/EM Acc. Acc. Acc.

RoBERTa (large)

None 67.3 (1.2) 84.3 83.1/89.3 90.0 70.0/27.3 86.5/85.9 85.2 71.9 64.4
BASE 72.2 (0.1) 84.4 97.4/96.4 94.0 71.9/33.3 86.1/85.5 88.4 70.8 76.9
PARAGRAPH 70.3 (0.1) 84.7 97.4/96.4 90.0 70.4/29.9 86.7/86.0 86.3 70.2 67.3
EDITPREMISE 69.6 (0.6) 83.0 92.3/92.9 89.0 71.2/31.2 86.4/85.7 85.6 71.0 65.4
EDITOTHER 70.3 (0.1) 84.2 91.8/94.6 91.0 70.7/31.3 86.2/85.6 87.4 71.5 68.3
CONTRAST 69.2 (0.0) 84.1 93.1/94.6 87.0 71.4/29.5 84.8/84.1 84.5 71.5 67.3
MNLI8.5k 71.0 (0.6) 84.7 96.1/94.6 92.0 71.7/32.3 86.4/85.7 87.4 74.0 68.3
MNLIGov8.5k 70.9 (0.5) 84.8 97.4/96.4 92.0 71.4/32.0 86.2/85.6 86.3 71.6 70.2
ANLI8.5k 70.5 (0.3) 84.7 96.1/94.6 89.0 71.6/31.8 85.7/85.0 85.9 71.9 70.2
MNLI 70.0 (0.0) 85.3 89.0/92.9 88.0 72.2/35.4 84.7/84.1 89.2 71.8 66.3
ANLI 70.4 (0.9) 85.4 92.4/92.9 90.0 72.0/33.5 85.5/84.8 91.0 71.8 66.3

XLNet (large cased)

None 62.7 (1.3) 82.0 83.1/89.3 76.0 69.9/26.8 80.9/80.1 69.0 65.2 63.5
BASE 67.7 (0.0) 83.1 90.5/92.9 89.0 70.5/28.2 78.2/77.4 85.9 68.7 64.4
PARAGRAPH 67.3 (0.0) 82.5 90.8/94.6 85.0 69.8/28.1 79.4/78.6 83.8 69.7 64.4
EDITPREMISE 67.0 (0.4) 82.8 82.8/91.1 83.0 69.8/28.6 79.3/78.5 85.2 70.2 65.4
EDITOTHER 67.2 (0.1) 82.9 84.4/91.1 87.0 70.2/29.1 79.4/78.6 85.6 69.7 63.5
CONTRAST 66.3 (0.6) 83.0 82.5/89.3 83.0 69.8/28.3 80.2/79.5 85.9 68.2 58.7
MNLI8.5k 67.6 (0.1) 83.5 89.5/92.9 88.0 69.4/28.3 79.5/78.6 86.3 69.3 62.5
MNLIGov8.5k 67.5 (0.3) 82.5 89.5/94.6 85.0 70.0/28.1 79.8/79.0 87.4 68.7 62.5
ANLI8.5k 67.2 (0.3) 83.4 86.3/91.1 83.0 69.3/28.9 81.2/80.4 85.9 70.1 63.5
MNLI 67.7 (0.1) 84.0 85.5/91.1 89.0 71.5/31.0 79.1/78.3 87.7 68.5 63.5
ANLI 68.1 (0.4) 83.7 82.8/91.1 86.0 71.3/30.0 80.1/79.3 89.5 69.6 66.3

Table 6: Model performance on the SuperGLUE task validation sets. The Avg. column shows the overall Super-
GLUE score—an average across the eight tasks —as a mean and standard deviation across three restarts.

5 Conclusion

Our chief results on transfer learning are conclu-
sively negative: All four interventions yield sub-
stantially worse transfer performance than our base
MNLI data collection protocol. However, we also
observe promising signs that all four of our inter-
ventions help to reduce the prevalence of artifacts
in the generated hypotheses that reveal the label.
While these interventions may be helpful for future
evaluation data, it appears that the type of creativity
induced by our relatively open-ended BASE prompt
works well for pretraining, and the resulting arti-
facts are a tolerable side-effect of that creativity.

The need and opportunity that motivated this
work remains compelling: Human-annotated data
like MNLI has already proven itself as a valuable
tool in teaching machines general-purpose skills for
language understanding, and discovering ways to
more effectively build and use such data could fur-
ther accelerate the field’s already fast progress to-
ward robust, general-purpose language understand-
ing technologies.

On another note, most available text corpora, in-
cluding our Wikipedia source text and comparable
past NLI datasets, contain evidence of social in-
equalities and stereotypes, which models can easily

learn to reproduce (Wagner et al., 2015; Rudinger
et al., 2017). Our interventions are not meant to
address this, and are likely orthogonal. Bias mitiga-
tion in models and datasets remains a crucial direc-
tion for future work if systems based on datasets
like the ones we study are to be widely deployed.

Beyond this: Work on incentive structures and
task design could facilitate the creation of crowd-
sourced datasets that are both creative and consis-
tently labeled. Machine learning methods work on
transfer learning could help to better understand
and exploit the effects that drive the successes we
have seen with NLI data so far. Finally, there re-
mains room for further empirical work investigat-
ing the kinds of task definitions and data collection
protocols most likely to yield training data that
teaches models transferrable skills.
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