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Abstract

Prosody is a rich information source in natural
language, serving as a marker for phenomena
such as contrast. In order to make this informa-
tion available to downstream tasks, we need a
way to detect prosodic events in speech. We
propose a new model for pitch accent detec-
tion, inspired by the work of Stehwien et al.
(2018), who presented a CNN-based model for
this task. Our model makes greater use of
context by using full utterances as input and
adding an LSTM layer. We find that these in-
novations lead to an improvement from 87.5
percent to 88.7 percent accuracy on pitch ac-
cent detection on American English speech in
the Boston University Radio News Corpus, a
state-of-the-art result. We also find that a sim-
ple baseline that just predicts a pitch accent on
every content word yields 82.2 percent accu-
racy, and we suggest that this is the appropriate
baseline for this task. Finally, we conduct abla-
tion tests that show pitch is the most important
acoustic feature for this task and this corpus.

1 Introduction

Prosody is a rich information source with the poten-
tial to improve performance in many spoken NLP
tasks (Roesiger et al., 2017; Niemann et al., 1998).
In order to make prosodic information available
to downstream tasks, many models have been pro-
posed to predict which words in an utterance carry
pitch accents—word-level prosodic prominences
signaled by a deviation from the speaker’s usual
pitch, duration, intensity, or some combination of
these three features. Identifying pitch accents is
helpful since they are often used to signal impor-
tant or unexpected information. For example, pitch
accents in English typically fall on content words,
which are generally more informative. When a
pitch accent falls on a function word, it indicates
that it is unusually informative, as in the sentence,
They ran out of toilet paper even before the quar-
antine, where before is more informative because it

contrasts with what might be a default assumption
(e.g., during).

Previous pitch accent prediction models include
rule-based models (Brenier et al., 2005), tradi-
tional machine learning models (Wightman and
Ostendorf, 1994; Levow, 2005; Gregory and Altun,
2004), and neural models (Fernandez et al., 2017;
Stehwien and Vu, 2017; Stehwien et al., 2018). Ste-
hwien and Vu (2017) and Stehwien et al. (2018)
(henceforth, SVS18) showed that neural methods
can perform comparably to traditional methods us-
ing a relatively small amount of speech context—
just a single word on either side of the target word.
However, since pitch accents are deviations from
a speaker’s average pitch, intensity, and duration,
we hypothesize that, as in some non-neural mod-
els (e.g. Levow 2005; Rosenberg and Hirschberg
2009), a wider input context will allow the model
to better determine the speaker’s baseline for these
features and therefore improve its ability to detect
deviations. In addition, we hypothesize that a recur-
rent model (rather than the CNN used by SVS18)
will also improve performance, since it is better
adapted to processing long-distance dependencies.

In this paper, we test these hypotheses by build-
ing a new neural pitch accent prediction model
that takes in prosodic speech features, text features,
or both. Our main contribution is showing that
these context-enhancing innovations in the speech-
only model improve performance on a corpus of
American English speech, yielding higher accu-
racy than SVS18 and all previous models on this
dataset. We also find that a baseline of simply la-
beling all content words with pitch accents is very
robust, matching the performance of the text-only
model. We argue that this more robust content-
word baseline is the correct baseline for this task.
We find that our speech-only model is able to out-
perform this baseline by detecting some of the
cases where a speaker deviates from the predic-
tions of the content-word baseline, and we provide
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Figure 1: The combined speech+text model. Box A
outlines the speech-only model components, while box
B outlines the text-only model.

an analysis of which acoustic features yield the
most benefit.

2 Models

We build models to predict which words carry a
pitch accent, given input of either prosodic speech
features, text features, or both. The variants are
shown in Figure 1 and described below. All models
are implemented in PyTorch (Paszke et al., 2019).1

We also describe the ways in which we varied
the amount of context available to the speech-only
model in particular.

Speech-only model. Like SVS18’s model, our
speech encoder begins with several CNN layers that
take a series of frames f1, f2, ..., fn as input, where
each frame fi is a vector of 6 acoustic-prosodic fea-
tures (see §3). These frames are encoded by the
CNN, which reduces the overall number of frames
by passing a kernel over the input with a stride
of size 2, resulting in frames f ′

1, f
′
2, ..., f

′
k. How-

ever, rather than predicting the label for a single
token at a time, as SVS18 do, our model labels
the whole sequence at once. In order to divide
the output of the CNN into word tokens, we use
the token timestamps provided in the corpus to di-
vide the frames at places corresponding to word
boundaries in the input, similar to the approach
taken in Tran et al. (2018). Each resulting subdivi-
sion of the frames [f ′

i , f
′
i+1, ..., f

′
j ] contains differ-

ent numbers of frames, since tokens are of various
lengths. To obtain token representations of identi-
cal size, we sum across all frames for a given token:
tj = sum(f ′

i , f
′
i+1, ..., f

′
k). Each token embed-

ding t1, ..., tm is then passed into a bidirectional
LSTM, and finally a feed forward layer that outputs
a prediction for each token. The model’s hyperpa-
rameters are described in detail in Appendix A.3.

1https://github.com/ekayen/prosody detection

Our full model takes an entire utterance as input
and predicts all labels at once, but we also experi-
ment with using only three or one token(s) as input.
In these cases, the model only predicts the label for
the central input token. The three-token scenario is
designed to be most similar to SVS18’s model.

Text-only model. The text-only model is a sim-
ple bidirectional LSTM. An embedding for each
token is passed to the BiLSTM and a prediction is
made at each timestep. We followed SVS18 in us-
ing pretrained 300d GloVe word embeddings (Pen-
nington et al., 2014), although using pre-trained
embeddings did not improve performance much
over randomly initialized embeddings.

Speech+text model. The speech-only and text-
only models both include a bidirectional LSTM, so
for the combined model, we just concatenate the
embedding for each token generated by the CNN
encoder with the pretrained text embedding for that
token before passing them to the LSTM.

Baselines. In addition to a majority class base-
line, we also report results on a content-word base-
line, where all content words (non-stopwords as
identified by NLTK) are labelled as carrying a pitch
accent. We also report a duration-only baseline,
where the input features to the speech-only model
are all replaced with the value 1—so the model can
only tell how many frames each token contains.

3 Data and experimental setup

We train and test all models using data from the
Boston University Radio News Corpus (hereafter
BURNC)2, a speech corpus of General American
English that is partially annotated with prosodic in-
formation. The annotated subsection of the corpus
that we use includes five speakers, three female,
and two male, all of them trained radio journal-
ists reading pre-written news segments. This kind
of read speech from trained speakers is different
from spontaneous speech and so the conclusions
we reach here can only confidently be applied to
this genre. The data we use amount to approxi-
mately 2.75 hours of speech, consisting of 1721
utterances. These come from a total of 398 news
segments. There are 28,489 word tokens, 15,544
of which carry pitch accents. Though this is a lim-
ited amount of data, this corpus is one of very few
corpora with available prosodic annotations and
enables us to compare with previous studies that
use this resource, including SVS18.

2https://catalog.ldc.upenn.edu/LDC96S36

https://github.com/ekayen/prosody_detection
https://catalog.ldc.upenn.edu/LDC96S36
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For the speech-only model, we follow SVS18 in
using the OpenSMILE toolkit (Eyben et al., 2013)
to extract six features, which fall into three broad
categories: pitch features (smoothed F0), intensity
features (RMS energy, loudness), and voicing fea-
tures (zero-crossing rate, voicing probability, and
harmonics-to-noise ratio). These features are ex-
tracted from frames of varying sizes (following
Schuller et al. (2013)), and frames are offset by
10ms. The speech-only model has no access to
phone-level or spectral information that might al-
low it to make predictions based on word identity.
The transcription of the speech in this corpus in-
cludes marked breaths, which we use to segment
the corpus into utterances. Note that there are no
explicit correlates of duration in this feature set,
though the model has access to the absolute dura-
tion of each token via the number of input frames
per token. In future, we could follow Tran et al.
(2018) by giving an explicit feature for the dura-
tion of a given token normalized by the average
duration of that token in the corpus.

For the text-only model, we follow SVS18 in
removing contractions (e.g. we’ll −→ we), though
we diverge in leaving hyphenated tokens in place
(e.g. eighty-eight remains eighty-eight).

We perform tenfold cross-validation of all experi-
ments and report the average performance. For a de-
tailed description of how we divided data into train,
development, and test sets for cross-validation, see
Appendix A.2. In order to test for repeatability, we
furthermore initialize our model architecture with
five distinct random seeds and repeat the tenfold
cross-validation procedure for each of these five
model initializations. Our reported test set results
are the average performance of all these five model
initializations. We report accuracy as our primary
metric since this task is a balanced binary classifi-
cation task. We train for 25 epochs and we report
the highest development set accuracy of these 25
epochs. We use this same epoch to report test set
accuracy.

4 Results and discussion

Development set results from the speech-only
model using different input contexts and architec-
tures are shown in Table 1. The results confirm
our hypotheses that it should help to include more
input context (full utterances rather than only three
tokens as in SVS18) and to use an LSTM to per-
mit better use of that context. Note that our full

Context Architecture Acc (%)

Full utterance
CNN+LSTM 89.1
CNN only 87.9

Three tokens
CNN+LSTM 88.6
CNN only 87.3

One token CNN only 85.5

Table 1: Development set accuracy of speech-only
model variants using different input contexts and ar-
chitectures. Greater input context helps, and including
LSTM layers works better than just CNN layers.

Speech Text Sp+text
Our model 88.4 82.2 89.1
SVS18 87.1 78.5 87.5
Content-word 82.2
Duration-only 81.2

Table 2: Test set accuracy of our CNN+LSTM model,
compared to the CNN-only baseline of SVS18, a base-
line where all content words are labelled as accented,
and a baseline where the speech model is given only du-
ration information. The majority baseline performance
is 54.4 percent.

utterance CNN-only model actually has more pa-
rameters than the CNN+LSTM model (∼14m, vs.
∼12m), so the improvements of the latter are not
due to model size. The underperformance of the
CNN-only model also cannot be attributed to over-
fitting, since the CNN+LSTM model was more
overfit to the training set than the CNN-only model
(93.8 percent accuracy vs. 91.7 percent accuracy
after 25 epochs).

In contrast, development set experiments with
the text-only model found little effect of context or
architecture (see Appendix A.1), and indeed even
our best text-only model is not much better than the
content-word baseline, which in turn outperforms
SVS18’s text-only model (as shown in Table 2 for

Figure 2: Ablation of vocabulary size in text-only
model.
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Figure 3: Ablation of prosodic features in speech-only model. Labels on the x-axis indicate which features were
available to the model.

the test set and Appendix A.1 for the dev set). This
suggests that although text-only context might help
identify pitch accented words in principle, even
powerful neural models are not well able to exploit
the right information (or perhaps require discourse
level context, which we did not provide). This
conclusion is further supported by an additional
analysis where we progressively reduced the vo-
cabulary size of the text-only model from 3000
down to 5. As shown in Figure 2, we found that
performance was steady until vocabulary dropped
below 100 words (with the rest labelled as ‘UNK’).
This strongly suggests that either word frequency
or the strongly correlated content/function word
distinction are the main source of information for
the text-only model. Of course, absolute word du-
ration is also strongly correlated with frequency
and content/function, and we note that the duration-
only speech model also achieves a similar accuracy
to the content-word baseline (Table 2).

Overall, our best speech-only model outperforms
the previous work (SVS18) as well as the text-only
model and baselines on the test set (See Table 2),
and combining speech plus text yields a small ad-
ditional improvement. Our analysis shows in par-
ticular that the speech-only model outperforms the
text-only model in places where the speaker’s re-
alization deviates from the content-word baseline:
the speech-only model can correctly detect some
pitch accents that fall on function words (as in (1a)
that; pitch accents are labeled as 1) or unaccented
content words (as in (1b) Mary).

(1) a. Input:
Speech:
Text:

but
0
0

that
1
0

would
0
0

require
1
1

the
0
0

union
1
1

b. Input:
Speech:
Text:

she
0
0

agrees
1
1

with
0
0

Mary
0
1

Conroy
1
1

If we only consider these tokens where the

Our model Stehwien & Vu 2017
(speech + text) (speech only)

f1a 89.43 85.6
f2b 88.14 82.9
f3a 89.65 83.5
m1b 85.05 81.4
m2b 84.42 84.8

Table 3: Speaker-independent results of the
speech+text model, identified by speaker IDs in
BURNC. We compare to the speech-only model of
Stehwien and Vu (2017).

speaker’s production deviates from the content-
word baseline, the speech-only model achieves 66.7
percent accuracy, vs. only 38.2 percent for the text-
only model.

In addition to the evaluations described above,
where all utterances are randomly assigned to
train, development, and test sets, we do speaker-
independent evaluation of the speech+text model.
That is, we hold out a single speaker for testing
and use all the other speakers for training and de-
velopment. These results are shown in Table 3.
We do not have published results of a speech+text
model evaluated in this test condition to compare
to. However, we can compare to the results of
the speech-only model of Stehwien and Vu (2017).
We find that our model outperforms theirs on all
speakers except the speaker identified as m2b. The
reasons for this underperformance are unclear.

4.1 Speech feature ablation tests

The duration-only baseline shown in Table 2 shows
that the speech model is able to perform quite well
given only information about token length, without
access to prosodic features, but that these prosodic
features are still used in achieving the speech-only
model’s performance.
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In order to determine the relative importance of
various prosodic features, we group the prosodic
features into those related to pitch (smoothed F0),
intensity (RMS energy, loudness), and voicing
(harmonics-to-noise ratio, zero-crossing rate, voic-
ing probability), and ablate one or two sets of fea-
tures at a time. We test these models by training
them with full utterance context and with more
a limited three-token context, as well as with the
full CNN+LSTM architecture and the more lim-
ited CNN-only architecture. The results of these
experiments on the development set can be seen in
Figure 3.

Pitch seems to play the biggest role of these
features, with its ablation leading to the lowest
performance in all cases. Voicing appears to be
the weakest feature set, actually harming model
performance in one case: intensity and voicing
features combined underperform intensity features
alone.

All three groups of prosodic features seem
equally dependent on the inclusion of context, with
the removal of the LSTM and restriction to a three-
token context leading to proportionally similar
drops in performance. This supports our hypoth-
esis that acoustic correlates of prosody cannot be
evaluated in isolation: a high pitch or intensity is
only meaningfully high compared to some lower
pitch or intensity.

5 Conclusions

This work demonstrates some important principles
for predicting pitch accent from text and speech.
First, we show that a speech-only model benefits
from having utterance-level context. Second, we
show that both the text and the speech-only model
derive at least some of their performance from be-
ing able to distinguish function words from content
words. In fact, our BiLSTM-based text model can
hardly outperform a content-word baseline. Finally,
we show that a speech-only model can success-
fully predict pitch accent in cases where a text-only
model cannot, and that combining text and speech
provides only a tiny benefit. These results indicate
that the speech-only model uses information avail-
able in the prosodic features to surpass the content-
word baseline, and that knowing the actual words
doesn’t provide much further useful information.
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A Appendices

A.1 Development set results

Speech Text Sp+text
Our model 89.1 84.5 89.8

Table 4: Development set results for the full-utterance
model.

Context Architecture Acc (%)

Full utterance
CNN+LSTM 84.5

CNN only 84.4

Three tokens
CNN+LSTM 83.8

CNN only 82.8
One token CNN only 84.3

Table 5: Text model development set results with dif-
ferent context and architectures.

A.2 Cross-validation procedure

The process we used for tenfold cross-validation
was as follows. If we had a corpus with a total
of 100 utterances, we would shuffle the utterances,
and designate utterances 1-10 as the test set. From
the remaining 90 utterances, we randomly desig-
nate 10 as development and 80 as training, which
gives us our first train/development/test split. Next,
we select utterances 11-20 as the test set, and se-
lect the development and training sets from the
remaining 90 utterances. We repeat this process till
we have created 10 distinct train/development/test
splits, each with a unique test set. To cross-validate
a model, we train and evaluate it on all 10 of these
data splits. We use the development portions to
optimize hyperparameters, as well as to determine
where to stop training for each split.

A.3 Model hyperparameters

We train the model for a total of 25 epochs of ap-
proximately 1400 training examples, using a batch
size of 64. The speech and speech+text models
take a total of about 200 seconds to train on av-
erage, with each epoch taking around 8 seconds
to train on a single Titan X-equivalent GPU. The
text model takes about 75 seconds to train, with
an average of 3 seconds per epoch. Evaluation on
the entire development set (about 200 instances)
takes an average of 2 seconds to run for the speech
and speech+text models, and 1 second for the text
model.
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Hyperparameter Possible values Selected values
CNN layers 2, 3, 4 3
LSTM layers 2, 3 2
Dropout 0, 0.2, 0.5, 0.7 0.5
Weight decay 0, 10e-5, 10e-4 10-e5
Filter width 9, 11, 13, 15, 17, 19, 21, 23 11
Post-tokenization sum, max sum

Table 6: Possible and selected values for each hyperparameter considered in the search. The ‘post-tokenization’
hyperparameter corresponds to the method used to collapse the token representations — max pooling or summing
across all frames.

We perform a hyperparameter search on the
combined model, using the resulting hyperparam-
eters for all input configurations (text, speech,
speech+text). The possible values of each hyperpa-
rameter are as shown in Table 6, with each hyper-
parameter configuration being chosen at random
from these values. The selected value for the hy-
perparameter is shown in the right column. We ran
96 distinct hyperparameter configurations, picking
the configuration with the highest accuracy on the
development set. The average performance on the
development set over the search space was 83.5
percent accuracy, with a variance of 0.005 and a
standard error of 0.007.

Other hyperparameters are selected manually
without searching: we use 128 kernels in the first
CNN layer, with 256 kernels in all subsequent CNN
layers, and use a stride length of 2 throughout all
CNN layers. The LSTM layers each have a hidden
size of 128. We use a learning rate of 0.001 with Py-
Torch’s Adam optimizer (Paszke et al., 2019). We
set the text-only model to have a vocabulary size
of 3000 types, which is approximately 80 percent
of the total types present in the corpus.

Many of our hyperparameter experiments fo-
cused on changes to the CNN that should allow
it to process a wider swath of the input at once:
adjusting filter width, and adjusting the number of
CNN layers. Neither change showed significant
positive effect, and both were harmful when taken
to the extreme. As can be seen in Figure 4, given a
constant depth of 3 CNN layers, the very narrowest
kernels underperformed, but widening the kernel
did not consistently produce better performance,
and eventually degraded performance. Likewise,
adding CNN layers—which increases the number
of frames of the input data being viewed by the final
CNN layer—was actively harmful to performance
beyond depths of 3 layers.

Figure 4: The performance of the speech-only model
given different CNN hyperparameters, tested on a de-
velopment set using tenfold cross-validation. When
varying CNN filter width, the CNN layers were kept
invariant at 3; when varying the number of CNN lay-
ers, the filter width was kept invariant at 11 frames.


