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Abstract
Information extraction from conversational
data is particularly challenging because the
task-centric nature of conversation allows for
effective communication of implicit informa-
tion by humans, but is challenging for ma-
chines. The challenges may differ between ut-
terances depending on the role of the speaker
within the conversation, especially when rel-
evant expertise is distributed asymmetrically
across roles. Further, the challenges may also
increase over the conversation as more shared
context is built up through information com-
municated implicitly earlier in the dialogue.
In this paper, we propose the novel modeling
approach MEDFILTER, which addresses these
insights in order to increase performance at
identifying and categorizing task-relevant ut-
terances, and in so doing, positively impacts
performance at a downstream information ex-
traction task. We evaluate this approach on
a corpus of nearly 7,000 doctor-patient con-
versations where MEDFILTER is used to iden-
tify medically relevant contributions to the dis-
cussion (achieving a 10% improvement over
SOTA baselines in terms of area under the
PR curve). Identifying task-relevant utter-
ances benefits downstream medical process-
ing, achieving improvements of 15%, 105%,
and 23% respectively for the extraction of
symptoms, medications, and complaints.

1 Introduction

In this paper, we propose a novel modeling ap-
proach that embodies insights regarding the organi-
zation of task-oriented conversations in order to im-
prove performance at utterance classification over
SOTA baseline approaches. Task-oriented conver-
sations involve sharing task-relevant information
that may be useful as the task ensues (Liu et al.,
2019a; Kazi and Kahanda, 2019). Unfortunately,
human-to-human conversations are less well struc-
tured than expository text, which is more often

the source material for information extraction and
summarization. Expository text is typically struc-
tured top-down and organized around information
flow. Task-oriented conversations, on the other
hand, are typically organized around the task and
knowledge of task structure provides an implicit
scaffold for understanding. Thus speakers feel free
to elide or imply important information rather than
making it explicit. The challenges have been well
documented (Waitzkin, 1989; Lacson et al., 2006).
Prior work in utterance classification is a source of
SOTA modeling approaches that perform relatively
well despite these challenges while leaving much
room for improvement.

Our evaluation in this paper specifically focuses
on doctor-patient interactions. Doctor-patient inter-
actions are task-oriented, expert-layperson interac-
tions in which the concerns voiced by the layper-
son (e.g., symptoms), the underlying issue iden-
tified by the expert (e.g., complaint) and the pre-
scribed solutions (e.g., medications) play a crucial
part. Customer-service chats are another example
of such dialogue. As in the general case, topic
switching abounds: the doctor may jump from a
question about a symptom to a statement providing
initial assessment then back again, with or without
waiting for a reply from the patient (which may,
itself, be responsive or introduce a new concern).
In addition, the participants make unequal contri-
butions to different parts of the schema due to the
inherent asymmetry between their roles in terms of
knowledge and authority. Despite these challenges,
humans are able to communicate very effectively
in this way. Because of that, the issues increase as
the conversation progresses and more shared con-
text is built up, in part because of a certain amount
of shared domain knowledge, despite differences
in the extent and phrasing of it. In response to
these insights, our proposed model, which we re-
fer to as MEDFILTER, integrates elements of dis-
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Figure 1: Overview of MEDFILTER. MEDFILTER first encodes each utterance of the given conversation using a BERT-based
encoder (A). The obtained utterance embedding is concatenated with contextual information like speaker role, position of
utterance in the conversation, and ontological knowledge (B). This is then fed to a MS-BiLSTM (C1) for medical relevance
identification. MS-BiLSTM leverages speaker role information to learn speaker-specific context for each utterance. This
contextual representation is concatenated with the utterance embedding (C2) and passed through another MS-BiLSTM (C3)
which focuses on fine-grained categorization. Both tasks are jointly learned. Refer to Section 3 for more details.

course structure and ontological knowledge to im-
prove utterance classification, the impact of which
is also observed in a downstream extraction task.
We evaluate the approach on a corpus of nearly
7,000 doctor-patient interactions as a case study.

Our proposed method, MEDFILTER1, is illus-
trated in Figure 1 and described in detail in Sec-
tion 3. Its architecture specifically reflects an aware-
ness of the challenges above and begins to address
them. In particular, the speaker’s role (i.e., doc-
tor, patient, and other) and position within the in-
teraction are both introduced as structuring vari-
ables. Insights from ontological knowledge are
also made available through a domain ontology:
specifically, the Unified Medical Language Sys-
tem (UMLS) (Bodenreider, 2004). From a more
technical perspective, the architecture introduces a
novel Multi-Speaker BiLSTM to learn role-specific
context representations. MEDFILTER also benefits
from the incorporation of a hierarchical loss that
jointly learns the coarse-grained task of predicting
medical relevance to improve fine-grained topic-
based utterance classification. The ability to extract
medically relevant utterances from doctor-patient
conversations and categorize them into the medical
topics/categories has a substantial practical impact
in medical practice (Finley et al., 2018; Quiroz
et al., 2019).

1
https://github.com/sopankhosla/

MedFilter

Figure 2: MEDFILTER as a part of extraction pipeline.

2 Related Work

Dialogue Summarization: In addition to the chal-
lenges noted earlier in the paper, other linguis-
tic phenomena such as backchannels, false starts,
and topic diffusion are prominent in human-to-
human conversations. They add noise, which chal-
lenges the capabilities of otherwise effective suma-
rization approaches such as pointer-generator net-
works (See et al., 2017; Liu et al., 2019b).

Some prior work has relied on an Information
Extraction (IE) based approach to extract details
about individual medical entities such as symp-
toms or medications (Du et al., 2019; Selvaraj
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and Konam, 2019). However, recently, multi-
ple studies (Lacson et al., 2006; Kocaballi et al.,
2019; Liu et al., 2019a,b; Park et al., 2019) have
shown the benefits of using the topical structure in
goal-oriented dialogues to improve summarization.
Within that scope, Liu et al. (2019a) introduce key-
point sequences that describe the logical topic flow
of the summary of customer-service chats. They
propose a hierarchical transformer to predict these
topics (key-points) for each utterance and use them
as auxiliary labels to guide the summarization.

This past work inspires our work in which we ex-
tend the approach and then apply it in the more chal-
lenging domain of doctor-patient interactions. We
consider it more challenging both in terms of the
number of utterances per conversation (avg. 225
vs 20) and topic switches (Kocaballi et al., 2019).
To improve the key-point sequence utterance-level
topic classification approach (Liu et al., 2019a), we
propose MEDFILTER that models speaker-specific
context augmented with ontological knowledge and
a hierarchical loss function.

Intent Classification: The problem of classifying
utterances into medical topics/categories has many
similarities with the task of utterance-level intent
classification (Zhang et al., 2019; Budzianowski
et al., 2018b; Qu et al., 2019). In our case, medical
categories act as coarse-grained intents that drive
the content of the discussion. Much of the previous
work in intent classification caters to creating bet-
ter dialog agents that condition their responses on
the intent of the previous utterance (Budzianowski
et al., 2018a; Bocklisch et al., 2017). For in-
stance, Chen et al. (2019); Kim et al. (2017) pro-
pose intent classification as a text classification task
where each utterance is considered a complete, in-
dependent command. However, this is not true in
our case as the discussion about a medical category
might range over multiple utterances, each depen-
dent on context. Hence, we tackle the classification
problem as a sequence-labeling task.

Sequence Labeling in Dialogue: Most prior work
that employs sequence labeling for utterance clas-
sification in dialogues (Raheja and Tetreault, 2019;
Liu et al., 2017; Jiao et al., 2019a) evaluates their
systems on dialogue-act classification (Shriberg
et al., 2004, 1998) or emotion recognition datasets
(Poria et al., 2019). In this paper, we adopt state-
of-the-art modeling approaches from the emotion
recognition task (Jiao et al., 2019a,b) to serve as
baselines in our evaluation since our task has not

previously been benchmarked.

3 Proposed Method: MEDFILTER

The overall architecture of MEDFILTER is shown in
Figure 1. The input to MEDFILTER is a transcribed
clinical conversation C of form {u1, u2, ..., un},
where each ui represents an utterance. Each ut-
terance in the conversation is passed through a
BERT-based encoder (Fig. 1A and Sec. 3.1) to
get a fixed-dimensional representation. Contextual
information such as speaker role, the utterance’s
position in the conversation, and ontological knowl-
edge (Fig. 1B and Sec. 3.2) is then appended to
the BERT representation. The encoding is input to
the coarse Multi-Speaker BiLSTM (MS-BiLSTM)
model (Fig. 1C1) followed by a fully-connected
layer to classify the relevance of utterances for top-
ical classification. The representation created by
MS-BiSLTM (Coarse) is then concatenated with
the utterance encoding (Fig. 1C2) and the result-
ing vector is fed to the fine-grained MS-BiLSTM
(Fig. 1C3) to classify utterances into different med-
ical categories (Sec. 3.3). MEDFILTER is jointly
optimized on both classification tasks.

3.1 BERT-based Encoder
Given the superior modeling capabilities of long-
range dependencies in Transformer-based models
(Vaswani et al., 2017), we use pre-trained BERT
(Devlin et al., 2019) for encoding each utterance
ui. We first encode each token in the utterance
using BERT, i.e., [hBERT

i1 ,hBERT
i2 , ...,hBERT

im ], where
hij represents BERT-encoding of jth token of ui.
Now, following Reimers and Gurevych (2019), we
use MEAN pooling for obtaining a representation for
the entire utterance (hText

i ). Since the original pre-
trained BERT model is trained on a general web
corpus such as Wikipedia, it might not generalize
well to our corpus. Therefore, we further fine tune
the BERT model in a supervised manner for the
task of predicting the utterance type.

3.2 Contextual Information
In addition to encoding the text of an utterance, we
also make use of the following types of contextual
information.

1. Speaker Role Info: In conversations in gen-
eral, speaker identity helps ground co-references
like I, You. In doctor-patient conversations, each
of the speakers play a specific role in the goals of
the interaction. For example, the doctor is more
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likely to discuss medications than the patient. To
allow the representation to be sensitive to speaker
information, we map the speaker roles, namely,
doctor, patient, and other, to a d-dimensional em-
bedding (hspeaker

i ) which is learned during training
and given to the model along with the text-based
representation.

2. Positional Info: Clinical conversations often
follow a pattern where topics like symptoms and
complaints are discussed earlier in the dialog and
prescribed medications are narrated in the middle
or toward the end. To include this signal in MED-
FILTER, we partition all the utterances in a conver-
sation into k equal parts based on their position.
For instance, if the conversation has 40 utterances
and k = 4 then the initial 10 belong to 1st partition
and the next 10 belong to 2nd and so on. Similar to
speaker role information, a trainable embedding is
associated with each partition (hposition

i ).
3. Ontological Knowledge: UMLS (Unified

Medical Language System) (Bodenreider, 2004) is
a combination of a semantic network and a meta-
thesaurus. The semantic network consists of a
set of 127 broad subject categories, or semantic
types, which provide a consistent categorization of
all concepts represented in the meta-thesaurus. In
MEDFILTER, we use Quick-UMLS (Soldaini and
Goharian, 2016), which identifies clinical mentions
in an utterance and retrieves the associated UMLS
Concept Unique Identifers (CUIs) and semantic
type, to inform our model about the type of med-
ical phrases present in the input. We believe that
types such as Pharmacologic Substance, Symptoms,
and Diseases can be helpful in correctly classifying
the utterances. We assign a trainable embedding to
each semantic type. However, since each utterance
can contain multiple clinical mentions of varied
semantic types, we average the semantic-type em-
beddings for each mention present in the utterance
and pass it to the model (hsemantic

i ).

3.3 Utterance Prediction
The classifier takes in the extended representation
for each utterance ui in the conversation given as

hi = [hText
i ;hspeaker

i ;hposition
i ;hsemantic

i ].

To explicitly model the separate roles performed
by each speaker (as discussed in Section 1), we
propose a novel module Multi-Speaker BiLSTM
(MS-BiLSTM) that includes speaker-level BiL-
STMs to learn the context for each speaker type

separately. We note, for example, that when the
doctor is prescribing medications to the patient,
she is more likely to expand on her previous ut-
terance in order to discuss different details about
the medicine, whereas the patient is most likely to
give simple acknowledgments or ask questions in
her turn. Having separate speaker-level BiLSTMs
allows MS-BiLSTM to model this difference in the
use of context.

MS-BiLSTM takes in hi and si (utterance’s
speaker) as input. hi is passed through a back-
ground BiLSTM (BiLSTMbg) and different speaker-
level BiLSTMs (BiLSTMs). Thus, if there are 3
speaker roles in the conversation, then the extended
representation for each utterance (hi) would be in-
put to 4 BiLSTMs (1 background BiLSTM + 3
speaker BiLSTMs). The hidden representations
from BiLSTMbg and BiLSTMsi are combined using
a sigmoid gate that is learned during training:

ĥbg
i = BiLSTMbg(hi)

ĥ
sj
i = BiLSTMsj(hi), 8j 2 speakers
gs = �(wg)

h0
i = gsi ⇤ ĥsi

i + (1� gsi) ⇤ ĥbg
i ,

h0
i = MS-BiLSTM(hi, si).

Each speaker-level BiLSTM (BiLSTMsi) only re-
ceives gradients for that speaker’s utterance (ui)
thus focusing on role-specific context. The gate
between ĥsi

i and ĥbg
i controls the relative impor-

tance of the role-specific and general-context repre-
sentation learned by speaker-level and background
BiLSTMs respectively.

In this paper, we focus on classifying an utterance
into one or more out of three categories, namely
symptoms, complaints, and medications. However,
these categories can be combined together to create
a coarse-grained task of predicting if the utterances
are medically relevant. We leverage this coarse-
grained supervision to create a hierarchical model
with a joint-learning loss.

Hierarchical Modeling: In this architecture, the
extended representation (hi) and the correspond-
ing speaker role (si) are first passed through a
coarse-grained MS-BiLSTM and a fully-connected
layer followed by softmax to be classified into
one of the two categories {Medically Relevant, Ir-
relevant}. The representation hcoarse

i learned by
this MS-BiLSTM would model the differences be-
tween medically relevant and irrelevant text which
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can also benefit fine-grained classification. Hence,
hcoarse
i is concatenated with hi and sent to the

fine-grained MS-BiLSTM which focuses on the
multi-label classification into the three categories
discussed earlier:

hcoarse
i = MS-BiLSTMcoarse(hi, si),

h00
i = [hi;h

coarse
i ],

hfine
i = MS-BiLSTMfine(h00

i , si),

pcoarse = softmax(Wch
coarse
i + b),

pfine = �(Wfh
fine
i + b).

Both tasks are jointly optimized and the hyper-
parameter � controls the relative strength of the
medical-relevance classification loss (Lcoarse):

L = Lfine + �Lcoarse.

Such a loss function could also be used in other
utterance classification tasks where classes follow
a hierarchical structure. For instance, in emotion
classification (Poria et al., 2019), the fine-grained
categories (e,g, happiness, anger, etc.) can be
combined to create an emotive class, and a coarse-
grained classifier could be used to learn features
that differentiate between emotive and neutral ut-
terances.

4 Experimental Setup

4.1 Corpus Description

Our data set comprises 6,862 annotated transcripts
of real and de-identified doctor-patient conversa-
tions with an average of 225 utterances per conver-
sation, primarily from the doctor and patient but
occasionally including contributions from nurses,
caregivers, and other attendees as well. The annota-
tion guidelines were developed by a team of profes-
sional medical scribes and NLP experts. Annota-
tors were trained to identify the medically-relevant
utterances in a given conversation and assign one
or more (out of 15 possible) tags to each utterance.
Each of these tags represents a medical category
like symptom, previous medical history, diagnosis
etc. Most conversations contain some informal, so-
cial interactions with utterances that are irrelevant
to the downstream clinical tasks.2

In this work, we leverage the labels to train MED-
FILTER on the task of utterance classification and

2An example dialogue is included in Appendix (Sec. A.2).

focus on three categories, namely, symptoms, com-
plaints, and medications, where medications in-
clude past/current medications taken by the patient
and prescriptions given by the doctor.3 We choose
the above-mentioned categories as they are found
in every office visit, and most closely generalize to
other domains like customer-service chats. How-
ever, our approach can be easily generalized for
capturing other aspects such as previous medical
history, diagnosis, and assessments as well. We set
aside a random sample of 627 and 592 conversa-
tions for validation and testing respectively.

4.2 Baselines
Since sequence-labelling models haven’t been ap-
plied to utterance classification in doctor-patient
conversations previously, we compare our proposed
method, MEDFILTER, against baseline methods
that give SOTA results on utterance-level emo-
tion recognition data sets. HiGRU-sf (Jiao et al.,
2019b) is a hierarchical gated recurrent unit (Hi-
GRU) framework with an utterance-level GRU and
a conversation-level GRU. BiF-AGRU (Jiao et al.,
2019a) denotes a two-level BiGRU fusion model
with uni-directional AGRU for attentive context
representation. UniF-BiAGRU is similar to BiF-
AGRU, but uses a uni-directional GRU for contex-
tual utterance representation and a bi-directional
AGRU for attentive context. For implementation,
we use the official code provided by the authors.45

Evaluation Metric: We use the mean area un-
der the PR curve (AUC), a widely used metric
in multi-label classification setting (Riedel et al.,
2013; Mintz et al., 2009), as our evaluation metric.
It is also used for early stopping and hyperparame-
ter tuning.6

5 Utterance Classification Results

MEDFILTER performs better than any of the base-
line approaches in assigning utterances in doctor-
patient conversations to medically relevant cate-
gories. Table 1 presents the AUC scores for dif-
ferent utterance-labeling models on our test set.
Each result is the mean of 5 independent runs with
different seeds.

A BERT-based classifier that passes the mean
of token-level embeddings through an FC layer

3Additional statistics are included in Appendix (Sec. A.1).
4
https://github.com/wxjiao/HiGRUs

5
https://github.com/wxjiao/AGHMN

6Hyperparameters are included in Appendix (Table A4)
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Methods AUC (x100)

Baselines
UniF-BiAGRU 40.9 (0.51)
BiF-AGRU 40.9 (0.37)
HiGRU-sf 43.1 (0.45)

BERT variants
BERT 33.5 (0.08)
Clinical BioBERT-FT 36.1 (0.11)
BERT-FT 36.2 (0.08)

With Context BERT BiLSTM FT 44.5 (0.22)
BERT-FT BiLSTM 45.8 (0.16)

Our Method MEDFILTER 47.2 (0.26)

Table 1: Utterance classification results on the test-set (Avg.
(std. dev.)). Results on valid-set are shown in the Appendix.
The improvements are statistically significant (p < 0.01).

gives a low score of 33.5 AUC. When the BERT
encoder is fine-tuned along with the classification
layer (BERT-FT), the performance jumps to 36.2
underlining the benefits of fine-tuning BERT (De-
vlin et al., 2019). We also find that using Clinical
BioBERT-FT (fine-tuned) does not beat BERT-FT.
This is partly because the former is further pre-
trained on MIMIC notes (Alsentzer et al., 2019)
which are much more formal than medical conver-
sations and thus the additional knowledge does not
transfer well to our corpus.

Adding context to BERT-based models , using,
e.g. BiLSTM, gives substantial boosts. End-to-end
fine-tuned BERT BiLSTM (BERT BiLSTM FT)
performs worse than BERT-FT BiLSTM that
passes fine-tuned BERT embeddings through a
BiLSTM as non-learnable features. MEDFILTER,
which further includes contextual information, uses
MS-BiLSTM in place of BiLSTM, and optimizes
a hierarchical loss, significantly outperforms all
baselines and obtains 1.4 absolute AUC points over
BERT-FT BiLSTM (2nd best). It also surpasses
emotion recognition SOTA methods like HiGRU-sf
by 4.1 AUC points.

Ablation Results: To understand the importance
of each module in MEDFILTER, we perform a cu-
mulative ablation study (Figure 3). We find that
removing individual modules results in notably re-
duced performance. The model that does not incor-
porate hierarchical modeling, shows a dip of 0.4
AUC points. This suggests that the information
learned in the medical-relevance prediction layer
aids the final classification task. Further, replacing
MS-BiLSTM with a simple BiLSTM leads to a
drop of an additional 0.6 AUC points, revealing the
importance of modeling speaker-specific context.
Without contextual information, we see a reduc-

Area Under Curve

MedFilter

w/o Hier

w/o MS-BiLSTM

w/o Contextual Info

45.0 45.8 46.7 47.5

Figure 3: Cumulative Ablation Results

tion of 0.4 AUC points. This shows that features
like speaker role, position, and semantic types are
essential for our task.

6 Impact of Utterance Classification on
Downstream Medical Extraction

The results in the previous section portray the effec-
tiveness of MEDFILTER at sorting important utter-
ances in clinical conversations into medically rel-
evant categories. Such filtering, when included in
the pipeline (for example, as a pre-processing step),
can assist downstream medical processing methods
to focus on utterances that contain information per-
tinent for their tasks (Figure 2), by improving the
signal-to-noise ratio in the input. In this section, we
evaluate whether the use of MEDFILTER to prune
irrelevant utterances is advantageous for symptom,
medication, and complaint extraction.

6.1 Task Setup
The extractor takes the conversation as
input and outputs the discussed symp-
toms/medications/complaints within.
Conversation-level labels for all three extraction
tasks are taken from a predefined set provided by
the corpus annotators. For symptoms, they in-
clude 14 coarse-grained classes to represent dif-
ferent body systems (e.g., cardiovascular) and 178
fine-grained ones for the corresponding issues (e.g.,
palpitations). Given the small size of the training
data, we use the coarse-grained body-systems for
symptom extraction. We then manually curate a
list of different symptoms corresponding to each
body-system using UMLS and use their UMLS
CUIs as labels.7

For medications, we manually link medication
labels to their corresponding UMLS (Bodenreider,
2004) concepts and group them using hierarchies

7Refer to Table A10 for the final list of symptom labels.
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Medication Extraction Macro F1 Micro F1

QuickUMLS (All Text) 25.4 33.5

QuickUMLS (MR BERT-FT BiLSTM) 32.6 61.9
QuickUMLS (MU BERT-FT BiLSTM) 34.0 67.3

QuickUMLS (MR MEDFILTER) 34.2 62.8
QuickUMLS (MU MEDFILTER) 35.9 68.9

Table 2: Results(%) for Medication Extraction.
MR=Medically Relevant (Symptom + Complaints +
Medications) Utterances, MU=Medication Utterances.

from NCI Thesaurus (Sioutos et al., 2007). 8 We
pass each medication name through QuickUMLS
to get a list of possible CUIs for the term in UMLS.
We take the candidate CUI with a similarity of 1
and find its NCI hierarchy in the UMLS metath-
easurus. The four topmost nodes in the hierarchy
are extracted, which act as the pseudo-label for
that CUI. In order to reduce the class-imbalance,
some of these hierarchies are combined to form a
coarser label. This reduces the number of labels
to 31. Finally, Others label is added, which in-
habits medicine names (in the test-set) that do not
correspond to any of the previous 31 labels. This
reduces the label count to 32 for medications.9

Complaints in our corpus range from follow-up
visits to disease names to vaccine requests. Similar
to medication extraction, we leverage SNOMED-
CT hierarchies10 to constraint the tag list to 11,
where the first 10 represent diseases of different
body systems and Others encompasses complaints
like follow-up, vaccine requests, medication refill
requests, etc. (Table A11).

We use the same train/val/test split as defined
for the utterance classification experiments in Sec-
tion 4.1. The performance of the extraction pipeline
is evaluated on Micro and Macro-F1 scores.

6.2 Extractor Details
All three extraction tasks are modeled as multi-
label classification. We leverage a state-of-the-art
medical entity-linking tool, QuickUMLS (Soldaini
and Goharian, 2016)11, that takes in a conversa-
tion and outputs UMLS CUIs corresponding to all
identified candidate concepts. Concepts with a sim-
ilarity measure of 1 are chosen as predictions. For
symptom extraction, the predictions are compared
against a manually created list of CUIs (presented

8
https://ncit.nci.nih.gov

9Refer to Table A13 for the final list of medication labels.
10
https://www.nlm.nih.gov/healthit/

snomedct/index.html

11
https://github.com/Georgetown-IR-Lab/

QuickUMLS

Symptom Extraction Macro F1 Micro F1

QuickUMLS (All Text) 33.9 42.7

QuickUMLS (MR BERT-FT BiLSTM) 36.4 47.4
QuickUMLS (SU BERT-FT BiLSTM) 35.9 49.2

QuickUMLS (MR MEDFILTER) 35.2 47.4
QuickUMLS (SU MEDFILTER) 36.1 49.3

Table 3: Results(%) for Symptom Extraction.
MR=Medically Relevant, SU=Symptom Utterances.

in Appendix Table A12) for symptoms associated
with each of the 14 Body Systems. The presence
of a symptom of body-system b is determined by
the presence of the predicted CUIs in the target list
for that body system. We compare the NCI and
the SNOMED-CT hierarchies of the predicted con-
cepts against the label hierarchies for medications
and complaints, respectively. Concepts that do not
fit into one of the specific categories are grouped
under the label Others. In the next section, we
report the results for the best performing filtering
thresholds.12

6.3 Results
We find that the performance of the baseline med-
ication and symptom extractor QuickUMLS (All
Text) is substantially boosted by filtering out irrel-
evant utterances (Tables 2 and 3). Pruning medi-
cally irrelevant utterances using MEDFILTER (MR
MEDFILTER) improves Micro F1 by 29.3 and 4.7
points for medication and symptom extraction, re-
spectively. If only the medication/symptomatic
utterances (MU/SU) are input to the extractors, the
results improve further.

Results for complaint extraction are shown in Ta-
ble 4. We find that the QuickUMLS extractor does
not perform well on complaint extraction. However,
consistent with the other two categories’ trends,
pruning irrelevant utterances before sending the
conversation through the extractor improves perfor-
mance. Micro-F1 score increases from 35.6 for All
Text to 43.7 for CU MEDFILTER.

Pruning done using MEDFILTER seems to be
more beneficial than BERT-FT BiLSTM (2nd best
utterance classifier in Table 1) for medication
and complaint extraction, however they perform
equally well for symptom extraction. This suggests
that the benefits from the inclusion of discourse
structure, domain knowledge, and a hierarchical
loss function, do not transfer well to symptom ex-

12Micro F1 vs filtering threshold graphs are presented in
the Appendix (Figures A5 and A4).
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Figure 4: Contextual Information: Different speaker roles contribute asymmetrically towards different medical topics/categories
in the dialogue (Figure 4a). Furthermore, phrases with UMLS semantic types Pharmacologic Substance, Sign/Symptom, and
Disease/Syndrome occur quite frequently in medical, symptom, and complaint utterances respectively (Figure 4b).

Complaint Extraction Macro F1 Micro F1

QuickUMLS (All Text) 10.0 35.6

QuickUMLS (MR BERT-FT BiLSTM) 10.9 40.3
QuickUMLS (CU BERT-FT BiLSTM) 11.1 43.0

QuickUMLS (MR MEDFILTER) 11.1 40.7
QuickUMLS (CU MEDFILTER) 11.1 43.7

Table 4: Results(%) for Complaint Extraction (CE).
MR=Medically Relevant, CU=Complaint Utterances.

traction. In Section 7, we investigate the kinds of
utterance classification errors MEDFILTER makes,
that need to be addressed to further improve the
symptom extraction pipeline.

7 Discussion

Why does contextual information help? Abla-
tion results (Figure 3) show that incorporating
speaker role information and UMLS semantic-type
information provides significant improvements in
AUC scores for utterance classification. In Fig-
ure 4a, we plot the proportion of utterances from
different medical categories against their speakers.
While both parties contribute equally to symptom
discussions, there is a clear asymmetry in the num-
ber of medication and complaint utterances spoken
by the doctor and the patient, explaining the contri-
bution of speaker role information in differentiating
medication/complaint utterances from others.

We also plot the distribution of the four
most frequent UMLS semantic types present in
the utterances of different medical categories
(Figure 4b). For medications, we find that
UMLS entities with semantic type Pharmacologic
Substance are present in more than 55% of the
medication utterances indicating that its detection

is a knowledge-dependent task. Similarly, and
supporting our hypothesis, Disease/Syndrome and
Sign/Symptom are the most frequent semantic types
in complaint and symptom utterances, respectively.

Error Analysis: In this section, we present
a deeper analysis of some of the systematic
knowledge-extraction errors made by MEDFILTER
that limit its performance in recognizing medically-
relevant utterances.

1. Informal Language: The model sometimes
overlooks informal references to symptoms. For
instance, utterances such as PT: I feel something
unusual in my leg or PT: My heart beats funny! dis-
cuss musculoskeletal and cardiovascular symptoms
but do not use medical terms to refer to them. These
patterns seem to be more frequent in patient utter-
ances, likely because they are less familiar with
medical terminology. Off-the-shelf entity-linkers,
like QuickUMLS (Soldaini and Goharian, 2016),
do not transfer well to spoken medical conversa-
tions. They are unable to recognise the correct
UMLS concepts (and semantic types) correspond-
ing to the colloquial symptomatic phrases which
reduces their effectiveness as features.13 For in-
stance, for the utterance PT: My heart is racing.,
QuickUMLS outputs 1A rather than 1B:

Input: PT: My heart is racing
(A): PT: My [heart]body_part is racing.
(B): PT: My [[heart]body_part is racing]]symptom.

(1)

2. Physical Manifestations of Symptoms: In-
ternal symptoms often manifest themselves phys-
ically as a digression from the natural ability to

13Sign/Symptom entities are identified in less than 30% of
total symptomatic utterances (Figure 4b).
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perform typical activities. For instance, when the
patient says I can’t do anything after I’m back from
office or I can only walk up one flight of stairs, she
might be implicitly mentioning a cardiovascular
symptom. A sizeable subset of such examples in-
cludes usage of duration or frequency to convey
the implicit deviation, like

Duration: PT: I only sleep for 4 hours,
Frequency: PT: I go to the bathroom 10 times at night,
Quantity: DR: I see you are up to 300 pounds now.

8 Future Work
For a system to correctly classify the samples of
the above two categories, it needs both to gener-
alize to patient-generated language, and to have a
semantic understanding of whether the description
strays from normal. Incorporating data from online
self-disclosure sites like medical subreddits and
discussion forums (Basaldella and Collier, 2019)
during training might prove beneficial for learning
better representations for such vocabulary. Con-
cept normalization data sets (Miftahutdinov and
Tutubalina, 2019; Lee et al., 2017) could also be
leveraged in this regard. Our approach of training
the BERT encoder separately from the context en-
coder would allow MEDFILTER to learn from such
non-dialogue resources.

Extraction tasks (Section 6) mostly evaluate the
ability of MEDFILTER to recognize utterances that
contain the most information about the name or
type of the medication, symptom, or complaint.
However, to quantify the context-level benefits
of MEDFILTER, especially the speaker-specific
context modeling (MS-BiLSTM), on downstream
processing, we need to evaluate the system on
problems like regimen extraction (Selvaraj and
Konam, 2019) or symptom summarization (Liu
et al., 2019b). Such tasks require utterance clas-
sification models to correctly identify utterances
that discuss fine-grained details about the topic
and would therefore evaluate a model’s ability to
solve multiple challenges like coreference reso-
lution, speaker-specific context detection, thread
identification, etc. Such an evaluation is a part of
future work.

9 Conclusion
In this paper, we have proposed a novel text clas-
sification approach that specifically leverages in-
sights into the organization of task-oriented conver-
sations in order to improve performance at topic-
based utterance classification over SOTA baseline

approaches. In particular, we have demonstrated
that our utterance classification model, MEDFIL-
TER, benefits from discourse information, domain
knowledge, speaker-specific context modeling, and
a hierarchical loss to reach a new state-of-the-
art performance on a doctor-patient interactions
dataset. We find that using topic-based utterance
classification in general, and MEDFILTER in par-
ticular, as a pre-processing step before medical
extraction tasks, significantly improves the extrac-
tion scores. We believe that the contributions made
in this work would also generalize to other kinds
of expert-lay dialogue like customer-service chats.
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Appendix

A Dataset Details

A.1 Dataset Statistics

Figure A1: Distribution of the number of utterances in
each conversation for the entire dataset.

The de-identified doctor-patient dialogue corpus
used in this work was made available by Univer-
sity of Pittsburgh Medical Center (UPMC) and
Abridge AI Inc.. Most of the conversations in
this corpus are follow-up encounters between car-
diovascular/general medicine doctors and patients.
Figure A1 shows the distribution of the number
of utterances in each conversation. The number
ranges from as low as 3 to as high as 1521 with a
mean of 225. The proportion of medically relevant
utterances in a conversation is quite low (Table A1).
As shown, utterances that belong to the three cate-
gories combined make up less than 10% of the con-
versation portraying the amount of noise present in
doctor-patient conversations with regards to further
medical processing.

Category #MR-Utt #MR-Utt/#Utt (%)

Complaints 6.17 (3.40) 4.34 (6.06)
Symptoms 3.56 (4.00) 1.98 (2.37)
Medications 4.79 (3.70) 3.10 (5.49)

Table A1: Avg. (std. dev.) medically relevant utterances
(MR-Utt) in each medically relevant category.

In Table A2, we show the average position in
the doctor-patient conversation where the speakers
start discussing different medical topics. Several
of the the encounters are follow-up discussions
about a pre-existing complaint. Therefore, patient’s
current condition with respect to the complaint is
often discussed earlier in the conversation. This is
generally followed by a discussion about different
body systems and associated symptoms that may

be bothering the patient, which allows the doctor
to prescribe suitable medications.

Category Relative Position

Complaints 0.133 (0.043)
Symptoms 0.321 (0.057)
Medications 0.524 (0.069)

Table A2: Avg. (std. dev.) relative position in the conversa-
tion where speakers start discussing different medical topics.

The above-mentioned flow is merely an ideal
depiction of the logical path that could be followed
in the dialogue. However, real conversations in the
corpus contain multiple topic-switches. For exam-
ple, discussion of a symptom could be followed by
medication which could then lead into a discourse
about another symptom and so on.

Utterance Labels

1 Check if conversation can be added
1 DR: Good Morning.

2 PT: Good Morning.

3 DR: I’m here with, [PATIENT NAME].

4 DR: Last time I saw you, you were getting pains in your
left leg. Is it still the case?

C,S

5 PT: Yes, I do. S

6 DR: Okay, and generally, what are you doing when you get
the pains?

7 PT: Um, usually just a heating pad or, you know, ice.

8 DR: Right, but what causes the pains, is what I was getting
at?

S

9 PT: Uh, I think just the strain of, like, walking, or, or
exercise.

S

10 DR: All right.

11 DR: I think I am going to ask you to try some Baclofen. M

12 DR: This is a patch you put on the foot when it’s bothering
you.

M

13 DR: Try one patch. M

14 DR: It’ll last up to 6 hours.

15 PT: Okay.

16 DR: If you like it, let me know.

17 DR: We’ll get you a prescription.

18 PT: Okay.

19 DR: The difference is, you can put this exactly where you
need it on the foot and since it’s going through the skin, it’s
not rough on your stomach like, let’s say, Ibuprofen or
Aspirin or any of the over the counter stuff would be.

20 PT: Okay.

Table A3: A constructed example conversation (S = Symp-
toms, C = Complaints, and M = Medications). Because con-
versations in the corpus cannot be published or distributed
without agreement, the example here is based on a corpus
conversation but with the details changed.

A.2 Example Conversation
An example conversation (details modified) from
our corpus is shown in Table A3. Utterances 4,5,8,9
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in the conversation discuss a symptom, with the
Patient’s reply (A3:5) acting as an important infor-
mation about confirmation of the presence of that
symptom. Furthermore, A3:8 and A3:9 provide
additional details about the physical activities that
cause the symptom. Although, the symptom name
is discussed only in A3:4, information presented
in the other utterances plays an important role in
the clinical note. Similarly, utterances A3:11,12,13
discuss the medication Baclofen. Doctor prescribes
the medication in A3:11. She provides further in-
formation like frequency of usage in A3:12, and
dosage in A3:13, all of which is extremely impor-
tant for regimen extraction. A3:19 contains names
of two medications however it is not a medication
utterance. This is case because the utterance does
not discuss any medication that the patient is cur-
rently taking or being prescribed. The doctor is
merely comparing the benefits of her prescribed
medication against two popular pain pills.

A.3 Symptom and Medication Extraction
Labels

In addition to identifying the type of each utterance,
corpus annotators also provide a class label to the
symptoms and medications from a predefined set.
For symptoms, guidelines include 178 classes of
the form <Body System>: <symptom> (e.g. Car-
diovascular: Palpitations). Given the small size
of the training data, instead of predicting given
symptom classes, we predict the body system with
which a symptom is associated (Table A10). Ta-
ble A12 contains the list of target UMLS CUIs
for each body system that are used as labels for
Symptom Extraction. Please note that the list is
manually curated and therefore is not exhaustive.
For medications, we manually link each medication
label in our training-set to its corresponding UMLS
(Bodenreider, 2004) concept and group them us-
ing hierarchies from NCI Thesaurus (Sioutos et al.,
2007) (Table A13).

B Hyperparameters

All our experiments are performed on a single
Nvidia GeForce GTX 1080 Ti GPU. For MEDFIL-
TER and other BERT-based baselines, we divide the
conversations into windows of 128 utterances to
ensure fair comparison against BERT-BiLSTM FT,
which cannot process more than 128 utterances at
a time due to GPU constraints. Other hyperparam-
eters are presented in Table A4. We perform man-

Hyper-parameter Search Range Best

GRU hidden size in baselines [100, 300, 512] 300

Max. utterance length [64] 64
BERT embedding size [768] 768
#Speakers [3] 3
Speaker embedding size [3, 4, 8, 16] 8
Number of bins (k) [4] 4
Position embedding size [4] 4
Semantic Type embedding size [8, 16] 8
BiLSTM hidden size [512, 1024, 2048] 1024
Weight of Lcoarse (�) [0, 0.25, 0.5, 1, 5] 1
Learning-rate [0.0005, 0.001, 0.01] 0.0005
Batch-size [8, 16, 32] 16

Table A4: Hyper-parameters. We search over the entire
Cartesian product of the different hyper-parameters mentioned
here. Best values are chosen using mean AUC of PR curve
metric.

Figure A2: Category-wise PR curves for BERT-FT
BiLSTM

ual tuning on the entire range of hyper-parameters.
AUC under the PR curve metric was chosen to se-
lect the best configuration. Results were not very
sensitive to different non-zero values of �.

C Utterance Classification

C.1 PR Curves
Figures A2 and A3 show the precision-recall curves
for each category separately. MEDFILTER im-
proves utterance classification for all three cate-
gories. For symptom classification, the AUC scores
improve from 52.2 to 53.5. However, symptom
extraction results (Section 6 in the main paper) sug-
gest that most of this improvement is on identifying
utterances that discuss fine-grained details about
symptom discussion and not on recognizing the
utterance that contains the actual symptom name.

C.2 Performance on Validation Set
Table A5 shows the performance of different ut-
terance classification models on the validation set.
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Figure A3: Category-wise PR curves for MEDFILTER

Similar to the trend shown on test-set, MEDFILTER
beats all of the baselines reaching a score of 50.5
AUC points.

Methods Val AUC #Param Time (hrs)

UniF-BiAGRU 42.7 1.3M 1
BiF-AGRU 42.9 1.3M 1
HiGRU-sf 45.0 2.6M 0.45

BERT 35.9 110M -
Clinical BioBERT-FT 38.5 110M 10
BERT-FT 38.5 110M 10

BERT BiLSTM FT 47.9 125M 12
BERT-FT BiLSTM 49.6 125M 10 + 0.1

MEDFILTER 50.5 169M 10 + 1

Table A5: Results on val-set and the number of train-
able parameters corresponding to each utterance clas-
sification model. The time taken by models that use
BERT-FT is shown as a sum of two numbers as fine-
tuning BERT is only done once, which is then used for
both BERT-FT BiLSTM and MEDFILTER.

D Downstream Medical Extraction

D.1 Micro-F1 vs Threshold
Figure A4 and A5 show how the performance
of medication (ME) and symptom extraction (SE)
varies against different utterance topic prediction
probability thresholds. We plot the results for
BERT-FT BiLSTM and MEDFILTER for brevity.
Micro F1 scores for ME increase monotonically
when the threshold is increased from 0 to ⇠ 0.75
(Figure A4). This suggests that QuickUMLS medi-
cation extractor has low precision that is substan-
tially improved when we prune irrelevant utter-
ances. However, the graph for SE (Figure A5)
shows that the extractor’s performance is domi-
nated by its recall. Pruning helps with improving
the precision however does not help with the low re-
call. This explains the lower gains as compared to
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Threshold

MR BERT-FT BiLSTM
SU BERT-FT BiLSTM
MR MedFilter
SU MedFilter

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure A5: Symptom Extraction: Micro-F1 vs Thresh-
old

ME when using topic-based utterance classification
in the SE pipeline (Table 3 in the main paper).

D.2 Oracle Results

Table A6 contains results for medication extraction
when medically relevant (MR) or medication (MU)
utterances are chosen using an oracle (MR/MU Ora-
cle). Similarly, oracle results for symptom and com-
plaint extraction are shown in Tables A7 and A8,
respectively.

We find that there is still a substantial room for
improvement in the symptom extraction pipeline.
By just improving the topic-based utterance classi-
fier, one can observe a potential jump of 5 Micro-F1
points in symptom extraction. However, we do not
observe this trend for medication extraction where
the topic-classification done by MEDFILTER per-
forms much better than the Oracle.

D.2.1 Why does MEDFILTER perform better
than Oracle on Medication Extraction?

Extraction experiments (like medication extraction
or symptom extraction) evaluate the performance
at the conversation-level. So, where the medication
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Medication Extraction Macro F1 Micro F1

QuickUMLS (All Text) 25.4 33.5

QuickUMLS (MR Oracle) 30.0 41.3
QuickUMLS (MU Oracle) 37.6 58.3

QuickUMLS (MR MEDFILTER) 34.2 62.8
QuickUMLS (MU MEDFILTER) 35.9 68.9

Table A6: Results(%) for Medication Extraction (ME).
MR=Medically Relevant (Symptom + Complaints + Med-
ications) Utterances, MU=Medication Utterances.

Symptom Extraction Macro F1 Micro F1

QuickUMLS (All Text) 33.9 42.7

QuickUMLS (MR Oracle) 36.9 47.2
QuickUMLS (SU Oracle) 41.9 54.5

QuickUMLS (MR MEDFILTER) 35.2 47.4
QuickUMLS (SU MEDFILTER) 36.1 49.3

Table A7: Results(%) for Symptom Extraction (SE).
MR=Medically Relevant, SU=Symptom Utterances.

name gets extracted from within the conversation
is irrelevant to the task.

Oracle picks utterances that would be sufficient
for a human to identify the medications discussed
in the dialogue. However, they might not be ade-
quate for an automatic string-matching based ex-
tractor like QuickUMLS. Since QuickUMLS uses
non-contextual surface-level features to identify
medication names, it would look for phrases (in
the input given to it) that match the surface require-
ments. So, it is possible for the Oracle utterances
not to contain the proper surface-level forms that
QuickUMLS could leverage for extracting medica-
tions. Furthermore, the utterances categorized as
medication utterances by MedFilter on the other
hand, even though incorrect, might contain the med-
ication names in the form QuickUMLS expects,
thus improving the score over the Oracle. One
should note, however, that a perfect downstream
extractor would not suffer from these side-effects.

Complaint Extraction Macro F1 Micro F1

QuickUMLS (All Text) 10.0 35.6

QuickUMLS (MR Oracle) 10.6 38.8
QuickUMLS (SU Oracle) 13.4 44.3

QuickUMLS (MR MEDFILTER) 11.1 40.7
QuickUMLS (CU MEDFILTER) 11.1 43.7

Table A8: Results(%) for Complaint Extraction (CE).
MR=Medically Relevant, CU=Complaint Utterances.

D.3 Supervised Extractor
For symptom extraction (SE), we also show the ben-
efits of using topic-based utterance classification
on a supervised-classification based SE approach
that leverages a BiLSTM with attention (BiLSTM-
Attn) for the problem of predicting the symptoms
present in a conversation.

D.3.1 BiLSTM-Attn
Each utterance in the conversation is passed
through the embedding layer and a BiLSTM layer
to obtain a contextualized representation.

hi = BiLSTM(e(si), hi�1)

Hi = {h1, h2, ..., hn}

where e(.) is the embedding function. The final
state of the BiLSTM is re-weighted using attention
calculated as shown in Equation A1.

hfinal = [ ~h0; ~hn�1]

S = Hihfinal

A = softmax(S)
h0final = H

T
i A

(2)

This allows our model to pay attention to important
utterances in the conversation to extract symptom
information. We pass h0final through a linear clas-
sifier and a sigmoid layer to get logits for each
possible symptom label (Table A10).

D.3.2 Experimental Setup
Similar to the QuickUMLS based extractor, we
use Micro and Macro F1 scores to evaluate the
performance of the supervised extraction pipeline.
BiLSTM-Attn (All Text) model takes in the entire
conversation as input, whereas the other variants
are given only a subset of utterances. MR Ora-
cle/MEDFILTER models are trained on the med-
ically relevant utterances as output by the ora-
cle. Similarly, SU Oracle/MEDFILTER models are
trained on the Oracle symptom utterances in each
conversation in the training-set. Therefore, topic-
based classification is used as a pre-processing step
in the pipeline.

D.3.3 Results
We present the results for symptom extraction (SE)
using a BiLSTM-Attn model in Table A9. We
find that using topic-based utterance classification
to remove irrelevant utterances before passing the
conversation through the BiLSTM-Attn improves
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the SE performance of the pipeline (4 point jump in
Micro F1). The results are further improved when
the Oracle symptom utterances (SU Oracle) are
input to the BiLSTM-Attn.

Symptom Extraction Macro F1 Micro F1

BiLSTM-Attn (All Text) 28.1 57.7

BiLSTM-Attn (MR Oracle) 29.3 59.4
BiLSTM-Attn (SU Oracle) 31.5 66.6

BiLSTM-Attn (MR MEDFILTER) 28.7 58.4
BiLSTM-Attn (SU MEDFILTER) 29.8 61.7

Table A9: BiLSTM-Attn results(%) for Symptom Extraction
(SE). MR=Medically Relevant, SU=Symptom Utterances.

Symptom Labels

Cardiovascular
General

Musculoskeletal
Respiratory
Endocrine

Ear Nose Throat
Eyes

Gastrointestinal
Genital
Head

Neurological
Psychiatric

Skin
Urinary

Table A10: Symptom Extraction Labels (Body Systems)

Chief Complaint Labels

General
Disorder of hematopoietic structure

Disorder of integument, immune system, endocrine
Disorder of musculoskeletal system

Disorder of digestive system
Disorder of the genitourinary system

Disorder of respiratory system
Disorder of breast

Disorder of nervous system
Disorder of cardiovascular system

Others

Table A11: Complaint labels in the dataset. The la-
bel names represent the children of the SNOMED-
CT hierarchy: SNOMED CT Concept/Clinical Find-
ing/Finding by site/ Disorder by body site.

Label Target CUI List

General C0036572, C0015672, C0424653, C0015967,
C3714552

Skin C0234233, C0178298, C0015230, C0151908
Head C0362076, C0042571, C0018681, C0220870,

C0012833

Eyes C0235267, C0015397, C0007222, C1705500,
C0012634, C2107992, C0017178, C0085635,
C0848332, C0521707, C0152227, C0151827,
C0017601, C0015230

Ent C0027424, C2926602, C0699744, C0030193,
C0031350, C0013456, C0018621, C0009443,
C0851354, C0018021, C0017672, C0024117,
C0036572, C2012701, C0041912, C0042571,
C0019825, C0242429, C0427008, C0497156,
C1135208, C0151908

Genital C0567522, C3539891, C3539893, C0149741,
C0020624, C2127567, C3539020, C0030193,
C0424849, C3539896, C0567523, C0577573,
C0007947, C0282005, C0017412, C2129032,
C0023533, C4029890, C3539892, C0850758,
C0438692, C0567526, C0039591, C0036918,
C0036917, C3539890, C0232861, C1657982,
C0036916, C3539022, C0877338, C1658964,
C1868932, C0423610, C4552766, C0024902,
C0234233, C3539023, C0030794, C2075679,
C0156398, C1391387, C2030274, C0567519,
C0017411, C2032395, C2126231, C0236078,
C3539889, C3539895, C0849787, C2032396,
C0019693

Respiratory C0857427, C0013404, C0149514, C1396850,
C0041312, C0206526, C0019079, C0006277,
C0041296, C0010200, C0024115, C0034067,
C0030524, C0152874, C0004096, C0041322,
C0043144, C0275904

Cardiovascular C0013404, C0795691, C0235710, C0008031,
C0035436, C0002871, C0020538, C0018799,
C0497234

Gastrointestinal C0011991, C0019196, C0019112, C2032722,
C0030193, C0178298, C0854495, C4748517,
C0019158, C0018834, C0237938, C0854496,
C0849766, C0239549, C0149696, C3553270,
C0014724, C0814152, C0000737, C1321898,
C0596601, C0085293, C2697368, C0016977,
C0949135, C0011226, C0018932, C0017178,
C0019159, C0027497, C0687713, C0341286,
C0009806, C4728126, C1258215, C0920703,
C0019163

Urinary C0392525, C0262655, C0018965, C0239725,
C0042029, C0455880, C4087409, C0152032,
C0022650, C0021167, C0030193, C0558489

Musculoskeletal C0030193, C0040822, C0858888, C0026857,
C1405877, C0158026, C0003864, C0003123,
C0030554, C0085593, C0427086, C0426579,
C3714552, C0231528, C0036572, C0003873,
C0028643, C0424653, C0003862, C0423572,
C0427008, C0007859, C0541786, C0522057,
C0018099, C2242996, C0015967, C1328469,
C0263776, C0015230

Psychiatric C0542476, C1579931, C0235108, C0497307,
C0027769

Neurologic C0036572, C0233407, C0042571, C0018681,
C0039070, C1660797, C0312422, C0012833,
C1135208

Endocrine C0024117, C0020175, C0085602, C0041912,
C0848390, C0009443, C0020615, C0221500

Table A12: CUI Target List for Symptom Extraction
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Medication Labels

DFCBM/Chemical Modifier/Toxin
DFCBM/Dietary Supplement

DFCBM/Drug or Chemical by Structure
DFCBM/Food or Food Product

DFCBM/Industrial Aid
DFCBM/Natural Product

DFCBM/Pharmacologic Substance/Adjuvant
DFCBM/Pharmacologic Substance/AA Blood or Body Fluid

DFCBM/Pharmacologic Substance/AA Cardiovascular System
DFCBM/Pharmacologic Substance/AA Digestive System or Metabolism

DFCBM/Pharmacologic Substance/AA Integumentary System
DFCBM/Pharmacologic Substance/AA Musculoskeletal System

DFCBM/Pharmacologic Substance/AA Nervous System
DFCBM/Pharmacologic Substance/AA Organs of Special Senses

DFCBM/Pharmacologic Substance/AA Respiratory System
DFCBM/Pharmacologic Substance/Anti-Infective Agent
DFCBM/Pharmacologic Substance/Antineoplastic Agent

DFCBM/Pharmacologic Substance/Biological Agent
DFCBM/Pharmacologic Substance/Cation Channel Blocker
DFCBM/Pharmacologic Substance/Chemopreventive Agent
DFCBM/Pharmacologic Substance/Combination Medication

DFCBM/Pharmacologic Substance/Endothelin Receptor Antagonist
DFCBM/Pharmacologic Substance/Enzyme Inhibitor

DFCBM/Pharmacologic Substance/Hormone Therapy Agent
DFCBM/Pharmacologic Substance/Immunotherapeutic Agent
DFCBM/Pharmacologic Substance/Prostaglandin Analogue

DFCBM/Pharmacologic Substance/Protective Agent
DFCBM/Pharmacologic Substance/Protein Synthesis Inhibitor

DFCBM/Physiology-Regulatory Factor
Activity/Clinical or Research Activity/Intervention or Procedure

Manufactured Object/Diagnostic, Therapeutic, or Research Equipment
Others

Table A13: Medication Extraction Labels (DFCBM = Drug,
Food, Chemical or Biomedical Material, AA = Agent Affect-
ing).


