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Abstract
When does a sequence of events define an ev-
eryday scenario and how can this knowledge
be induced from text? Prior works in induc-
ing such scripts have relied on, in one form
or another, measures of correlation between
instances of events in a corpus. We argue
from both a conceptual and practical sense that
a purely correlation-based approach is insuf-
ficient, and instead propose an approach to
script induction based on the causal effect be-
tween events, formally defined via interven-
tions. Through both human and automatic
evaluations, we show that the output of our
method based on causal effects better matches
the intuition of what a script represents.

1 Introduction

Commonsense knowledge of everyday situations,
as defined in terms of prototypical sequences of
events, has long been held to play a major role in
text comprehension and understanding (Minsky,
1974; Schank and Abelson, 1975, 1977; Bower
et al., 1979; Abbott et al., 1985). Naturally, this has
motivated a large body of work looking to learn
such knowledge, such scripts,1 from text corpora
through data-driven approaches.

A minimal and often implicit requirement for
any such approach is to resolve for any pair of
events e1 and e2 what quantitative measure should
be used to determine whether e2 should ”follow” e1
in script. That is, documents may serve as descrip-
tions of events that occur in the same situation as
other events: what function may we compute over
the raw presence or absence of events in documents
that is most useful for script induction?

Chambers and Jurafsky (2008; 2009) adopted
point-wise mutual information (PMI) (Church and

1For simplicity we will refer to these ‘prototypical event
sequences’ as scripts throughout the paper, though it should be
noted scripts as originally proposed contain further structure
not captured in this definition.

Figure 1: The events of Watching a sad movie, Eat-
ing popcorn, and Crying, may highly co-occur in a hy-
pothetical corpus. What distinguishes valid event pair
inferences (event pairs linked in a commensense sce-
nario; noted by checkmarks above) versus invalid infer-
ences (noted by a ‘X’)?

Hanks, 1990) between event mentions. Others em-
ployed probabilities from a language model over
event sequences (Jans et al., 2012; Rudinger et al.,
2015; Pichotta and Mooney, 2016; Peng and Roth,
2016; Weber et al., 2018b), or other measures of
event co-occurrence (Balasubramanian et al., 2013;
Modi and Titov, 2014).

In this work we ask: do measures rooted in co-
occurrence best capture the notion of whether one
event should follow another in a script? We posit
that it does not, that while observed correlations
between events indicate relatedness, relatedness is
not the only factor in determining whether events
form a meaningful script.

Consider the example of Ge et al. (2016): hur-
ricane events are prototypically connected with
events of donations coming in. Likewise, hurri-
cane events are connected to evacuation events.
However, while donation and evacuation events are
not conceptually connected in the same sense, there
will exist strong statistical associations between the
two. Figure 1 provides a second example: eating
popcorn is not conceptually associated with crying,
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but they might co-occur in a hypothetical corpus
describing situations of watching a sad movie.

What do strict co-occurrence measures miss? In
both examples the ‘invalid’ inferences arise from
the same issue: an event such as eating popcorn
may raise the probability of the event crying, but
it does so only through a shared association with a
movie watching context: the increase in probability
is not due to the eating popcorn itself. In other
words, what is lacking is a direct causal effect be-
tween these events, a quantity that can be formally
defined using tools from the causal inference litera-
ture (Hernan and Robins, 2019).

In this work we demonstrate how a measure
based on causal effects can be derived, com-
puted, and employed for the extraction of script
knowledge. Using crowdsourced human eval-
uations and a variant of the automatic cloze
evaluation, we show how this definition better
captures the notion of scripts as compared to
prior standard measures, PMI and event sequence
language models. Code and data available at
github.com/weberna/causalchains.

2 Motivation

Does that fact that event e2 is often observed after
e1 in the data (i.e. p(e2|e1) is “high”) mean that e2
prototypically follows e1, in the sense of being part
of a script? In this section we argue that observed
associations are not sufficient for the purpose of
extracting script knowledge from text. We argue
from a conceptual standpoint that some notion of
causal relevance is required. We then give exam-
ples showing the practical pitfalls that may arise
from ignoring this component. Finally, we propose
our intervention based definition for script events,
and show how it both explicitly defines a notion of
‘causal relevance,’ while simultaneously fixing the
aforementioned practical pitfalls.

2.1 The Significance of Causal Relevance

The original works defining scripts are unequivocal
about the importance of causal linkage between
script events,2 and other components of the origi-
nal script definition (e.g. what-ifs, preconditions,
postconditions, etc.) are arguably causal in na-
ture. Early rule-based works on inducing scripts
heavily used causal concepts in their schema rep-
resentations (DeJong, 1983; Mooney and DeJong,

2“...a script is not a simple list of events but rather a linked
causal chain” (Schank and Abelson, 1975)

1985), as do related works in psychology (Black
and Bower, 1980; Trabasso and Sperry, 1985).

But any measure based solely on p(e2|e1) is ag-
nostic to notions of causal relevance. Does this
matter in practice? A high p(e2|e1) indicates ei-
ther: (1) a causal influence of e1 on e2, or (2) a
common cause e0 between them, meaning the re-
lation between e1 and e2 is spurious. In the latter
case, e0 acts as a confounder between e1 and e2.

Ge et al. (2016) acknowledges that the associ-
ations picked up by correlational measures may
often be spurious. Their solution relies on using
trends of words in a temporal stream of newswire
data, and hence is fairly domain specific.

2.2 Defining Causal Relevance

Early works such as Schank and Abelson (1975)
are vague with respect to the meaning of “causally
chained.” Can one say that watching a movie has
causal influence on the subsequent event of eating
popcorn happening? Furthermore, can this defini-
tion be operationalized in practice?

We argue that both of these questions may be
elucidated by taking a manipulation-based view
of causation. Roughly speaking, this view holds
that a causal relationship is one that is “potentially
exploitable for the purposes of manipulation and
control” – Woodward (2005). In other words, a
causal relationship between A and B means that (in
some cases) manipulating the value of A should
result in a change in the value of B. A primary
benefit of this view is that the meaning of a causal
claim can be clarified by specifying what these
‘manipulations’ are exactly. We take this approach
below to clarify what exactly is meant by ‘causal
relevance’ between script events.

Imagine an agent reading a discourse. After read-
ing a part of the discourse, the agent has some ex-
pectations for events that might happen next. Now
imagine that, before the agents reads the next pas-
sage, we surreptitiously replace it with an alternate
passage in which the event e1 happens. We then al-
low the agent to continue reading. If e1 is causally
relevant to e2, then this replacement should, in
some contexts, raise the agents degree of belief in
e2 happening next (contra the case where we didn’t
intervene to make e1 happen ).

So, for example, if we replaced a passage such
that e1 = watching a movie was true, we could
expect on average that the agent’s degree of belief
that e2 = eating popcorn happens next will be
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Figure 2: The diagram for our causal model up to time
step i. Intervening on ei−1 acts to remove the dotted
edges. See 3.1 for a description of the variables.

higher. In this way, we say these events are causally
relevant, and are for our purposes, script events.

With this little ‘story,’ we have clarified the con-
ceptual notion of causal relevance in our problem.
In the next section, we formalize this story and its
notion of intervention into a causal model.

3 Method

We would like to compute the effect of forcing an
event of a certain type to occur in the text. The
event types that get the largest increase in probabil-
ity due to this are held to be ‘script’ events. Com-
puting these quantities falls within the domain of
causal inference, and hence will require its tools be
used. There are three fundamental steps in causal
inference we will need to work through to accom-
plish this: (1) Define a Causal Model: Identify
the variables of interest in the problem, and define
causal assumptions regarding these variables, (2)
Establish Identifiability: With the given model,
determine whether the causal quantity can be com-
puted as a function of observed data. If it can,
derive this function and move to (3) Estimation:
Estimate this function using observed data. We go
through each step in the next three subsections.

To best contrast with prior work, we use the
event representation of Chambers and Jurafsky
(2008) and others (Jans et al., 2012; Rudinger et al.,
2015). A description of this representation is pro-
vided in the Supplemental.

3.1 Step 1: Define a Causal Model

A causal model defines a set of causal assump-
tions on the variables of interest in a problem.
While there exists several formalisms that accom-
plish this, in this paper we make use of causal
Bayesian networks (CBN) (Spirtes et al., 2000;
Pearl, 2000). CBNs model dependencies be-

tween variables graphically in a manner similar
to Bayesian networks; the key distinction being
that the edges in a CBN posits a direction of causal
influence between the variables 3.

We will define our causal model from a top down,
data generating perspective in a way that aligns
with our conceptual story from the previous section.
Below we describe the four types of variables in
our model, as well as their causal dependencies.

The World, U: The starting point for the gener-
ation of our data is the real world. This context is
explicitly represented by the unmeasured variable
U . This variable is unknowable and in general un-
measurable: we don’t know how it is distributed,
nor even what ‘type’ of variable it is. This variable
is represented by the hexagonal node in Figure 2.

The Text, T: The next type of variable represents
the text of the document. For indexing purposes,
we segment the text into chunks T1,...,TN , where
N is the number of realis events explicitly men-
tioned in the text. The variable Ti is thus the text
chunk corresponding to the ith event mentioned in
text. These chunks may be overlapping, and may
skip over certain parts of the original text.4 The
causal relationship between various text chunks
is thus ambiguous. We denote this by placing bi-
directional arrows between the square text nodes
in Figure 2. The context of the world also causally
influences the content of the text, hence we include
an arrow from U to all text variables, Ti.

Event Inferences, e: In our story in Section 2,
an agent reads a chunk of text and infers the type of
event that was mentioned in the piece of text. This
inference is represented (for the ith event in text) in
our model by the variable ei ∈ E where E is the
set of possible atomic event types (described at the
end of this section).5

3See Pearl (2000); Bareinboim et al. (2012) for a compre-
hensive definition of CBNs and their properties.

4Keeping with prior work, we use the textual span of the
event predicate syntactic dependents as the textual content
of an event. The ordering of variables Ti corresponds to the
positions of the event predicates in the text.

5For this study we use the output of information extraction
tools as a proxy for the variable ei (see supplemental). As
such, it is important to note that there will be bias in computa-
tions due to measurement error. Fortunately, there do exists
methods in the causal inference literature that can adjust for
this bias (Kuroki and Pearl, 2014; Miao et al., 2018). Wood-
Doughty et al. (2018) derive equations in a case setting related
to ours (i.e. with measurement bias on the variable being
intervened on). Dealing with this issue will be an important
next step for future work.
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The textual content of Ti causally influences the
inferred type ei, hence directional connecting ar-
rows in Figure 2.

Discourse Representation, D The variable ei
represent a high level abstraction of part of the
semantic content found in Ti. Is this informa-
tion about events used for later event inferences
by an agent reading the text? Prior results in
causal network/chain theories of discourse process-
ing (Black and Bower, 1980; Trabasso and Sperry,
1985; Van den Broek, 1990) seem to strongly point
to the affirmative. In brief, these theories hold that
the identities of the events occurring in the text –
and the causal relations among them – are a core
part of how a discourse is represented in human
memory while reading, and more-so, that this infor-
mation significantly affects a reader’s event based
inferences(Trabasso and Van Den Broek, 1985;
Van den Broek and Lorch Jr, 1993). Thus we intro-
duce a discourse representation variable, Di, itself
a combination of two sub-variables, DI

i and DO
i .

The variable DI
i ∈ E∗ is a sequence6 of events

that were explicitly stated in the text, up to step
i. After each step, the in-text event inferred at i
(the variable ei) is appended to DI

i+1. The causal
parents ofDI

i+1 are thus ei andDI
i (which is simply

copied over). We posit that the information in DI
i

provides information in the inference of ei, and
thus draw an arrow from DI

i to ei.
Unstated events not found in the text but inferred

by the reader also have an effect on event inferences
(McKoon and Ratcliff, 1986, 1992; Graesser et al.,
1994). We thus additionally take this into consid-
eration in our causal model by including an out of
text discourse representation variable, DO

i ∈ 2|E|.
This variable is a bag of events that a reader may
infer implicitly from the text chunk Ti using com-
mon sense. Its causal parents are thus both the text
chunk Ti, as well as the world context U ; its causal
children are ei. Obtaining this information is done
via human annotation and discussed later. Di is
thus equal to (DI

i , D
O
i ), and inherits the incoming

and outgoing arrows of both in Figure 2.

3.2 Step 2: Establishing Identifiability
Our goal is to compute the effect that intervening
and setting the preceding event ei−1 to k ∈ E has

6We don’t explicitly model the causal structure between
events in Di, the importance of which is a key finding in the
above referenced literature. While this wouldn’t change the
structure of our causal model, it would impact the estimation
stage, and would be an interesting line of future work.

on the distribution over the subsequent event ei.
Now that we have a causal model in the form of
Fig. 2, we can now define this effect. Using the
notation of Pearl (2000), we write this as:

p(ei|do(ei−1 = k)) (1)

The semantics of do(ei−1 = k) are defined as
an ‘arrow breaking’ operation on Figure 2 which
deletes the incoming arrows to ei−1 (the dotted
arrows in Figure 2) and sets the variable to k. Be-
fore a causal query such as Eq. 1 can be estimated
we must first establish identifiability (Shpitser and
Pearl, 2008): can the causal query be written as a
function of (only) the observed data?

Eq. 1 is identified by noting that variables Ti−1
and Di−1 meet the ‘back-door criterion’ of Pearl
(1995), allowing us to write Eq. 1 as the following:

ETi−1,Di−1

[
p(ei|ei−1 = k,Di−1, Ti−1)

]
(2)

Our next step is to estimate the above equa-
tion. If one has an estimate for the conditional
p(ei|ei−1, Di−1, Ti−1), then one may ”plug it into”
Eq. 2 and use a Monte Carlo approximation of the
expectation (using samples of (T,D)). This simple
plug in estimator is what we use here

It is important to be aware of the fact that
This estimator, specifically when plugging in ma-
chine learning methods, is quite naive (e.g. Cher-
nozhukov et al. (2018)), and will suffer from an
asymptotic (first order) bias. 7 which prevents one
from constructing meaningful confidence intervals
or performing certain hypothesis tests. That said,
in practice these machine learning based plug in es-
timators can achieve quite reasonable performance
(see for example, the results in Shalit et al. (2017)),
and since our current use case can be validated
empirically, we save the usage of more sophisti-
cated estimators (and proper statistical inference)
for future work8.

3.3 Step 3: Estimation
Eq. 2 depends on the conditional, pei =
p(ei|ei−1, Di−1, Ti−1), which we estimate via stan-

7See Fisher and Kennedy (2018) for an introduction on
how this bias manifests.

8Semiparametric estimation of equations such as Eq. 2
involving high dimensional variables (like text) is an open
problem that we do not address here. See (D’Amour et al.,
2020; Kennedy, 2016; Chernozhukov et al., 2018) for an analy-
sis of some of the problems that arise in both high dimensional
causal inference and semiparametric estimation (ie estimation
without full parametric assumptions). See Keith et al. (2020)
for an overview of problems that arise particularly when deal-
ing with text.
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dard ML techniques with a dataset of samples
drawn from p(ei, ei−1, Di−1, Ti−1). There are two
issues: (1) How do we deal with out-of-text events
in Di−1?, and (2) What form will pei take?

Dealing with Out-of-Text Events Recall that
Di is combination of the variables DI

i and DO
i .

To learn a model for pei we require samples from
the full joint. Out of the box however, we only have
access to p(ei, ei−1, DI

i−1, Ti−1). If, for the sam-
ples in our current dataset, we could draw samples
from pD = p(DO

i−1|ei, ei−1, DI
i−1, Ti−1), then we

would have access to a dataset with samples drawn
from the full joint.

In order to ‘draw’ samples from pD we employ
human annotation. Annotators are presented with
a human readable form of (ei, ei−1, DI

i−1, Ti−1)
9

and are asked to annotate for possible events be-
longing in DO

i−1. Rather than opt for noisy annota-
tions obtained via freeform elicitation, we instead
provide users with a set of 6 candidate choices for
members of DO

i−1. The candidates are obtained
from various knowledge sources: ConceptNet
(Speer and Havasi, 2012), VerbOcean (Chklovski
and Pantel, 2004), and high PMI events from the
NYT Gigaword corpus (Graff et al., 2003). The
top two candidates are selected from each source.

In a scheme similar to Zhang et al. (2017), we
ask users to rate candidates on an ordinal scale and
consider candidates rated at or above a 3 (out of 4)
to be considered within DO

i−1. We found annotator
agreement to be quite high, with a Krippendorf’s
α of 0.79. Under this scheme, we crowdsourced
a dataset of 2000 fully annotated examples on the
Mechanical Turk platform. An image of our anno-
tation interface is provided in the Appendix.

The Conditional Model We use neural net-
works to model pei . In order to deal with the small
amount of fully annotated data available, we em-
ploy a finetuning paradigm. We first train a model
on a large dataset that does not include annota-
tions for DO

i−1. This model consists of a single
layer, 300 dimensional GRU encoder which en-
codes [DI

i−1, ei−1] into a vector ve ∈ Rd and a
CNN-based encoder which encodes Ti−1 into a
vector vt ∈ Rd. The term pei is modeled as:

pei ∝ Ave +Bvt

9In the final annotation experiment, we found it easier for
annotators to be only provided the text Ti−1, given that many
events in DI

i−1 are irrelevant.

for matrices A and B of dimension |E| × d. We
then finetune this model on the 2000 annotated ex-
amples including DO

i−1. We add a new parameter
matrix, C, to the previously trained model (allow-
ing it to take DO

i−1 as input) and model pei as:

pei ∝ Ave +Bvt + Cvo

The input vo is the average of the embeddings for
the events found in DO

i−1. The parameter matrix
C is thus the only set of parameters trained ‘from
scratch,’ on the 2000 annotated examples. The rest
of the parameters are initialized and finetuned from
the previously trained model. See Appendix for
further training details.

3.4 Extracting Script Knowledge

Provided a model of the conditional pei we can
approximate Eq. 2 via Monte Carlo by taking our
annotated dataset of N = 2000 examples and com-
puting the following average:

P̂k =
1

N

N∑
j=1

p(ei|ei−1 = k,Dj , Tj) (3)

This gives us a length |E| vector P̂k whose lth

component, P̂kl gives p(ei = l|do(ei−1 = k)). We
compute this vector for all values of k. Note that
this computation only needs to be done once.

There are several ways one could extract script-
like knowledge using this information. In this pa-
per, we define a normalized score over intervened-
on events such that the script compatibility score
between two concurrent events is defined as:

S(ei−1 = k, ei = l) =
P̂kl∑E
j=1 P̂jl

(4)

We term this as the ‘Causal’ score in the eval below.

4 Experiments and Evaluation

Automatic evaluation of methods that extract script-
like knowledge is an open problem that we do not
attempt to tackle here,10 relying foremost on crowd-
sourced human evaluations to validate our method.

However, as we aim to provide a contrast to prior
script-induction approaches, we perform an experi-
ment looking at a variant of the popular automatic
narrative cloze evaluation.

10See discussions by Rudinger et al. (2015) and Chambers
(2017).
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4.1 Dataset

For these experiments, we use the Toronto Books
corpus (Zhu et al., 2015; Kiros et al., 2015), a col-
lection of fiction novels spanning multiple genres.
The original corpus contains 11,040 books by un-
published authors. We remove duplicate books
from the corpus (by exact file match), leaving a
total of 7,101 books. The books are assigned ran-
domly to train, development, and test splits in 90%-
5%-5% proportions. Each book is then run through
a pipeline of tokenization with CoreNLP 3.8 (Man-
ning et al., 2014), parsing with CoreNLP’s univer-
sal dependency parser (Nivre et al., 2016) and coref-
erence resolution (Clark and Manning, 2016b), be-
fore feeding the results into PredPatt (White et al.,
2016). We additionally tag the events with factu-
ality predictions from Rudinger et al. (2018b) (we
only consider factual events). The end result is
a large dataset of event chains centered around a
single protagonist entity, similar to (Chambers and
Jurafsky, 2008). We make this data public to facili-
tate further work in this area. See the Appendix for
a full detailed overview of our pipeline.

4.2 Baselines

In this paper, we compare against the two dominant
approaches for script induction (under a atomic
event representation11): PMI (similar to Cham-
bers and Jurafsky (2008, 2009)) and LMs over
event sequences (Rudinger et al., 2015; Pichotta
and Mooney, 2016). We defer definitions for these
models to the cited papers, below we provide the
relevant details for each baseline, with further train-
ing details provided in the Appendix.

For computing PMI we follow many of the de-
tails from (Jans et al., 2012). Due to the nature
of the evaluations, we utilize their ‘ordered’ PMI-
variant. Also like Jans et al. (2012), we use skip-
bigrams with a window of 2 to deal with count spar-
sity. Consistent with prior work we additionally
employ the discount score of Pantel and Ravichan-
dran (2004). For the LM, we use a standard, 2
layer, GRU-based neural network language model,
with 512 dimensional hidden states, trained on a
log-likelihood objective.

Method Average Score Average Rank (1-6)
Causal 49.71 4.10

LM 35.95 3.39
PMI 34.92 3.02

Table 1: Average Annotator Scores in Pairwise annota-
tion experiment

Causal LM PMI Target
X tripped X came X featured X fell

X lit X sat X laboured X inhaled
X aimed X came X alarmed X fired

X poured X nodded X credited X refilled
X radioed X made X fostered X ordered

Table 2: Examples from each system, each of
which outputs a previous event that maximizes the
score/likelihood that the Targeted event follows in text.

4.3 Eval I: Pairwise Event Associations
Any system aimed at extracting script-like knowl-
edge should be able to answer the following ab-
ductive question: given an event ei happened, what
previous event ei−1 best explains why ei is true? In
other words, what ei−1, if it were true, would max-
imize my belief that ei was true. We evaluate each
method’s ability to do this via a human evaluation.

On each task, annotators are presented with six
event pairs (ei−1, ei), where ei is the same for all
pairs, but ei−1 is generated by one of the three sys-
tems. Similar to the human evaluation in Pichotta
and Mooney (2016), we filter out outputs in the
top-20 most frequent events list for all systems.
For each system, we pick the top two events that
maximize S(·, ei), PMI(·, ei), and plm(·, ei), for
the Causal, PMI, and LM systems respectively, and
present them in random order. For each pair, users
are asked to provide a scalar annotation (from 0%-
100%, via a slider bar) on the chance that ei is true
afterwards or happened as a result of ei−1. The an-
notation scheme is modeled after the one presented
in Sakaguchi and Van Durme (2018), and shown to
be effective for paraphrase evaluation in Hu et al.
(2019). Example outputs for systems are provided
for several e1 choices for this task in Table 2.

The evaluation is done for 150 randomly12 cho-
sen instances of ei, each with 6 candidate ei−1. We

11There are also a related class of methods based on creating
compositional event embeddings (Modi, 2016; Weber et al.,
2018a). Since the event representation used here is atomic it
makes little sense to use them here.

12Note that we do manually filter out of the initial random
list events which we judge as difficult to understand
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Method Average Score Average Rank (1-3)
Causal 60.12 2.19

LM 57.40 2.12
PMI 44.26 1.68

Table 3: Average Annotator Scores in Chain annotation
experiment

have two annotators provide annotations for each
task, and similar to Hu et al. (2019), average these
annotations together for a gold annotation.

In Table 1 we provide the results of the experi-
ment, providing both the average annotation score
for the outputs of each system, as well as the av-
erage relative ranking (with a rank of 6 indicat-
ing the annotators ranked the output as the high-
est/best in the task, and a rank of 1 indicating the
opposite). We find that annotators consistently
rated the Causal system higher. The differences
(in both Score and Rank) between the Causal sys-
tem and the next best system are significant under
a Wilcoxon signed-rank test (p < 0.01).

4.4 Eval II: Event Chain Completion

Of course, while pairwise knowledge between
events is a minimum prerequisite, we would also
like to generalize to handle chains of events con-
taining multiple events. In this section, we look at
each system’s ability to provide an intuitive com-
pletion to an event chain. More specifically, the
model is provided with a chain of three context
events, (e1, e2, e3), and is tasked with providing a
suitable e4 that might follow given the first three
events. We evaluate each method’s ability to do
this via a human evaluation.

Since both PMI and the Causal model 13 work
only as pairwise models, we adopt the method of
Chambers and Jurafsky (2008) for chains. For both
the PMI and Causal model, we pick the e4 that
maximizes 1

3

∑3
i=1 Score(ei, e4), where Score is

either PMI or Eq 4. The LM model chooses an
e4 that maximizes the joint over all events.

Our annotation task is similar to the one in
4.3, except the pairs provided consist of a context
(e1, e2, e3) and a system generated e4. Each system
generates its top choice for e4, giving annotators
3 pairs14 to annotate for each task (i.e. each con-
text). On each task, human annotators are asked

13Generalizing the Causal model to multiple interventions,
though out of scope here, is a clear next step for future work.

14We found providing six pairs per task to be overwhelming
given the longer context

to provide a scalar annotation (from 0%-100%, via
a slider) on the chance that e4 is true afterwards
or happened as a result of the chain of context
events. The evaluation is done for 150 tasks, with
two annotators on each task. As before, we average
these annotations together for a gold annotation.

In Table 3 we provide results of the experiment.
Note the the rankings are now from 1 to 3 (higher is
better). We find annotators usually rated the Causal
system higher, though the LM model is much closer
in this case. The differences (in both Score/Rank)
between the Causal and LM system outputs are
not significant under a Wilcoxon signed-rank test,
though the differences between the Causal and PMI
system is (p < 0.01). The fact that the pairwise
Causal model is still able to (at minimum) match
the full sequential model on a chain-wise evalua-
tion speaks to the robustness of the event associa-
tions mined from it, and further motivates work in
extending the method to the sequential case.

4.5 Diversity of System Outputs
But what type of event associations are found from
the Causal model? As noted both in Rudinger
et al. (2015) and in Chambers (2017), PMI based
approaches can often extract intuitive event rela-
tionships, but may sometimes overweight low fre-
quency events or suffer problems from count spar-
sity. LM based models, on the other hand, were
noted for their preference towards boring, uninfor-
mative, high frequency events (like ’sat’ or ’came’).
So where does the Causal model lay on this scale?

We study this by looking at the percentage of
unique words used by each system in the previ-
ous evaluations, presented in Table 5. Unsurpris-
ingly, we find that PMI chooses a new word to
output often (77%-84% of the time), while the LM
model very rarely does (only 7%-13%). The Causal
model, while not as adventurous as the PMI system,
tends to produce very diverse output, generating a
new output 60%-76% of the time. Both the PMI
and Causal system produce relatively less diverse
output on the chain task, which is expected due to
the averaging scheme used by each to select events.

4.6 Infrequent Narrative Cloze
The narrative cloze task, or some variant of it, has
remained a popular automatic test for systems aim-
ing to extract ‘script’ knowledge. The task is usu-
ally formulated as follows: given a chain of events
e1, ...en−1 that occurs in the data, predict the held
out next event that occurs in the data, en. There
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Method Pairwise Chain

Causal
X awoke (2%) X collided (4%)
X parried (1%) pinched X (3%)

LM
X came (30%) X made (23%)
X sat (27%) X came (15%)

PMI
X lurched (1%) bribed X (3%)
X patroled (1%) X swarmed (2%)

Table 4: Two most used output events (and % of times
it is used) for each system, for each human evaluation

Method Pairwise Chain
Causal 76.0% 60.1%

LM 7.30% 13.3%
PMI 84.0% 77.6%

Table 5: % of times a system outputs a new event it
previously had not used before.

exists various measures to calculate a models abil-
ity to perform in this task, but arguably the most
used one is the Recall@N measure introduced in
Jans et al. (2012). Recall@N works as follows:
for a cloze instance, a system will return the top
N guesses for en. Recall@N is the percentage of
times en is found anywhere in the top N list.

The automatic version of the cloze task has
notable limitations. As noted in Rudinger et al.
(2015), the cloze task is essentially a language mod-
eling task; it measures how well a model fits the
data. The question then becomes whether data fit
implies valid script knowledge was learned. The
work of Chambers (2017) casts serious doubts on
this, with various experiments showing automatic
cloze evaluations are biased to high frequency, un-
informative events, as opposed to informative, core,
script events. They further posit human annotation
as a necessary requirement for evaluation.

In this experiment, we provide another datapoint
for the inadequacy of the automatic cloze, while
simultaneously showing the relative robustness of
the knowledge extracted from our Causal system.
For the experiment, we make the following assump-
tions: (1) Highly frequent events tend to appear in
many scenarios, and hence are less likely to be an
informative ‘core’ event for a script, and (2) Less
frequent events are more likely to appear only in
specific scenarios, and are thus more likely to be
informative events. If these are true, then a system
that has extracted useful script knowledge should
keep (or even improve) cloze performance when
the correct answer for en is a less frequent event.

We thus propose a Infrequent Cloze task. In this
task we create a variety of different cloze datasets
(each with 2000 instances) from our test set. Each
set is indexed by a value C, such that the indicated
dataset does not include instances from the top C
most frequent events (C = 0 is the normal cloze
setting). We compute a Recall@100 cloze task on
7 sets of various C and report results in Table 6.

At C = 0, as expected, the LM model is vastly
superior. The performance of the LM model dras-
tically drops however, as soon as C increases, in-
dicating an overreliance on prior probability. The
LM performance drops below 2% once C = 200,
indicating almost no ability in predicting informa-
tive events such as drink or pay, both of which
occur in this set in our case. The PMI and Causal
model’s performance on the other hand, steadily
improve while C increases, with the Causal model
consistently outperforming PMI. This result, when
combined with the results of the human evaluation,
give further evidence towards the relative robust-
ness of the Causal model in extracting informative
core events. The precipitous drop in performance
of the LM further underscores problems that a naive
automatic cloze evaluation may cover up.

5 Related Work

Our work looks at script like associations between
events in a manner similar to Chambers and Ju-
rafsky (2008), and works along similar lines (Jans
et al., 2012; Pichotta and Mooney, 2016). Related
lines of work exist, such as work using generative
models to induce probabilistic schemas(Chambers,
2013; Cheung et al., 2013; Ferraro and Van Durme,
2016), work showing how script knowledge may
be mined from user elicited event sequences (Reg-
neri et al., 2010; Orr et al., 2014), and approaches
take advantage of hand coded schematic knowledge
(Mooney and DeJong, 1985; Raskin et al., 2003).
The cognitive linguistics literature is rich with work
studying the role of causal semantics in linguistic
constructions and argument structure (Talmy, 1988;
Croft, 1991, 2012), as well as the causal seman-
tics of lexical items themselves (Wolff and Song,
2003). Work in the NLP literature on extracting
causal relations has benefited from this line of work,
utilizing the systematic way in which causation
in expressed in language to mine relations (Girju
and Moldovan, 2002; Girju, 2003; Riaz and Girju,
2013; Blanco et al., 2008; Do et al., 2011; Bosse-
lut et al., 2019). This line work aims to extract
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Method
Exclusion Threshold

< 0 < 50 < 100 < 125 < 150 < 200 < 500

Causal 5.60 7.10 7.00 7.49 7.20 8.20 9.10
LM 65.3 28.1 9.70 6.30 3.60 1.70 0.25
PMI 1.80 3.30 3.36 4.10 4.00 4.90 7.00

Table 6: Recall@100 Narrative Cloze Results. < C indicates that instances whose cloze answer is one of the top
C most frequent events are not evaluated on

causal relations between events that are in some
way explicitly expressed in the text (e.g. through
the use of particular constructions).Taking advan-
tage of how causation is expressed in language may
benefit our causal model, and is a potential path for
future work.

6 Conclusions and Future Work

In this work we argued for a causal basis in script
learning. We showed how this causal definition
could be formalized and used in practice utiliz-
ing the tools of causal inference, and verified our
method with human and automatic evaluations. In
the current work, we showed a method calculating
the ‘goodness’ of a script in the simplest case: be-
tween pairwise events, which we showed still to
be quite useful. A causal definition is in no way
limited to this pairwise case, and future work may
generalize it to the sequential case or to event repre-
sentations that are compositional. Having a causal
model shines a light on the assumptions made here,
and indeed, future work may further refine or over-
haul them, a process which may further shine a
light on the nature of the knowledge we are after.
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A Appendix

A.1 Event Representation
To best contrast with prior work, we use the event
representation of Chambers and Jurafsky (2008)
and others (Jans et al., 2012; Rudinger et al., 2015).
Each event is a pair (p, d), where p is the event
predicate (e.g. hit), and d is the dependency re-
lation (e.g. nsubj) between the predicate and the
protagonist entity. The protagonist is the entity that
participates in every event in the considered event
chain, e.g., the ‘Bob’ in the chain ‘Bob sits, Bob
eats, Bob pays.’

A.2 Data Pre-Processing
For these experiments, we use the Toronto Books
corpus (Zhu et al., 2015; Kiros et al., 2015), a col-
lection of fiction novels spanning multiple genres.
The original corpus contains 11,040 books by un-
published authors. We remove duplicate books
from the corpus (by exact file match), leaving a
total of 7,101 books; a distribution by genre is pro-
vided in Table 7. The books are assigned randomly
to train, development, and test splits in 90%-5%-
5% proportions (6,405 books in train, and 348 in
development and test splits each). Each book is
then sentence-split and tokenized with CoreNLP
3.8 (Manning et al., 2014); these sentence and to-
ken boundaries are observed in all downstream
processing.

A.2.1 Narrative Chain Extraction Pipeline
In order to extract the narrative chains from the
Toronto Books data, we implement the following
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Adventure 390 Other 284
Fantasy 1,440 Romance 1,437
Historical 161 Science Fiction 425
Horror 347 Teen 281
Humor 237 Themes 32
Literature 289 Thriller 316
Mystery 512 Vampires 131
New Adult 702 Young Adult 117

Table 7: Distribution of books within each genre of the
deduplicated Toronto Books corpus.

pipeline. First, we note that coreference resolution
systems are trained on documents much smaller
than full novels (Pradhan et al., 2012); to accom-
modate this limitation, we partition each novel into
non-overlapping windows that are 100 sentences in
length, yielding approximately 400,000 windows
in total. We then run CoreNLP’s universal depen-
dency parser (Nivre et al., 2016; Chen and Man-
ning, 2014), part of speech tagger (Toutanova et al.,
2003), and neural coreference resolution system
(Clark and Manning, 2016a,b) over each window
of text. For each window, we select the longest
coreference chain and call the entity in that chain
the “protagonist,” following Chambers and Juraf-
sky (2008).

We feed the resulting universal dependency (UD)
parses into PredPatt (White et al., 2016), a rule-
based predicate-argument extraction system that
runs over universal dependency parses. From Pred-
Patt output, we extract predicate-argument edges,
i.e., a pair of token indices in a given sentence
where the first index is the head of a predicate, and
the second index is the head of an argument to that
predicate. Edges with non-verbal predicates are
discarded.

At this stage in the pipeline, we merge infor-
mation from the coreference chain and predicate-
argument edges to determine which events the pro-
tagonist is participating in. For each predicate-
argument edge in every sentence, we discard it
if the argument index does not match the head
of a protagonist mention. Each of the remaining
predicate-argument edges therefore represents an
event that the protagonist participated in.

With a list of PredPatt-determined predicate-
argument edges (and their corresponding sen-
tences), we are now able to extract the narrative
event representations, (p, d) For p, we take the
lemma of the (verbal) predicate head. For d, we

take the dependency relation type (e.g., nsubj) be-
tween the predicate head and argument head in-
dices (as determined by the UD parse); if a direct
arc relation does not exist, we instead take the uni-
directional dependency path from predicate to ar-
gument; if a unidirectional path does not exist, we
use a generic “arg” relation.

To extract a factuality feature for each narrative
event (i.e. whether the event happened or not, ac-
cording to the meaning of the text), we use the
neural model of Rudinger et al. (2018a).As input to
this model, we provide the full sentence in which
the event appears, as well as the index of the event
predicate’s head token. The model returns a fac-
tuality score on a [−3, 3] scale, which is then dis-
cretized using the following intervals: [1, 3] is “pos-
itive” (+), (−1, 1) is “uncertain,” and [−3,−1] is
“negative” (−).

From this extraction pipeline, we yield one se-
quence of narrative events (i.e., narrative chain) per
text window.

A.3 Training and Model Details - Causal
Model

A.3.1 RNN Encoder
We use a single layer GRU based RNN encoder
with a 300 dimensional hidden state and 300 di-
mensional input event embeddings to encode the
previous events into a single 300 dimensional vec-
tor.

A.3.2 CNN Encoder
We use a CNN to encode the text into a 300 dimen-
sional output vector. The CNN uses 4 filters with
ngram windows of (2, 3, 4, 5) and max pooling.

A.3.3 Training Details - Pretraining
The conditional for the Causal model is trained
using Adam with a learning rate of 0.001, gradient
clipping at 10, and a batch size of 512. The model
is trained to minimize cross entropy loss. We train
the model until loss on the validation set does not
go down after three epochs, afterwhich we keep the
model with the best validation performance, which
in our case was epoch 4

A.3.4 Training Details - Finetuning
The model is then finetuned on our dataset of 2000
annotated examples. We use the same objective as
above, training using Adam with a learning rate of
0.00001, gradient clipping at 10, and a batch size
of 512. We split our 2000 samples into a train set of
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Figure 3: The annotation interface for the out-of-text
events annotation.

1800 examples and a dev set of 200 examples. We
train the model in a way similar to above, keeping
the best validation model (at epoch 28).

A.4 Training and Model Details - LM
Baseline

We use a 2 layer GRU based RNN encoder with a
512 dimensional hidden state and 300 dimensional
input event embeddings as our baseline event se-
quence LM model.

A.4.1 Training Details
The LM model is trained using Adam with a learn-
ing rate of 0.001, gradient clipping at 10, and a
batch size of 64. We found using dropout at the
embedding layer and the output layers to be helpful
(with dropout probability of 0.1). The model is
trained to minimize cross entropy loss. We train
the model until loss on the validation set does not
go down after three epochs, afterwhich we keep the
model with the best validation performance, which
in our case was epoch 5.

A.5 Annotation Interfaces
To get an idea for about the annotation set ups used
here, we also provide screen shots of the annotation
suites for all three annotation experiments. The
out-of-text annotation experiment of Section 3.3
is shown in Figure 3. The pairwise annotation
evaluation of Section 4.3 is shown in Figure 4. The
chain completion annotation evaluation of Section
4.4 is shown in Figure 5.

Figure 4: The annotation interface for the pairwise hu-
man evaluation annotation experiment.

Figure 5: The annotation interface for the chain com-
pletion human evaluation annotation experiment.


