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Abstract

We reduce the task of (span-based) PropBank-
style semantic role labeling (SRL) to syntac-
tic dependency parsing. Our approach is mo-
tivated by our empirical analysis that shows
three common syntactic patterns account for
over 98% of the SRL annotations for both En-
glish and Chinese data. Based on this obser-
vation, we present a conversion scheme that
packs SRL annotations into dependency tree
representations through joint labels that permit
highly accurate recovery back to the original
format. This representation allows us to train
statistical dependency parsers to tackle SRL
and achieve competitive performance with the
current state of the art. Our findings show the
promise of syntactic dependency trees in en-
coding semantic role relations within their syn-
tactic domain of locality, and point to potential
further integration of syntactic methods into
semantic role labeling in the future.

1 Introduction

Semantic role labeling (SRL; Palmer et al., 2010)
analyzes texts with respect to predicate argument
structures such as “who did what to whom, and how,
when and where”. These generic surface semantic
representations provide richer linguistic analysis
than syntactic parsing alone and are useful in a wide
range of downstream applications including ques-
tion answering (Shen and Lapata, 2007; Khashabi
et al., 2018), open-domain information extraction
(Christensen et al., 2010), clinical narrative under-
standing (Albright et al., 2013), automatic summa-
rization (Khan et al., 2015) and machine translation
(Liu and Gildea, 2010; Xiong et al., 2012; Bazraf-
shan and Gildea, 2013), among others.

It is commonly acknowledged that syntax and se-
mantics are tightly coupled with each other (Levin
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She wanted to design the bridge . . .

nsubj-A0- -

xcomp-A1-(A0,A0)-

mark- - -

dobj-A1- -

det- - -

A0 pred A1

A0 A1pred

Figure 1: An example sentence with SRL annotations
(below) and our joint syntacto-semantic dependency re-
lations (above; described in §3). The two representa-
tions can be converted from one to the other. A0 and
A1 are short for SRL relations ARG0 and ARG1.

and Hovav, 2005). In some forms of linguistic the-
ories (Baker, 1996, 1997), semantic arguments are
even hypothesized to be assigned under consistent
and specific syntactic configurations. As a matter
of practice, annotations of semantic roles (Palmer
et al., 2005, inter alia) are typically based on exist-
ing syntactic treebanks as an additional annotation
layer. Annotators are instructed (Babko-Malaya
et al., 2006; Bonial et al., 2015) to identify seman-
tic arguments within the predicates’ domain of lo-
cality,1 respecting the strong connection between
syntax and semantics.

Empirically, syntax has indeed been shown to
be helpful to SRL in a variety of ways. Earlier
SRL systems have successfully incorporated syn-
tactic parse trees as features and pruning signals
(Punyakanok et al., 2008). Recently, neural models
with shared representations trained to predict both
syntactic trees and predicate-argument structures
in a multi-task learning setting achieve superior
performance to syntax-agnostic models (Strubell
et al., 2018; Swayamdipta et al., 2018), reinforcing
the utility of syntax in SRL.

However, researchers are yet to fully leverage

1The arguments can potentially be traces and null elements.
If a trace is selected as an argument, it is automatically chained
to its surface constituent after syntactic movement.
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all the theoretical linguistic assumptions and the
dataset annotation conventions surrounding the
tight connections between syntax and SRL. To do
so, ideally, one must perform deep syntactic pro-
cessing to capture long-distance dependencies and
argument sharing. One solution is to introduce
traces into phrase-structure trees, which, unfor-
tunately, is beyond the scope of most statistical
constituency parsers partially due to their associ-
ated increased complexity (Kummerfeld and Klein,
2017). Another solution is to use richer grammar
formalisms with feature structures such as combi-
natory categorial grammar (CCG; Steedman, 2000)
and tree adjoining grammar (TAG; Joshi et al.,
1975) that directly build syntactic relations within
the predicates’ extended domain of locality. It is
then possible to restrict the semantic argument can-
didates to only those “local” dependencies (Gildea
and Hockenmaier, 2003; Liu, 2009; Liu and Sarkar,
2009; Konstas et al., 2014; Lewis et al., 2015).
However, such treebank data are harder to obtain,
and their parsing algorithms tend to be less efficient
than parsing probabilistic context-free grammars
(Kallmeyer, 2010).

On the other hand, syntactic dependency trees
directly encode bilexical governor-dependent rela-
tions among the surface tokens, which implicitly
extend the domain of locality (Schneider, 2008).
Dependency parsing (Kübler et al., 2008) is empir-
ically attractive for its simplicity, data availability,
efficient and accurate parsing algorithms, and its
tight connection to semantic analysis (Reddy et al.,
2017). Despite ample research community interest
in joint models for dependency parsing and SRL
(Surdeanu et al., 2008; Hajič et al., 2009; Hender-
son et al., 2013), a precise characterization of the
mapping between semantic arguments and syntac-
tic configurations has been lacking.

In this paper, we provide a detailed empirical ac-
count of PropBank-style SRL annotations on both
English and Chinese data. We show that a vast ma-
jority (over 98%) of the semantic relations are char-
acterized by one of three basic dependency-based
syntactic configurations: the semantic predicate 1)
directly dominates, 2) is directly dominated by, or
3) shares a common syntactic governor with the
semantic argument. The latter two cases are mostly
represented by syntactic constructions including
relativization, control, raising, and coordination.

Based on our observations, we design a back-
and-forth conversion algorithm that embeds SRL

relations into dependency trees. The SRL relations
are appended to the syntactic labels to form joint
labels, while the syntactic governor for each to-
ken remains unaltered. The algorithms reach over
99% F1 score on English and over 97% on Chi-
nese data in oracle back-and-forth conversion ex-
periments. Further, we train statistical dependency
parsing models that simultaneously predict SRL
and dependency relations through these joint labels.
Experiments show that our fused syntacto-semantic
models achieve competitive performance with the
state of the art.

Our findings show the promise of dependency
trees in encoding PropBank-style semantic role
relations: they have great potential in reducing
the task of SRL to dependency parsing with an
expanded label space. Such a task reduction fa-
cilitates future research into finding an empirically
adequate granularity for representing SRL relations.
It also opens up future possibilities for further in-
tegration of syntactic methods into SRL as well
as adaptations of extensively-studied dependency
parsing techniques to SRL, including linear-time
decoding, efficiency-performance tradeoffs, mul-
tilingual knowledge transfer, and more. We hope
our work can inspire future research into syntactic
treatment of other shallow semantic representations
such as FrameNet-style SRL (Baker et al., 1998;
Fillmore et al., 2003). Our code is available at
https://www.github.com/bloomberg/emnlp20 depsrl.

Contribution Our work (1) provides a detailed
empirical analysis of the syntactic structures of se-
mantic roles, (2) characterizes the tight connections
between syntax and SRL with three repeating struc-
tural configurations, (3) proposes a back-and-forth
conversion method that supports a fully-syntactic
approach to SRL, and (4) shows through exper-
iments that dependency parsers can reach com-
petitive performance with the state of the art on
span-based SRL. Additionally, (5) all our analysis,
methods and results apply to two languages from
distinctive language families, English and Chinese.

2 Syntactic Structures of Semantic Roles

It has been widely assumed in linguistic theories
that the semantic representations of arguments are
closely related to their syntactic positions with re-
spect to the predicates (Gruber, 1965; Jackendoff,
1972, 1992; Fillmore, 1976; Baker, 1985; Levin,

https://www.github.com/bloomberg/emnlp20_depsrl
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1993).2 This notion is articulated as linguistic hy-
potheses underlying many syntactic theories:

(1) Universal Alignment Hypothesis: There ex-
ist principles of Universal Grammar which
predict the initial [grammatical] relation
borne by each nominal in a given clause
from the meaning of the clause. (Perlmut-
ter and Postal, 1984, p. 97)

(2) The Uniformity of Theta Assignment Hy-
pothesis: Identical thematic relationships
between items are represented by identi-
cal structural relationships between those
items at the level of D[eep]-structure.
(Baker, 1985, p. 57)

For theories that posit one-to-one correspondence
between semantic roles and syntactic structures
(Baker, 1996, 1997), SRL can be treated purely
as a syntactic task. However, doing so would re-
quire deep structural analysis (Bowers, 2010) that
hypothesizes more functional categories than what
current syntactic annotations cover.

Nonetheless, the Proposition Bank (PropBank;
Kingsbury and Palmer, 2002; Palmer et al., 2005)
annotations do capture the domain of locality that
is implicitly assumed by these linguistic theories.
PropBank defines the domain of locality for ver-
bal predicates to be indicated by “clausal boundary
markers” and the annotators are instructed to limit
their semantic role annotations to “the sisters of
the verb relation (for example, the direct object)
and the sisters of the verb phrase (for example, the
subject)” (Bonial et al., 2017, p. 746). In cases
of syntactically-displaced arguments, the annota-
tors are asked to pick the empty elements that are
within the domain of locality, and then syntactic
coindexation chains are used to reconstruct the sur-
face semantic role relations. Recognizing displaced
arguments is crucial to SRL, so taking full advan-
tage of locality constraints would also require mod-
eling empty elements and movement, for which
current NLP systems still lack accurate, efficient,
and high-coverage solutions (Gabbard et al., 2006;
Kummerfeld and Klein, 2017).

From an empirical perspective, most syntactic
realizations for semantic arguments follow certain
common patterns even when they are displaced. In-
deed, this is partially why syntax-based features
and candidate pruning heuristics have been suc-

2This is often termed linking theory in linguistics (See
Levin and Hovav (2005) for a survey).

cessful in SRL (Gildea and Palmer, 2002; Gildea
and Jurafsky, 2002; Sun et al., 2008). Full parsing
might not be necessary to account for the major-
ity of cases in the annotations. Thus, knowing the
empirical distributions of the arguments’ syntactic
positions would be highly useful for deciding how
detailed the syntactic analysis needs to be for the
purpose of SRL. In this section, we provide such a
characterization.

Our analysis is based on dependency syntax and
complements prior constituent-based characteriza-
tions (Palmer et al., 2005). One advantage of syn-
tactic dependencies over phrase-structure trees for
the purposes of this paper is that the dependents
are often more directly connected to the syntactic
governors without intervening intermediate con-
stituents. For example, when a verb has multiple
adjunct modifiers, each would create an additional
intermediate VP constituent in the argument struc-
ture, leading to further separation between the verb
and the external argument (subject). In contrast, in
a dependency representation, the subject is always
directly dominated by the verbal predicate.

2.1 Material

We use the training splits of the CoNLL 2012
shared task data (Pradhan et al., 2012) on both
English and Chinese; sentences are originally from
OntoNotes 5.0 (Hovy et al., 2006). The SRL anno-
tations are based on English and Chinese PropBank
(Kingsbury and Palmer, 2002; Palmer et al., 2005;
Xue and Palmer, 2003; Xue, 2008), which are ex-
tensively used in SRL research. We choose not
to use the SRL-targeted CoNLL 2005 shared task
(Carreras and Màrquez, 2005) data since earlier ver-
sions of PropBank (Babko-Malaya, 2005) contain
many resolvable mismatches between syntactic and
semantic annotations (Babko-Malaya et al., 2006).
Updated annotation guidelines (Bonial et al., 2015)
have fixed most of the identified issues. We convert
the Penn TreeBank (PTB; Marcus et al., 1993) and
the Penn Chinese TreeBank (CTB; Xue et al., 2005)
phrase-structure trees into Stanford Dependencies
(SD; de Marneffe et al., 2006) for English (de Marn-
effe and Manning, 2008; Silveira et al., 2014) and
for Chinese (Chang et al., 2009) respectively.3 SD
is semantically-friendly as noted by Schuster and
Manning (2016, p. 2371), “Since its first version,
SD representation has had the status of being both

3During conversion, we set copular verbs to be heads, since
PropBank marks some copular verbs as predicates.
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Pattern Example Percentage
English Chinese

(D) pred arg She designed the bridge . . .

nsubj

87.5% 82.7%

(C) arg pred She wanted to design the bridge . . .

nsubj xcomp

6.1% 10.4%

(R) arg pred The bridge, which is designed by her, . . .

rcmod

4.7% 5.7%

arg pred She wanted to design and build the bridge . . .

nsubj xcomp conj

1.1% 1.0%

Others 0.5% 0.2%

Table 1: The most common structural relations in the training data between the predicates (pred) and the arguments
(arg). Appendix §C and §D include more examples as well as Chinese data.

a syntactic and a shallow semantic representation”,
thus it is suited for the development of our joint
modeling of syntactic and semantic structures. In-
deed, Universal Dependencies (UD; Nivre et al.,
2016), which builds upon SD, has been compared
with and aligned to meaning representations includ-
ing UCCA (Hershcovich et al., 2019) and AMR
(Szubert et al., 2018).4

2.2 Observations

We categorize the syntactic configurations between
predicates and arguments and present the results in
Table 1. For both English and Chinese, the vast ma-
jority, more than 98%, of the predicate-argument
relations fall into one of three major categories: the
semantic argument is a syntactic child, sibling, or
parent of the semantic predicate. Next, we give a
brief account of our linguistic observations on the
English data associated with each category. See
Appendix §C and §D for more examples from both
English and Chinese.

pred→ arg (D) The predicate directly (D) dom-
inates the semantic argument in the syntactic tree.
Not surprisingly, this straightforward type of re-
lation is the most prevalent in the PropBank data,
accounting for more than 87% (82%) of all English
(Chinese) predicate-argument relations.

arg←→ pred (C) The predicate and the argu-
ment share a common (C) syntactic parent. There
are two major types of constructions resulting in
this kind of configuration: 1) the common parent
is a control or raising predicate, creating an open

4Our choice of SD instead of UD is motivated by the
flexibility in conversion to set copular verbs as syntactic heads.

clausal complement (xcomp) relation and 2) there
is a coordination structure between the predicate
and the common parent and both predicates share
a same argument in the semantic structure. Both
cases are so common that they are converted to
direct dependencies in the enhanced Stanford De-
pendencies (Schuster and Manning, 2016).

arg → pred (R) The dominance relation be-
tween the predicate and the argument is reversed
(R). This type of relations is frequently realized
through relative clauses (rcmod) and verb partici-
ples (e.g., broken glass).

Other constructions Many other constructions
can be analyzed as combinations of the previously
mentioned patterns.5 For example, a combination
of (C)+(C) through control and coordination would
derive the structural configuration of the fourth
most frequent case in Table 1.

3 Reducing SRL to Dependency Parsing

3.1 Joint Labels
Building on the insights obtained from our analy-
sis, we design a joint label space to encode both
syntactic and SRL relations. The joint labels have
four components: one syntactic relation and three
semantic labels, each corresponding to one of the
three most common structural patterns in Table 1.

5Combinations of (D), (C), and (R) can theoretically ac-
count for all possible predicate-argument configurations. How-
ever, for a lossless back-and-forth conversion with our pro-
posed joint labels (§3), there are constraints on the argument
structures of all the intermediate predicates along the shortest
dependency path between the predicate and the argument. See
Table 2 for an estimation of how many semantic relations
may be decomposed as combinations of the three common
structural patterns empirically given our conversion method.
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Formally, for a length-n input sentence w =
w1, . . . , wn, we denote the head of token wi in the
syntactic dependency tree t to be whi

, or hi for
short. The dependency tree also specifies a de-
pendency relation labeled ri between each (hi, wi)
pair. To encode both syntactic and SRL informa-
tion, we define a dependency tree t′, keeping all
the hi’s same as in t, but we modify relation ri
to be r′i := rSYN

i -r(D)
i -r(C)

i -r(R)
i , a concatenation of

four labels: rSYN
i = ri is the syntactic relation;

r(D)
i describes the SRL relation directly between

the predicate hi and the argument headed by wi;
r(R)
i specifies the reverse situation where wi is the

predicate and hi the head of the argument; r(C)
i

encodes the parent-sharing pattern connecting the
two predicates and is in the form of a tuple (a, b),
corresponding to the case where the SRL argument
with label a for predicate hi is an SRL argument
labeled b with respect to predicate wi.6 If there
exist no such semantic relations, the component
labels can be left unspecified, denoted as “ ”.

In the example of Fig. 1, the joint label
between wanted and design is xcomp-ARG1-
(ARG0,ARG0)- . We can break the joint label into
four parts: “xcomp” describes the syntactic relation
between the two tokens; “ARG1” indicates that the
subtree to design the bridge is an argument labeled
“ARG1” for predicate wanted; (ARG0,ARG0) es-
tablishes the argument sharing strategy that ARG0
she of wanted is an ARG0 for the predicate design;
finally, “ ” indicates there is no argument headed
by wanted for the predicate design.

3.2 Back-and-Forth Conversion

The joint labels encode both syntactic and se-
mantic relations, and it is straightforward to con-
vert/recover the separate dependency and SRL an-
notations to/from the joint representations.

In the forward conversion (separate→ joint), we
first extract the syntactic heads of all SRL argu-
ments. Then we enumerate all predicate-argument
pairs, and for each pair falling into one of the three
most common patterns as listed in Table 1, we in-
sert the SRL argument label in the corresponding
slot in the joint label. For predicates sharing more
than one argument, we observe that most cases are
due to the two predicates sharing all their ARGM

6This assumes that the argument must also be an argument
to the predicate hi. In cases where there exists no such relation,
we insert a dummy relation ∅ that gets removed during post-
processing between hi and the argument, and the (C) label
between hi and wi then becomes (∅, b).

relations, so we augment the (C) label with a bi-
nary indicator of whether or not to propagate all
ARGM arguments. When the two predicates share
more than one core argument, which occurs for
around 2% of the argument-sharing predicates, we
randomly select and record one of the shared ar-
guments in r(C)

i . A more systematic assignment
in such cases in future work may lead to further
improvement.

As for the backward conversion (joint → sep-
arate), the syntactic dependencies can be directly
decoupled from the joint label, and we build the
SRL relations in three steps: we first identity all the
(D) and (R) dependency relations; then, with a top-
down traversal of the tree, we identify the shared
argument relations through (C) labels; finally, we
rebuild the span boundaries using a rule-based ap-
proach. Top-down traversal is necessary to allow
further propagation of arguments. It allows us to
cover some of the less common cases through mul-
tiple argument sharings, e.g., the fourth example in
Table 1. When a (C) label (a, b) is invalid7 in that
the syntactic governor does not have an argument
with label a, we simply ignore this (C) label. In
reconstructing the span boundaries, we distinguish
among different types of arguments. For (D)-type
arguments, we directly take the entire subtrees dom-
inated by the head words of the arguments. For
(R)-type arguments, we adopt language-specific
heuristics:8 in English, when the argument (syn-
tactic head) is to the left of the predicate (syntac-
tic child), as commonly happens in relative clause
structures, we include all of the argument’s chil-
dren subtrees to the left of the predicate; when the
argument is to the right, which usually happens
when the predicate is in participle form, we define
the right subtree of the argument as its span. For
(C)-type arguments, we reuse the span boundaries
of the shared arguments.

Table 2 shows the oracle results of our back-and-
forth conversion strategies on the training data. We
take gold-standard syntactic and SRL annotations
and convert them into joint-label representations.
Then, we reconstruct the SRL relations through
our backward conversion and measure span-based

7This should not happen in the oracle conversion but may
occur in model predictions.

8The simple subtree approach does not apply to recon-
structing (R)-type arguments since, by definition, the subtree
of an (R)-type argument will contain its predicate, which
contradicts data annotations. Our heuristics are designed to
support a span-based evaluation, and span reconstruction can
be omitted if one focuses on a dependency-based evaluation.
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P R F

English 99.7 98.3 99.0
Chinese 97.8 96.8 97.3

Table 2: Oracle back-and-forth conversion results on
the training splits.

exact match metrics. Our procedures can faith-
fully reconstruct most of the SRL relations for both
English and Chinese data.9 English sees a higher
oracle score than Chinese. We attribute this result
to the synchronization effort between the syntactic
and SRL annotations during the evolution of En-
glish PropBank (Babko-Malaya et al., 2006; Bonial
et al., 2017).

3.3 Models

Given that SRL can be reduced to a dependency
parsing task with an extended label space, our
model replicates and adapts that of a dependency
parser. We follow the basic design of Dozat and
Manning (2017), but instead of using LSTMs
as input feature extractors, we opt for Trans-
former encoders (Vaswani et al., 2017), which have
previously been shown to be successful in con-
stituency parsing (Kitaev and Klein, 2018; Kitaev
et al., 2019), dependency parsing (Kondratyuk and
Straka, 2019), and SRL (Tan et al., 2018; Strubell
et al., 2018). Next, we score all potential attach-
ment pairs and dependency and SRL relations with
the token-level representations through deep bi-
affine transformation (Dozat and Manning, 2017).
After the dependency parsing decoding process, we
retrieve the syntactic parse trees and SRL structures
via our backward conversion algorithm.

Formally, we associate each token position with
a context-sensitive representation by

[x0,x1, . . . ,xn] = Transformer (w0, w1, . . . , wn) ,

where w0 denotes the root symbol for the depen-
dency parse tree, and the inputs to the Transformer
network are pretrained GloVe embeddings (Pen-
nington et al., 2014). Alternatively, we can fine-
tune a pre-trained contextualized feature extractor

9The English oracle F1 score is higher than the combined
(D)+(C)+(R) occurrences of 98%. This is because (1) our
method is precision-focused to minimize error propagation in
prediction; recall loss of 1.7% is a direct reflection of the unac-
counted less-frequent structures, and (2) many arguments, e.g.,
the fourth most frequent case in Table 1, can be reconstructed
through the propagation of (C)-type labels.

such as BERT (Devlin et al., 2019):10

[x0,x1, . . . ,xn] = BERT ([CLS], w1, . . . , wn) .

Next, the same representations x serve as in-
puts to five different scoring modules, one for
dependency attachment, one for syntactic label-
ing, and three modules for the newly-introduced
SRL-related labels. All of the scoring modules
use a deep biaffine (DBA) scoring function intro-
duced by Dozat and Manning (2017) that is widely
used in syntactic parsing (Dozat et al., 2017; Shi
et al., 2017; Shi and Lee, 2018), semantic depen-
dency parsing (Dozat and Manning, 2018) and
SRL (Strubell et al., 2018). For an ordered pair
of input vectors xi and xj, an r-dimensional DBA
transforms each vector into a d-dimensional vector
with multi-layer perceptrons and then outputs an
r-dimensional vector zij = DBA(xi,xj), where

zijk =
[
MLPI(xi); 1

]>
Uk

[
MLPJ(xj); 1

]
,

U ∈ Rr×(d+1)×(d+1), [; 1] appends an element of
1 to the end of the vector, and MLPI and MLPJ

are two separate multi-layer perceptrons with non-
linear activation functions. Following Dozat and
Manning (2017), we model dependency attachment
probabilities with a 1-dimensional DBA function:

P (hj = i) ∝ exp(DBAATT(xi,xj)).

For syntactic labels from vocabulary V SYN, we use
a |V SYN|-dimensional DBA function:

P (rSYN
j = V SYN

t ) ∝ exp(DBASYN
t (xhj

,xj)).

The three semantic label components r(D), r(C), and
r(R) are modeled similarly to rSYN.

All the above components are separately param-
eterized but they share the same feature extractor
(Transformer or BERT). We train them with locally-
normalized log-likelihood as objectives. During
inference, we use a projective11 maximum span-
ning tree algorithm (Eisner, 1996; Eisner and Satta,
1999) for unlabeled dependency parsing and then
select the highest-scoring component label for each
predicted attachment and each component.12

10In this case, we use the final-layer vector of the last sub-
word unit for each word as its representation and the vector
from the prepended [CLS] token for the root symbol.

11The choice of a projective decoder is motivated by the
empirical fact that both English and Chinese dependency trees
are highly projective. One may consider a non-projective
decoder when adapting to other languages.

12Structured and global inference that considers the interac-
tions among all relation labels is a promising future direction.
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English P R F1

FitzGerald et al. (2015) 80.9 78.4 79.6
He et al. (2017) 81.7 81.6 81.7
He et al. (2018a) – – 82.1
Tan et al. (2018) 81.9 83.6 82.7
Ouchi et al. (2018) 84.4 81.7 83.0
Swayamdipta et al. (2018) 85.1 82.6 83.8
BIO-CRF baseline 83.4 83.6 83.5
Ours 83.3 83.0 83.2

with pre-trained contextualized feature extractors
Peters et al. (2018) – – 84.6
He et al. (2018a) – – 85.5
Ouchi et al. (2018) 87.1 85.3 86.2
Li et al. (2019) 85.7 86.3 86.0
Li et al. (2020) 86.4 86.8 86.6
BIO-CRF baseline 86.4 87.1 86.7
Ours 85.9 85.6 85.8

Chinese P R F1

BIO-CRF baseline 74.3 71.1 72.7
Ours 71.7 71.4 71.6

with pre-trained contextualized feature extractors
BIO-CRF baseline 80.2 81.1 80.6
Ours 79.6 79.3 79.5

Table 3: Non-ensemble CoNLL 2012 test set results on
both the English and the Chinese datasets.

4 Experiments

We evaluate on two datasets from OntoNotes 5.0
(Hovy et al., 2006) on English and Chinese. Simi-
lar to §2, we adopt the CoNLL 2012 dataset splits.
To isolate the effects of predicate identification and
following most existing work on SRL, we provide
our models with pre-identified predicates. We re-
port median performance across 5 runs of different
random initialization for our models and our repli-
cated reference models. Implementation details are
provided in Appendix §A.

Main Results Table 3 reports the evaluation re-
sults. We compare our method with multiple state-
of-the-art methods, including BIO-tagging (Tan
et al., 2018; Peters et al., 2018), span-based (Ouchi
et al., 2018; Li et al., 2019), semi-Markov CRF
(Swayamdipta et al., 2018) and structured tuning
(Li et al., 2020). We also implement a strong BIO-
tagging model trained with a CRF loss as our base-
line model (BIO-CRF), which has identical feature
extractors as our proposed method.13 Results show
that our models are competitive with the state-of-
the-art models, even though our method reduces
SRL to syntactic dependency parsing. Our models

13See, for example, He et al. (2017) for a BIO-tagging
formulation of SRL.

Label Count BIO-CRF Ours +BERT

ARG0 11,444 90.8 90.4 91.8
ARG1 18,216 86.0 85.7 88.7
ARG2 6,429 80.1 78.4 83.7

ARGM-TMP 3,724 83.4 83.8 86.6
ARGM-ADV 2,089 65.0 63.9 66.5
ARGM-DIS 2,378 82.1 82.4 83.1
ARGM-MOD 1,844 97.8 98.0 97.8

Overall 53,906 83.5 83.0 85.9

Table 4: Per-type performance on the English dev set.

slightly underperform the BIO-CRF baseline mod-
els on English, and the gap is larger on Chinese.14

This can be attributed to the higher back-and-forth
conversion loss on the Chinese data. We observe no
significant difference in dependency parsing accu-
racy when training the Dozat and Manning’s (2017)
parser alone versus jointly training with our SRL
labels.

Additionally, our models make predictions for
all predicates in a given sentence at the same time
through O(n) joint syntacto-semantic labels with
identical features, while most other competitive
methods either use different features extracted for
different predicates (Tan et al., 2018; Ouchi et al.,
2018; Swayamdipta et al., 2018), effectively requir-
ing executing feature extraction multiple times, or
require scoring for all O(n2) or O(n3) possible
predicate-argument pairs15 (Strubell et al., 2018;
Li et al., 2019). In our experiments, our models are
40% faster than the BIO-CRF baseline on average.

Results Broken Down by Argument Type Ta-
ble 4 presents per-label F1 scores comparing our
baseline model with our proposed method. Our
method exhibits a similar overall performance to
the baseline BIO-CRF model. Most of the differ-
ence is materialized on ARG2 and ARGM-ADV.
Previous work in the literature finds that these la-
bels are highly predicate-specific and known to be
hard to predict (He et al., 2017). We further observe
that pretrained feature extractors (BERT) tend to
improve the most with respect to these two labels.

Effect of Different Components Table 5 sum-
marizes the results when one or more components
of our models are replaced by gold-standard labels.

14An anonymous reviewer hypothesizes that the accuracy
loss may also be explained by the label sparsity introduced by
our joint label scheme.

15O(n3) results from considering all combinations of pred-
icates, span start points and end points. In practice, however,
Li et al. (2019) apply pruning to reduce number of candidates.
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Setting F1 Score
GloVe BERT

All predicted 83.0 85.9
+ Gold syntax 88.9 90.0

+ Gold (D) 97.2 97.3
+ Gold (R) (C) 90.1 91.1

Upperbound (Oracle) 98.9

Table 5: F1 performance on the English dev set if parts
of the components are replaced by oracle, as an indica-
tor of potential further gains from each component.

As expected, it is crucial to predict the syntactic
trees correctly: failure to do so amounts to 35% or
29% of errors with or without pretrained feature
extractors. Accuracy of (D)-type SRL relations has
an even larger impact on the overall performance:
it is responsible for half of the errors. This indi-
cates that argument labeling is a harder sub-task
than syntactic parsing. Further, we observe that
the benefits of pretrained feature extractors mostly
stem from improved accuracies of the syntactic
component. Even with pretrained BERT features,
semantic components remain challenging.

5 Related Work

SRL and syntax From the time the SRL task was
first introduced (Gildea and Jurafsky, 2002; Gildea
and Palmer, 2002; Màrquez et al., 2008; Palmer
et al., 2010), syntax has been shown to be a critical
factor in system performance. Most models use
syntactically-derived features (Pradhan et al., 2005;
Punyakanok et al., 2005; Swanson and Gordon,
2006; Johansson and Nugues, 2008; Toutanova
et al., 2008; Xue, 2008; Zhao et al., 2009, inter alia)
and syntax-based candidate pruning (Punyakanok
et al., 2008). There have been many approaches for
joint syntactic parsing and SRL models, including
approximate search (Johansson, 2009) and dual de-
composition (Lluı́s et al., 2013) to resolve feature
dependencies, and synchronous parsing to simul-
taneously derive the (disjoint) syntactic and SRL
structures (Henderson et al., 2008; Li et al., 2010;
Henderson et al., 2013; Swayamdipta et al., 2016).
In contrast, our work unifies the two representa-
tions into common structures.

Joint labels The idea of using joint labels for per-
forming both syntactic and semantic tasks is simi-
lar to that of function parsing (Merlo and Musillo,
2005; Gabbard et al., 2006; Musillo and Merlo,
2006). Ge and Mooney (2005) use joint labels for

semantic parsing as well. Earlier approaches for
SRL have considered joint syntactic and semantic
labels. Due to lack of characterization of the com-
mon structures, most work either focuses on the
subtask of argument identification (Yi and Palmer,
2005), predicts the set of all SRL labels for each
argument and links them to predicates in a second
stage (Merlo and Musillo, 2008), or models joint
labels independently for each predicate (Samuels-
son et al., 2008; Lluı́s and Màrquez, 2008; Morante
et al., 2009; Rekaby Salama and Menzel, 2019).
Instead, our work aims at extracting all predicate-
argument structures from a sentence. Our joint
label design is related to that of Qiu et al. (2016).
They annotated a Chinese SRL corpus from scratch
with a similar label scheme, while in this paper, we
show that it is possible to extract such joint labels
from existing data annotations.

Tree approximation In the task of semantic de-
pendency parsing (Oepen et al., 2014), dependency
structures are used to model more aspects of seman-
tic phenomena than predicate-argument structures,
and the representations are more general directed
acyclic graphs. These graphs can be approximated
by trees (Du et al., 2014; Schluter et al., 2014;
Schluter, 2015) such that tree-based parsing algo-
rithms become applicable. Unlike this line of re-
search, we limit ourselves to the given syntactic
trees, as opposed to finding the optimal approxi-
mating trees, and we focus on the close relations
between syntax and SRL.

Dependency-based SRL Although predicate-
argument structures are traditionally defined in
constituency terms, dependency-based predicate-
argument analysis (Hacioglu, 2004; Fundel et al.,
2007) has been popularized through the CoNLL
2008 and 2009 shared tasks (Surdeanu et al., 2008;
Hajič et al., 2009) and has been adopted by recent
proposals of decompositional semantics (White
et al., 2017). Choi and Palmer (2010) consider
reconstructing constituency-based representations
from dependency-based analysis. We confirm their
findings that through a few heuristics, the recon-
struction can be done faithfully.

Neural SRL The application of neural models
to SRL motivates the question of whether model-
ing syntax is still necessary for the task (He et al.,
2017). Similar to non-neural models, syntactic
trees are used to construct features (Roth and Lap-
ata, 2016; Kasai et al., 2019; Wang et al., 2019; Xia
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et al., 2019b; Zhang et al., 2019) and to prune can-
didates (Täckström et al., 2015; He et al., 2018b,
2019). Alternatively, they are used to determine
network structures (Marcheggiani and Titov, 2017;
Li et al., 2018), including tree-LSTM, graph convo-
lutional networks (Niepert et al., 2016) and syntax-
aware LSTM (Qian et al., 2017). On the other
hand, syntax-agnostic models (Collobert and We-
ston, 2007; Zhou and Xu, 2015; Cai et al., 2018; He
et al., 2018a; Tan et al., 2018; Li et al., 2019) have
shown competitive results. Our results contribute
to the ongoing debate by adding further evidence
that the two tasks are deeply-coupled. Future work
may further explore how much syntactic knowl-
edge has been implicitly obtained in the apparently
syntax-agnostic models.

Multi-task learning Our models share neural
representations across the syntactic and the SRL
labelers. This is an instance of multi-task learning
(MTL; Caruana, 1993, 1997). MTL has been suc-
cessfully applied to SRL (Collobert and Weston,
2008; Collobert et al., 2011; Shi et al., 2016) in
many state-of-the-art systems (Strubell et al., 2018;
Swayamdipta et al., 2018; Cai and Lapata, 2019;
Xia et al., 2019a). A potential future extension is
to learn multiple syntactic (Søgaard and Goldberg,
2016) and semantic representations (Peng et al.,
2017; Hershcovich et al., 2018) beyond dependency
trees and PropBank-style SRL at the same time.

6 Conclusion

Linguistic theories assume a close relationship
between the realization of semantic arguments
and syntactic configurations. This work provides
a detailed analysis of the syntactic structures of
PropBank-style SRL and reveals that three com-
mon syntactic patterns account for 98% of anno-
tated SRL relations for both English and Chinese
data. Accordingly, we propose to reduce the task
of SRL to syntactic dependency parsing through
back-and-forth conversion to and from a joint label
space. Experiments show that dependency parsers
achieve competitive results on PropBank-style SRL
with the state of the art.

This work shows promise of a syntactic treat-
ment of SRL and opens up possibilities of applying
existing dependency parsing techniques to SRL.
We invite future research into further integration of
syntactic methods into shallow semantic analysis
in other languages and other formulations, such

as frame-semantic parsing, and other semantically-
oriented tasks.
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Ganchev, and Dipanjan Das. 2015. Semantic role la-
beling with neural network factors. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 960–970, Lis-
bon, Portugal.
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A Implementation Details

We use two types of encoders in our mod-
els: randomly-initialized Transformer (Vaswani
et al., 2017) networks and pre-trained BERT
(Devlin et al., 2019). For Transformer net-
works, the input representations are concate-
nations of 100-dimensional randomly-initialized
word embeddings, 100-dimensional pre-trained
GloVe (Pennington et al., 2014) embeddings, 16-
dimensional predicate indicator embeddings and
128-dimensional positional embeddings. The
Transformer networks have 8 self-attention and
feed-forward layers. Each self-attention layer has
8 attention heads, and each feed-forward layer has
a dimensionality of 2048. For BERT models, we
fine-tune the pretrained BASE model by Devlin et al.
(2019) and Wolf et al. (2019).

The decoders consist of an unlabeled attachment
scorer and several labeling components for the syn-
tactic dependencies and SRL relations. The design
and hyperparameters follow that of Dozat and Man-
ning (2017). The biaffine scoring function for the
unlabeled attachment scorer has a dimensionality
of 400, while each labeling component has 100
dimensions. For our baseline, we build on top of
Tan et al.’s (2018) BIO tagging model and further
add a CRF-based decoding layer following Yang
et al. (2018). Contextualized representation at each
token’s position is passed through a multi-layer
perceptron with one hidden layer consisting of 256
hidden units and PReLU (He et al., 2015) activation
function to obtain the scores for each tag.

64 training instances (16 when using BERT) are
grouped into a minibatch, and the gradients are
clipped (Pascanu et al., 2013) at 5.0. We use Adam
(Kingma and Ba, 2015) optimizer with β1 = 0.9,
β2 = 0.999 and ε = 1× 10−8. When using GloVe
embeddings and Transformers, we set the learning
rate to be 1 × 10−4; when fine-tuning BERT, the
learning rate is lowered to 1 × 10−5. Learning
rates are multiplied by 0.1 once the development
performance stops increasing for 5 epochs. All
the models are trained until the learning rates are
lowered three times and the performance plateaus
on the development sets. Our implementation is
based on PyTorch (Paszke et al., 2017).

On a single V100 GPU, the baseline BIO-CRF
model parses 96.4 sentences/sec and our proposed
model processes at 159.1 sentences/sec on average.

Throughout our experiments, all the hyperparam-
eters are taken directly from relevant suggestions

Trained with P R F

Oracle Gold 99.7 98.2 98.9
Predicted 99.6 93.2 96.3

GloVe Gold 83.2 82.9 83.0
Predicted 84.7 80.6 82.6

BERT Gold 86.2 85.5 85.8
Predicted 86.9 83.2 85.1

Table 6: English back-and-forth oracle and dev set re-
sults using gold-standard dependency trees versus pre-
dicted trees as training data.

in previous literature (Dozat and Manning, 2017;
Tan et al., 2018; Kitaev et al., 2019) without tuning.
An extensive hyperparameter search may lead to
further accuracy improvements.

B Additional Model Analysis

B.1 Training without Gold Syntactic Trees

Our method leverages the gold-standard depen-
dency trees in the training data to design high-
fidelity back-and-forth conversion algorithms. Ta-
ble 6 considers a scenario where we do not have
access to such gold trees during training: we jack-
knife the data into 8 folds, train parsers using 7
folds and predict trees on the remaining fold. Our
models show similar F1 scores under this condi-
tion as that of using gold trees, while the recall is
traded for precision since our conversion method
is precision-focused.

This is not a realistic scenario given that existing
PropBank-style SRL annotations are all based on
syntax, so as a matter of practice we always have
access to gold trees during training. Nonetheless,
these experiments point to the viability of using
predicted trees in practice without incurring a sig-
nificant loss in F1 scores.

B.2 Accuracies by SRL Relation Types

In Table 7, we break down the accuracies by the
syntactic patterns of the SRL relations. Compared
with our baseline, a replication of Tan et al. (2018),
our models achieves higher or competitive results
on (D)-type and (R)-type SRL relations. These
two types establish a direct or reverse semantic
relation with respect to the syntactic structure. In
contrast, the (C)-type relations require accurate
predictions of sibling relations as well as at least
two SRL-related labels and are thus more prone
to error propagation. We hypothesize that global
scoring of the dependency structures can alleviate
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Type
English Chinese

Baseline Ours Baseline Ours

(D) 88.1 88.1 82.8 83.4
(C) 80.3 76.6 53.3 50.0
(R) 78.7 79.3 46.3 46.8

Overall 83.5 83.0 74.1 72.9

Table 7: Per-pattern F1 scores on the dev sets.

GloVe BERT
Base. Ours ∆ Base. Ours ∆

10% 71.3 72.4 +1.1 82.3 81.5 −0.8
3% 59.9 62.0 +2.1 78.2 77.6 −0.6
1% 47.5 48.7 +1.2 69.3 73.2 +3.9

Table 8: English dev F1 scores, when trained with dif-
ferent percentages of the training data.

this issue, and we leave that to future work.

B.3 Learning Curve
In Table 8, we train the models with varying
amounts of training data. With GloVe embeddings,
our models exhibit higher performance when train-
ing data is limited, as compared with the corre-
sponding baselines. When the pre-trained BERT
feature extractor is used, both the baseline and our
model require far less data to reach similar lev-
els of performance. Our model shows significant
improvement when the amount of training data is
extremely limited (1%), and the baseline edges out
for the other two settings (3% and 10%).

C Additional English Data Analysis

Among the three common patterns, (D)-type SRL
relations are the most frequent and easiest to un-
derstand. In this section, we provide additional
examples to shed light on (C)-type and (R)-type
relations. We also show some sentences with more
complex syntactic phenomena than what can be
handled by our joint-label scheme. In all the ex-
amples, we boldface the predicates, underline the
head words of the arguments, and highlight only
the shortest dependency paths connecting them.

C.1 (C)-Type Relations
The (C)-type relations are most frequently used in
ARG0 (55%) and ARG1 (19%) relations, in con-
trast to (D)-type relations, where the percentages
are much lower (34% and 17% respectively). This

can be explained by the fact that a lot of (C)-type
relations are used in control and raising verb con-
structions. A second major construction associ-
ated with (C)-type relations is conjunction, which
shares either core or peripheral arguments among
the conjuncts. The most common dependency re-
lation labels connecting the common parents and
the predicates are: “xcomp” (39%), “conj” (37%),
“vmod” (9%), and “dep” (6%).

“xcomp” signifies control/raising structures.
Popular common parent words (the control/raising
verbs) include “want”, “expect”, “continue”, “be-
gin”, etc.

“conj” represents a coordination structure. Since
the first conjunct is a syntactic head of other con-
juncts in Stanford Dependencies, any shared argu-
ment will result in a (C)-type relation.

“vmod” denotes non-finite verbal modifiers
whose missing subjects can often be found in the
main clauses. For example:

(3) We use all wisdom to counsel every person.

We use counsel

nsubj vmod

A lot of problematic instances of “dep” can be
attributed to failures of constituency-to-dependency
conversion, where it should have been recognized
as a relation corresponding to another construction.
For example:

(4) He calls . . . and pops in every once in a
while.

He calls pops

nsubj dep

C.2 (R)-Type Relations

(R)-type relations are frequently used in relative
clauses, as “rcmod” accounts for 47% of the syn-
tactic relations connecting the predicates and the
arguments. For examples:

(5) . . . another group that is always trying to
. . .

group trying

rcmod

(6) . . . outer part of the nursery where we were
waiting . . .
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part waiting

rcmod

The second most common construction involves
“vmod” (28%). Different from the “vmod” rela-
tions involved in (C)-type relations, the non-finite
clauses usually modify noun phrases in (R)-type
relations. For examples:

(7) . . . developed . . . management consultants
to go out . . .

consultants go

vmod

(8) The administration, hoping to de-escalate
the violence, is appealing to both sides.

administration hoping

vmod

The third most common type of cases involves
participial adjectives, using “amod” syntactic rela-
tion (17%). Since the verb is modifying the noun
as an adjective, the syntactic dependency and the
semantic relation are reversed. For example:

(9) . . . a fact finding American led committee
. . .

led committee

amod

C.3 Others
The other constructions besides the three most
common patterns are a mixture of data annotation
errors, constituency-to-dependency failures, and
combinations of the frequent patterns.

If the argument is shared with other predicates
along the dependency path, then our conversion al-
gorithm can recover the SRL relation through mul-
tiple (C)-type labels. For example, in the following
sentence, the argument “I” is shared across three
predicates “trying”, “help” and “fix” as ARG0’s.

(10) I’ve been trying to help him fix . . .

I trying help fix

nsubj xcomp dep

Annotation inconsistencies can result in rare pat-
terns beyond the scope of the current design of our
joint label. For example, in the following sentence,
the SRL annotation decides that “the Museum of
Modern Art” is ARGM-LOC of “listed”, making

the predicate a grandparent of the argument. A
simple fix that simply includes the preposition “in”
as part of the argument span (as is annotated in
most other examples) will change this case into a
(D)-type relation.

(11) Now your name is listed in the Museum of
Modern Art.

listed in Museum

prep pobj

D Chinese Data Analysis

Despite the fact that Chinese and English are very
different languages from two distinctive language
families, they exhibit similar distributions of pat-
terns when it comes to the syntactic patterns of SRL
relations. The three most common types, (D)-, (C)-
and (R)-type relations, account for over 98% of all
annotated predicate-argument relations. In the fol-
lowing examples, BA denotes a ba construction, DE

refers to a de particle, and CLASSIFIER represents
Chinese measure words for quantity expressions
(Huang et al., 2008).

D.1 (D)-Type Relations

Similarly to English, most Chinese SRL relations
parallel the syntactic counterparts. For example, in
the following sentence, each of the three arguments
of the predicate corresponds to a direct dependent
in the dependency structure.

(12) 浙江
ZheJiang

把
BA
特色
featured

产业区
industrial-zones

作作作为为为
take-as

经济
economic

发展
development

的
DE
战略
strategic

选择
choice

“Zhejiang uses its featured industrial zones
as a strategic choice for economic develop-
ment.”

浙江 产业区 作作作为为为 选择
ZheJiang i.-z. take-as choice

nsubj
nsubj dobj

“i.-z.” is short for “industrial-zones”.

D.2 (C)-Type Relations

In a (C)-type relation, the most frequent syntac-
tic labels between the common parent and the
predicate are “dep” (37.5%), “conj” (34.4%) and
“mmod” (9.6%). “conj” denotes coordinations, as
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discussed in the English data analysis section. Un-
like English data, the Chinese annotations use a
large percentage of “dep” relations. A closer in-
spection reveals that most of the instances corre-
spond to open clausal complements (“xcomp”) and
coordinations (“conj”). (See English data analysis
section for analysis.)

(13) 我
I
真的
really

非常
very

努力
diligently

地
DE
工作
work

. . .以

. . . to
减减减少少少
reduce

. . .

. . .

“I work very diligently to reduce . . . ”

我 工作 减减减少少少
I work reduce

nsubj dep

(14) 我
I
能
can
接受
accept

这个
this

，
,
并且
and

能
can
宣宣宣布布布
announce

它
it

“I can accept this and announce it”

我 接受 宣宣宣布布布
I accept announce

nsubj dep

“mmod” is a dependency relation specific to Chi-
nese. This label represents modal verb modifiers.
In the Chinese SRL data, many of the modal verbs
are annotated as predicates, resulting in (C)-type
patterns. Additionally, “mmod” is frequently over-
loaded with conversions from some multi-verb con-
structions. The following sentence shows a com-
mon argument of two predicates. The first one
(“should”) is a modal verb, while the second one
(“continue”) is often treated as a standalone verb
in a multi-verb construction (Li and Thompson,
1989).

(15) 但是
but

要要要
should

继继继续续续
continue

加大
increase

改革
reform

力度
strength

“but we should continue to strengthen the
reforms”

但是 要要要 继继继续续续 加大
but should continue increase

advmod

mmod

mmod

D.3 (R)-Type Relations

Similar to English, (R)-type relations are frequently
used in relative clauses in Chinese as well. “rcmod”

accounts for 64% of the syntactic relations connect-
ing the predicates and the arguments. For example:

(16) 一
a
栋
CLASSIFIER

众多
many

商户
merchants

相相相连连连
connect

的
DE

商业
commercial

楼
building

“a commercial building that connects many
merchants”

相相相连连连 楼
connect building

rcmod

Other common constructions include “mmod”
(12.9%), “dep” (6.6%) and “dobj” (5.9%). Com-
plements of modal verbs can result in (R)-type
patterns, illustrated as follows:

(17) 上海
Shanghai

要要要
want

建
build

四
four
个
CLASSIFIER

中心
center

“Shanghai wants to build itself as four cen-
ters”

要要要 建
want build

mmod

In (R)-type patterns, “dobj” commonly corre-
sponds to light verb constructions where the object
nouns are nominalized predicates while the syntac-
tic heads are light verbs without much semantic
meaning. Here we show an example:

(18) 进行
do

适当
adequate

调调调整整整
adjustment

“adjust adequately”

进行 调调调整整整
do adjustment

dobj

Finally, cases involving “dep” relations in-
clude miscellaneous data annotation errors and
constituency-to-dependency conversion errors.

D.4 Others
Similar to English, many of the unaccounted Chi-
nese syntactic patterns of SRL relations are com-
binations of the three basic patterns. The follow-
ing sentence illustrates propagation of an argument
through multiple (C)-type structures.

(19) 医院
hospital

扩扩扩大大大
expand

药品
medicine

和
and
医疗
medical

仪器
equipment

采购
purchase

规模
scale

从而
in-order-to

压压压缩缩缩
reduce

单位
unit

成本
cost

、
,
扩扩扩大大大
expand

服服服务务务
service
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“Hospitals expand the scale of purchasing
medicines and medical equipments in
order to reduce unit costs and to expand
their service”

医院 扩扩扩大大大 压压压缩缩缩 扩扩扩大大大 服服服务务务
hospital expand reduce expand service

nsubj conj conj dobj


