
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 7486–7502,
November 16–20, 2020. c©2020 Association for Computational Linguistics

7486

HABERTOR: An Efficient and Effective Deep Hatespeech Detector

Thanh TranF, Yifan Hu♦, Changwei Hu♦, Kevin Yen♦, Fei Tan♦, Kyumin LeeF, Serim Park♥
FWorcester Polytechnic Institute, ♦Yahoo! Research, ♥Twitter

{tdtran,kmlee}@wpi.edu
{yifanhu,changweih,kevinyen,fei.tan}@verizonmedia.com

serimp@twitter.com

Abstract
We present our HABERTOR model for detect-
ing hatespeech in large scale user-generated
content. Inspired by the recent success of
the BERT model, we propose several modifi-
cations to BERT to enhance the performance
on the downstream hatespeech classification
task. HABERTOR inherits BERT’s architec-
ture, but is different in four aspects: (i) it gen-
erates its own vocabularies and is pre-trained
from the scratch using the largest scale hate-
speech dataset; (ii) it consists of Quaternion-
based factorized components, resulting in a
much smaller number of parameters, faster
training and inferencing, as well as less mem-
ory usage; (iii) it uses our proposed multi-
source ensemble heads with a pooling layer
for separate input sources, to further enhance
its effectiveness; and (iv) it uses a regularized
adversarial training with our proposed fine-
grained and adaptive noise magnitude to en-
hance its robustness. Through experiments on
the large-scale real-world hatespeech dataset
with 1.4M annotated comments, we show that
HABERTOR works better than 15 state-of-
the-art hatespeech detection methods, includ-
ing fine-tuning Language Models. In particu-
lar, comparing with BERT, our HABERTOR
is 4∼5 times faster in the training/inferencing
phase, uses less than 1/3 of the memory, and
has better performance, even though we pre-
train it by using less than 1% of the number
of words. Our generalizability analysis shows
that HABERTOR transfers well to other un-
seen hatespeech datasets and is a more effi-
cient and effective alternative to BERT for the
hatespeech classification.

1 Introduction

The occurrence of hatespeech has been increas-
ing (Barna, 2019). It has become easier than before
to reach a large audience quickly via social media,
causing an increase of the temptation for inappro-
priate behaviors such as hatespeech, and potential
damage to social systems. In particular, hatespeech

interferes with civil discourse and turns good peo-
ple away. Furthermore, hatespeech in the virtual
world can lead to physical violence against cer-
tain groups in the real world12, so it should not be
ignored on the ground of freedom of speech.

To detect hatespeech, researchers developed
human-crafted feature-based classifiers (Chatza-
kou et al., 2017; Davidson et al., 2017; Waseem
and Hovy, 2016; MacAvaney et al., 2019), and pro-
posed deep neural network architectures (Zampieri
et al., 2019; Gambäck and Sikdar, 2017; Park and
Fung, 2017; Badjatiya et al., 2017; Agrawal and
Awekar, 2018). However, they might not explore
all possible important features for hatespeech de-
tection, ignored pre-trained language model un-
derstanding, or proposed uni-directional language
models by reading from left to right or right to left.

Recently, the BERT (Bidirectional Encoder Rep-
resentations from Transformers) model (Devlin
et al., 2019) has achieved tremendous success in
Natural Language Processing . The key innovation
of BERT is in applying the transformer (Vaswani
et al., 2017) to language modeling tasks. A BERT
model pre-trained on these language modeling
tasks forms a good basis for further fine-tuning
on supervised tasks such as machine translation
and question answering, etc.

Recent work on hatespeech detection (Nikolov
and Radivchev, 2019) has applied the BERT model
and has shown its prominent results over previ-
ous hatespeech classifiers. However, we point
out its two limitations in hatespeech detection do-
main. First, the previous studies (ElSherief et al.,
2018b,a) have shown that a hateful corpus owns dis-
tinguished linguistic/semantic characteristics com-
pared to a non-hateful corpus. For instance, hate-
speech sequences are often informal or even in-

1https://www.nytimes.com/2018/10/31/opinion/caravan-
hate-speech-bowers-sayoc.html

2https://www.washingtonpost.com/nation/2018/11/30/how-
online-hate-speech-is-fueling-real-life-violence

7487

tentionally mis-spelled (ElSherief et al., 2018a;
Arango et al., 2019), so words in hateful sequences
can sit in a long tail when ranking their uniqueness,
and a comment can be hateful or non-hateful using
the same words (Zhang and Luo, 2019). For ex-
ample, “dick” in the sentence “Nobody knew dick
about what that meant” is non-hateful, but “d1ck”
in “You are a weak small-d1cked keyboard warrior”
is hateful 3. Thus, to better understand hateful vo-
cabularies and contexts, it is better to pre-train on
a mixture of both hateful and non-hateful corpora.
Doing so helps to overcome the limitation of using
BERT models pre-trained on non-hateful corpora
like English Wikipedia and BookCorpus. Second,
even the smallest pre-trained BERT “base” model
contains 110M parameters. It takes a lot of compu-
tational resources to pre-train, fine-tune, and serve.
Some recent efforts aim to reduce the complexity
of BERT model with the knowledge distillation
technique such as DistillBert (Sanh et al., 2019)
and TinyBert (Jiao et al., 2019). In these meth-
ods, a pre-trained BERT-alike model is used as a
teacher model, and a student (smaller) model (i.e.
TinyBERT, DistilBERT, .etc) is trained to produce
similar output to that of the teacher model. Unfor-
tunately, while their complexity is reduced, the per-
formance is also degraded in NLP tasks compared
to BERT. Another direction is to use cross-layer
parameter sharing, such as ALBERT (Lan et al.,
2020). However, ALBERT’s computational time
is similar to BERT, since the number of layers re-
mains the same as BERT; likewise, its inference is
equally expensive.

Based on the above observation and analysis, we
aim to investigate whether it is possible to achieve
a better hatespeech prediction performance than
state-of-the-art machine learning classifiers, includ-
ing classifiers based on publicly available BERT
model, while significantly reducing the number of
parameters compared with the BERT model. By
doing so, we believe that performing pre-training
tasks from the ground up and on a hatespeech-
related corpus would allow the model to under-
stand hatespeech patterns better and enhance the
predictive results. However, while language model
pretraining tasks require a large scale corpus size,

3It is important to note that this paper contains hate
speech examples, which may be offensive to some read-
ers. They do not represent the views of the authors. We
tried to make a balance between showing less number of
hate speech examples and illustrating the challenges in
real-world applications.

available hatespeech datasets are normally small:
only 16K∼115K annotated comments (Waseem
and Hovy, 2016; Wulczyn et al., 2017). Thus, we
introduce a large annotated hatespeech dataset with
1.4M comments extracted from Yahoo News and
Yahoo Finance. To reduce the complexity, we re-
duce the number of layers and hidden size, and
propose Quaternion-based Factorization mecha-
nisms in BERT architecture. To further improve the
model effectiveness and robustness, we introduce
a multi-source ensemble-head fine-tuning architec-
ture, as well as a target-based adversarial training.

The major contributions of our work are:

• We reduce the number of parameters in
BERT considerably, and consequently the train-
ing/inferencing time and memory, while achiev-
ing better performance compared to the much
larger BERT models, and other state-of-the-art
hatespeech detection methods.

• We pre-train from the ground up a hateful lan-
guage model with our proposed Quaternion
Factorization methods on a large-scale hate-
speech dataset, which gives better performance
than fine tuning a pretrained BERT model.

• We propose a flexible classification net with
multi-sources and multi-heads, building on top
of the learned sequence representations to fur-
ther enhance our model’s predictive capability.

• We utilize adversarial training with a proposed
fine-grained and adaptive noise magnitude to
improve our model’s performance.

2 Related Work

Some of the earlier works in hatespeech detection
have applied a variety of classical machine learning
algorithms (Chatzakou et al., 2017; Davidson et al.,
2017; Waseem and Hovy, 2016; MacAvaney et al.,
2019). Their intuition is to do feature engineering
(i.e. manually generate features), then apply classi-
fication methods such as SVM, Random Forest, and
Logistic Regression. The features are mostly Term-
Frequency Inverse-Document-Frequency scores or
Bag-of-Words vectors, and can be combined with
additional features extracted from the user ac-
count’s meta information and network structure
(i.e., followers, followees, etc). Those methods are
suboptimal as they mainly rely on the quality and
quantity of the human-crafted features.

Recent works have used deep neural network
architectures for hatespeech detection (Zampieri

7488

et al., 2019; Mou et al., 2020) such as CNN
(Gambäck and Sikdar, 2017; Park and Fung, 2017),
RNN (i.e. LSTM and GRU) (Badjatiya et al., 2017;
Agrawal and Awekar, 2018), combining CNN with
RNN (Zhang et al., 2018), or fine tuning a pre-
trained language models (Indurthi et al., 2019).

Another direction focuses on the testing gen-
eralization of the current hatespeech classifiers
(Agrawal and Awekar, 2018; Dadvar and Eck-
ert, 2018; Gröndahl et al., 2018), where those
methods are tested in other datasets and domains
such as Twitter data (Waseem and Hovy, 2016),
Wikipedia data (Wulczyn et al., 2017), Formspring
data (Reynolds et al., 2011), and YouTube com-
ment data (Dadvar et al., 2014).

Unlike previous works, we pre-train a hateful
language model, then build a multi-source multi-
head hatespeech classifier with regularized adver-
sarial training to enhance the model’s performance.

3 Problem Definition

Given an input text sequence s = [w1, w2, ..., wn]
where {w1, w2, .., wn} are words and n = |s| is the
maximum length of the input sequence s. The hate-
speech classification task aims to build a mapping
function f : s = [w1, w2, ..., wn] −→ R ∈ [0, 1],
where f inputs s and returns a probability score
P (y = 1|s) ∈ [0, 1], indicating how likely s is
classified as hatespeech. In this paper, we approxi-
mate f by a deep neural classifier, where we first
pretrain f with unsupervised language modeling
tasks to enhance its language understanding. Then,
we train f with the hatespeech classification task
to produce P (y = 1|s).

4 Our approach – HABERTOR

4.1 Tokenization

BERT model relies on WordPiece (WP) (Wu et al.,
2016), a Google’s internal code that breaks down
each word into common sub-word units (“word-
pieces”). These sub-words are like character n-
grams, except that they are automatically chosen to
ensure that each of these sub-words is frequently
observed in the input corpus. WP improves han-
dling of rare words, such as intentionally mis-
spelled abusive words, without the need for a huge
vocabulary. A comparable implementation that
is open sourced is SentencePiece (SP) (Kudo and
Richardson, 2018). Like WP, the vocab size is pre-
determined. Both WP and SP are unsupervised
learning models. Since WP is not released in pub-

lic, we train a SP model using our training data,
then use it to tokenize input texts.

4.2 Parameter Reduction with Quaternion
Factorization

Denote V the vocab size, E the embedding size,
H the hidden size, L the number of layers, and F
the feed-forward/filter size. In BERT, F = 4H, E
= H, and the number of attention heads is H/64.
Encoding the vocabs takes VH parameters. Each
BERT layer contains three parts: (i) attention, (ii)
filtering/feedforward, and (iii) output. Each of the
three parts has 4H2 parameters. Thus, a BERT
layer has 12H2 parameters and a BERT-base setting
with 12 layers has VH + 144H2 parameters. Please
refer to Section A.3 in the Appendix for details.

Recently, Quaternion representations have
shown its benefits over Euclidean representations
in many neural designs (Parcollet et al., 2019; Tay
et al., 2019): (i) a Quaternion number consists of a
real component and three imaginary components,
encouraging a richer extent of expressiveness; and
(ii) a Quaternion transformation reduces 75% pa-
rameters compared to the traditional Euclidean
transformation because of the weight sharing using
the Hamilton product. Hence, we propose Quater-
nion fatorization strategies to significantly reduce
the model’s parameters as follows:
Vocab Factorization (VF): Inspired by Lan et al.
(2020), we encode V vocabs using Quaternion rep-
resentations with an embedding size E�H. Then,
we apply a Quaternion transformation to transform
E back to H, and concatenate all four parts of a
Quaternion to form a regular Euclidean embedding.
This leads to a total of VE + EH/4 parameters, com-
pared to VE + EH in ALBERT.
Attention Factorization (AF): If the input se-
quences have length N, the output of the multi-head
attention is N×N, which does not depend on the
hidden size H. Hence, it is unnecessary to produce
the attention Query, Key, and Value with the same
input hidden size H and cost 3H2 parameters per
a layer. Instead, we produce the attention Query,
Key, and Value in size C�H using linear Quater-
nion transformations, leading to 3CH/4 parameters.
Feedforward Factorization (FF): Instead of lin-
early transforming from H to 4H (i.e. 4H2 parame-
ters), we apply Quaternion transformations from H
to I, and from I to 4H, with I�H is an intermediate
size. This leads to a total of (HI/4 + IH) parameters.
Output Factorization (OF): We also apply

7489

[CLS] j o h n

BERT

Input name [SEP]

Next sentence
prediction

Masked token
prediction

classification headP(y | s)

(a) Traditional Fine-tuning BERT.

[CLS] j o h n

BERT

Input name [SEP]

Next sentence
prediction

Masked token
prediction

News
classification head 1

News
classification head 2

Finance
classification head 1

Finance
classification head 2

is news?

is fi
nance?

po
ol

in
g

po
ol

in
g

P(y | s, “news”)

P(y | s, “finance”)

(b) HABERTOR with two sources and ensemble of 2 heads.
Figure 1: Architecture comparison of traditional fine-tuned BERT and HABERTOR multi-source ensemble heads.

Quaternion transformations from 4H to I, then from
I to H. This results in (HI + IH/4) parameters, com-
pared to 4H2 in BERT.

When we apply all the above compression tech-
niques together, the total parameters are reduced to
VE + EH/4 + L(3CH/4 + H2 + 5HI/2). Particularly,
with BERT-base settings of V=32k, H=768, L=12,
if we set E=128, C=192, and I=128, the total of
parameters is reduced from 110M to only 8.4M.

4.3 Pretraining tasks
Similar to BERT, we pre-train our HABERTOR
with two unsupervised learning/language modeling
tasks: (i) masked token prediction, and (ii) next sen-
tence prediction. We describe some modifications
that we made to the original BERT’s implementa-
tion as follows:

4.3.1 Masked token prediction task
BERT generates only one masked training instance
for each input sequence. Instead, inspired by Liu
et al. (2019), we generate τ training instances by
randomly sampling with replacement masked po-
sitions τ times. We refer to τ as a masking factor.
Intuitively, this helps the model to learn differently
combined patterns of tokens in the same input se-
quence, and boosts the model’s language under-
standing. This small modification works especially
well when we have a smaller pre-training data size,
which is often true for a domain-specific task (e.g.,
hatespeech detection).

4.3.2 Next sentence prediction task
In BERT, the two input sentences are already paired
and prepared in advanced. In our case, we have to
preprocess input text sequences to prepare paired
sentences for the next sentence prediction task. We
conduct the following preprocessing steps:

Step 1: We train an unsupervised sentence tok-
enizer from nltk library. Then we use the trained

sentence tokenizer to tokenize each input text se-
quence into (splitted) sentences.

Step 2: In BERT, 50% of the chance two consec-
utive sentences are paired as next, and 50% of the
chance two non-consecutive sentences are paired
as not next. In our case, our input text sequences
can be broken into one, two, three, or more sen-
tences. For input text sequences that consist of only
one tokenized sentence, the only choice is to pair
with another random sentence to generate a not next
example. By following our 50-50 rule described
in the Appendix, we ensure generating an equal
number of next and not next examples.

4.4 Training the hatespeech prediction task

For hatespeech prediction task, we propose a multi-
source multi-head HABERTOR classifier. The ar-
chitecture comparison of the traditional fine-tuning
BERT and our proposal is shown in Figure 1. We
note two main differences in our design as follows.

First, as shown in Figure 1b, our HABERTOR
has separated classification heads/nets for differ-
ent input sequences of different sources but with
a shared language understanding knowledge. Intu-
itively, instead of measuring the same probabilities
P (y|s) for all input sequences, it injects additional
prior source knowledge of the input sequences to
measure P (y|s, “news”) or P (y|s, “finance”).

Second, in addition to multi-source, HABER-
TOR with an ensemble of h heads provides even
more capabilities to model data variance. For each
input source, we employ ensemble of several classi-
fication heads (i.e. two classification heads for each
source in the Figure 1b) and use a pooling layer on
top to aggregate results from those classification
heads. We use three pooling functions: min, max,
mean. min pooling indicates that HABERTOR clas-
sifies an input comment as a hateful one if all of the
heads classify it as hatespeech, which put a more

7490

stringent requirement on classifying hatespeech.
On the other hand, HABERTOR will predict an
input comment as a normal comment if at least one
of the heads recognizes the input comment as a
normal one, which is less strict. Similarly, using
max pooling will put more restriction on declaring
comments as normal, and less restriction on declar-
ing hatespeech. Finally, mean pooling considers
the average voting from all heads.

Note that our design generalizes the traditional
fine-tuning BERT architecture when h=1 and the
two classification nets share the same weights.
Thus, HABERTOR is more flexible than the con-
ventional fine-tuning BERT. Also, HABERTOR
can be extended trivially to problems that have
q sources, with h separated classification heads
for q different sources. When predicting input se-
quences from new sources, HABERTOR averages
the scores from all separated classification nets.

4.5 Parameter Estimation
Estimating parameters in the pretraining tasks in
our model is similar to BERT, and we leave the
details in the Appendix due to space limitation.

For hatespeech prediction task, we use the trans-
formed embedding vector of the [CLS] token as a
summarized embedding vector for the whole input
sequence. Let S be a collection of sequences si.
Note that si is a normal sequence, not corrupted or
concatenated with another input sequence. Given
that yi is the supervised ground truth label for the
input sequence, and ŷi = P (yi|si, “news”) (Fig-
ure 1b, 1b) where si is a news input sequence, or
ŷi = P (yi|si,“finance”) when si is a finance in-
put sequence. The hateful prediction task aims to
minimize the following binary cross entropy loss:

Lhs = argmin
θ

−
|S|∑
i=1

yi log
(
ŷi
)

+ (1− yi) log
(
1− ŷi

)
Regularize with adversarial training: To make
our model more robust to perturbations of the in-
put embeddings, we further regularize our model
with adversarial training. There exist several state-
of-the-art target-based adversarial attacks such us
Fast Gradient Method (FGM) (Miyato et al., 2017),
Basic Iterative Method (Kurakin et al., 2016), and
Carlini L2 attack (Carlini and Wagner, 2017). We
use the FGM method as it is effective and efficient
according to our experiments.

In FGM, the noise magnitude is a scalar value
and is a manual input hyper-parameter. This is sub-
optimal, as different adversarial directions of differ-

ent dimensions are scaled similarly, plus, manually
tuning the noise magnitude is expensive and not
optimal. Hence, we propose to extend FGM with a
learnable and fine-grained noise magnitude, where
the noise magnitude is parameterized by a learnable
vector, providing different scales for different ad-
versarial dimensions. Moreover, the running time
of our proposal compared to FGM is similar.

The basic idea of the adversarial training is
to add a small perturbation noise δ on each of
the token embeddings that makes the model mis-
classify hateful comments as normal comments,
and vice versa. Given the input sequence si =

[w
(i)
1 , w

(i)
2 , ..., w

(i)
u] with ground truth label yi, let

ỹi be the adversarial target class of si such that
ỹi 6= yi. In the hatespeech detection domain, our
model is a binary classifier. Hence, when yi = 1 (si
is a hateful comment), ỹi = 0 and vice versa. Then,
the perturbation noise δ is learned by minimizing
the following cost function:

Ladv = argmin
δ,δ∈[a,b]

−
|S|∑
i=1

logP
(
ỹi |si + δi; θ̂

)
(1)

Note that in Eq. (1), δ is constrained to be less
than a predefined noise magnitude scalar in the
traditional FGM method. In our proposal, δ is con-
strained within a range [a, b] (i.e. min(δ) ≥ a ∧
max(δ) ≤ b). Solving Eq. (1) is expensive and
not easy, especially with complicated deep neural
networks. Thus, we approximate each perturbation
noise δi for each input sequence si by linearizing
partial loss −logP

(
ỹi |si + δi; θ̂

)
around si. Par-

ticularly, δi is measured by:

δi = −ε×
`
si

(
− logP

(
ỹi |si; θ̂

))
‖

`
si

(
− logP

(
ỹi |si; θ̂

))
‖2

(2)

In Eq. (2), ε is a learnable vector, with the same
dimensional size as δi. Solving the constraint
δi ∈ [a, b] in Eq. (1) becomes restricting ε ∈ [a, b],
which is trivial by projecting ε in [a, b].

Finally, HABERTOR aims to minimize the fol-
lowing cost function:

L = Lhs + λadvLadv − λε‖ε‖2, (3)
where ‖ε‖2 is an additional term to force the model
to learn robustly as much as possible, and λε is a
hyper-parameter to balance its effect. Note that, we
first learn the optimal values of all token embed-
dings and HABERTOR’s parameters before learn-
ing adversarial noise δ. Also, regularizing adversar-
ial training only increases the training time, but not
the inferencing time since it does not introduce ex-
tra parameters for the model during the inference.

7491

Table 1: Statistics of the three datasets.

Statistics/Datasets Yahoo Twitter Wiki

Total 1.4M 16K 115K
Hateful 100K 5K 13K
% of hatespeech 7% 31% 12%

5 Empirical Study

5.1 Experiment Setting

Dataset: Our primary dataset was extracted from
user comments on Yahoo News and Finance for
five years, and consisted of 1,429,138 labeled com-
ments. Among them, 944,391 comments are from
Yahoo News and 484,747 comments are from Ya-
hoo Finance. There are 100,652 hateful com-
ments. The 1.4M labeled data was collected as
follows (Nobata et al., 2016): comments that are
reported as “abusive” for any reason by users of Ya-
hoo News and Finance are sent to in-house trained
raters for review and labeling.

To further validate the generalizability of
HABERTOR, we perform transfer-learning experi-
ments on other two publicly available hatespeech
datasets: Twitter (Waseem and Hovy, 2016), and
Wikipedia (i.e. Wiki) (Wulczyn et al., 2017). The
Twitter dataset consists of 16K annotated tweets,
including 5,054 hateful tweets (i.e., 31%). The
Wiki dataset has 115K labeled discussion com-
ments from English Wikipedia talk’s page, includ-
ing 13,590 hateful comments (i.e., 12%). The statis-
tics of 3 datasets are shown in Table 1.
Train/Dev/Test split: We split the dataset into
train/dev/test sets with a ratio 70%/10%/20%. We
tune hyper-parameters on the dev set, and report
final results on the test set. Considering critical
mistakes reported at Arango et al. (2019) when
building machine learning models (i.e. extracting
features using the entire dataset, including testing
data, etc), we generate vocabs, pre-train the two
language modeling tasks, and train the hatespeech
prediction task using only the training set.
Baselines, our Models and hyper-parameter
Settings: We compare our models with 15 state-of-
the-art baselines: Bag of Words (BOW) (Dinakar
et al., 2011; Van Hee et al., 2015), NGRAM, CNN
(Kim, 2014), VDCNN (Conneau et al., 2017), Fast-
Text (Joulin et al., 2016), LSTM (Cho et al., 2014),
att-LSTM, RCNN (Lai et al., 2015), att-BiLSTM
(Lin et al., 2017), Fermi (best hatespeech detec-
tion method as reported in Basile et al. (2019))
(Indurthi et al., 2019), Q-Transformer (Tay et al.,
2019), Tiny-BERT (Jiao et al., 2019), DistilBERT-

Table 2: Parameters Comparison between HABERTOR-
VAFOQF vs. other LMs. “–” indicates not available.

Statistics
HABERTOR

-VAFOQF
AL-

BERT
Tiny-
BERT

Distil-
BERT

BERT-
base

Layers (L) 6 12 4 6 12
Attention heads 6 12 12 12 12
Attention size (C) 192 – – – –
Embedding (E) 128 128 – – –
Hidden (H) 384 768 312 768 768
Intermediate size (I) 128 – – – –
Feedforward size 1,536 3072 1,200 3,072 3,072
Vocab (V) 40k 30k 30k 30k 30k

Parameters 7.1M 12M 14.5M 65M 110M

base (Sanh et al., 2019), ALBERT-base (Lan et al.,
2020), and BERT-base (Devlin et al., 2019; Nikolov
and Radivchev, 2019). We are aware of other re-
cent language models such as Transformer-XL (Dai
et al., 2019), RoBERTa(Liu et al., 2019), DialoGPT
(Zhang et al., 2020), to name a few. However, as
these models are even heavier than BERT-base, we
do not compare with them. The detailed descrip-
tion of the baselines and hyper-parameter settings
is described in the Appendix.
Our models: We denote HABERTOR as our model
without using any factorization, HABERTOR-
VQF as HABERTOR + Vocab Quaternion Fac-
torization, HABERTOR-VAQF as HABERTOR
+ Vocab + Attention Quaternion Factorization,
HABERTOR-VAFQF as HABERTOR + Vocab +
Attention + Feedforward Quaternion Factorization,
and HABERTOR-VAFOQF as HABERTOR + Vo-
cab + Attention + Feedforward + Output Quater-
nion Factorization.
Measurement: We evaluate models on seven met-
rics: Area Under the Curve (AUC), Average Pre-
cision (AP), False Positive Rate (FPR), False Neg-
ative Rate (FNR), F1 score4. In real world, for
imbalanced datasets, we care more about FPR
and FNR. Thus, we report FPR at 5% of FNR
(FPR@5%FNR), meaning we allow 5% of hateful
texts to be misclassified as normal ones, then re-
port FPR at that point. Similarly, we report FNR at
5% of FPR (FNR@5%FPR). Except for AUC and
AP, the other metrics are reported using an optimal
threshold selected by using the development set.
Model size comparison: HABERTOR has 26M of
parameters. HABERTOR-VQF and HABERTOR-
VAQF have 16.2M and 13.4M of parameters, re-
spectively. HABERTOR-VAFQF and HABERTOR-
VAFOQF have 10.3M and 7.1M of parameters, re-
spectively. The size of all five models is much

4Both AP and F1 account for Precision and Recall so we
do not further report Precision and Recall for saving space.

7492

Table 3: Performance of all models that we train on Yahoo train data, test on Yahoo test data and report results on
Yahoo News and Yahoo Finance separately. Best baseline is underlined, better results than best baseline are bold.

Model
Yahoo Yahoo News Yahoo Finance

AUC AP AUC AP
FPR@

5%FNR
FNR@
5%FPR

F1 AUC AP
FPR@

5%FNR
FNR@
5%FPR

F1

BOW 85.91 48.35 85.07 51.37 61.13 50.53 49.01 85.83 36.80 60.97 49.43 40.15
NGRAM 84.19 42.15 83.17 45.00 63.45 57.45 43.59 84.29 31.63 63.42 53.94 35.95
CNN 91.21 63.03 90.64 65.64 47.50 36.23 60.61 91.20 52.30 45.59 33.96 51.93
VDCNN 88.10 58.08 87.65 60.75 60.39 41.56 56.12 88.17 48.72 62.43 38.78 50.38
FastText 91.64 60.15 90.97 63.16 41.80 38.09 58.35 92.13 47.97 37.75 34.30 49.36
LSTM 91.83 64.17 91.14 66.59 43.81 35.09 60.96 92.38 54.44 38.26 31.45 53.36
att-LSTM 91.83 64.39 91.10 66.77 44.24 34.86 61.37 92.43 54.79 38.32 30.75 53.79
RCNN 91.17 63.34 90.52 65.72 48.49 36.37 60.29 91.32 53.77 49.40 32.17 52.73
att-BiLSTM 92.52 64.17 91.93 66.82 38.07 34.68 61.54 92.93 53.97 36.05 31.14 52.58
Fermi 86.53 41.52 86.10 45.16 53.33 55.60 45.65 85.45 27.53 56.60 56.48 33.27
Q-Transformer 92.34 64.43 91.81 67.06 39.12 34.17 61.82 92.64 54.41 37.71 29.74 53.51
Tiny-BERT 93.60 68.70 93.03 70.80 34.50 30.37 64.42 94.09 60.25 31.16 25.09 57.58
DistilBERT 93.68 69.15 93.13 71.25 34.33 30.05 64.69 94.12 60.56 29.23 24.94 58.01
ALBERT 93.50 67.99 92.93 70.28 34.56 31.15 63.82 93.94 58.73 30.12 25.87 56.37
BERT-base 94.14 70.05 93.56 71.65 32.15 28.91 65.30 94.60 62.34 29.14 22.81 59.72

HABERTOR 94.77 72.35 94.12 73.79 29.26 27.12 67.09 95.72 65.93 22.03 18.99 62.38
HABERTOR-VQF 94.70 71.82 94.00 73.25 29.50 27.79 66.57 95.81 65.20 20.78 20.08 61.60
HABERTOR-VAQF 94.59 71.53 93.90 73.02 29.94 27.92 66.51 95.63 64.64 23.08 20.39 60.84
HABERTOR-VAFQF 94.43 70.75 93.72 72.37 31.86 28.58 65.81 95.42 63.07 22.87 21.43 60.11
HABERTOR-VAFOQF 94.18 69.92 93.51 71.63 32.47 29.26 65.35 95.00 61.99 24.95 22.81 59.50

smaller than BERT-base (i.e. 110M of parameters).
The configuration comparison of HABERTOR-
VAFOQF and other pretrained language models
is given in Table 2. HABERTOR-VAFOQF has less
than 2 times compared to TinyBERT’s parameters,
less than 9 times compared to Distil-BERT’s size,
and is equal to 0.59 AlBERT’s size.

5.2 Experimental results

5.2.1 Performance comparison
Table 3 shows the performance of all models on
Yahoo dataset. Note that we train on the Yahoo
training set that contains both Yahoo News and
Finance data, and report results on Yahoo News
and Finance separately, and report only AUC and
AP on both of them (denoted as column “Yahoo” in
Table 3). We see that Fermi worked worst among
all models. It is mainly because Fermi transfers the
pre-trained embeddings from the USE model to a
SVM classifier without further fine-tuning. This
limits Fermi’s ability to understand domain-specific
contexts. Q-Transformer works the best among
non-LM baselines, but worse than LM baselines as
it is not pretrained. BERT-base performed the best
among all baselines. Also, distilled models worked
worse than BERT-base due to their compression
nature on BERT-base as the teacher model.

Next, we compare the performance of our pro-
posed models against each other. Table 3 shows
that our models’ performance is decreasing when
we compress more components (p-value< 0.05 un-

der the directional Wilcoxon signed-rank test). We
reason it is a trade-off between the model size and
the model performance as factorizing a component
will naturally lose some of its information.

Then, we compared our proposed models with
BERT-base – the best baseline. Table 3 shows that
except our HABERTOR-VAFOQF, our other pro-
posals outperformed BERT-base, improving by an
average of 1.2% and 1.5% of F1-score in Yahoo
News and Yahoo Finance, respectively (p-value <
0.05). Recall that in addition to improving hate-
speech detection performance, our models’ size
is much smaller than BERT-base. For example,
HABERTOR saved 84M of parameters from BERT-
base, and HABERTOR-VAFQF saved nearly 100M
of parameters from BERT-base. Interestingly, even
our smallest HABERTOR-VAFOQF model (7.1M
of parameters) achieves similar results compared
to BERT-base (i.e. the performance difference be-
tween them is not significant under the directional
Wilcoxon signed-rank test). Those results show
the effectiveness of our proposed models against
BERT-base, the best baseline, and consolidate the
need of pretraining a language model on a hateful
corpus for a better hateful language understanding.

5.2.2 Running time and memory comparison

Running time: Among LM baselines, TinyBERT
is the fastest. Though ALBERT has the smallest
number of parameters by adopting the cross-layer
weight sharing mechanism, ALBERT has the same

7493

Table 4: Generalizability of HABERTOR and top base-
lines. Report AUC, AP, and F1 on each test set.

Twitter Wiki

Model AUC AP F1 AUC AP F1

Fermi 89.03 79.23 74.52 96.59 84.26 75.51
TinyBERT 92.23 83.88 78.33 97.10 87.64 79.70
DistilBERT 92.13 80.21 77.89 97.23 88.16 80.21
ALBERT 92.55 86.51 78.76 97.66 88.91 80.66
BERT 93.21 86.67 79.68 97.75 89.23 80.73

HABERTOR 93.52 88.57 81.22 97.46 88.65 80.81
HABERTOR-VQF 93.94 88.45 81.21 97.40 88.64 80.66
HABERTOR-VAQF 93.57 87.66 80.23 97.45 88.61 80.63
HABERTOR-VAFQF 93.51 87.38 80.16 97.37 88.21 80.23
HABERTOR-VAFOQF 93.49 87.14 80.06 97.23 87.94 79.61

number of layers as BERT-base, leading to a similar
computational expense as BERT-base.

Our HABERTOR-VQF and HABERTOR-VAQF
have a very similar parameter size with TinyBERT
and their train/inference time are similar. Interest-
ingly, even though HABERTOR has 26M of pa-
rameters, its runtime is also competitive with Tiny-
BERT. This is because among 26M of parameters in
HABERTOR, 15.4M of its total parameters are for
encoding 40k vocabs, which are not computational
parameters and are only updated sparsely during
training. HABERTOR-VAFQF and HABERTOR-
VAFOQF significantly reduce the number of param-
eters compared to TinyBERT, leading to a speedup
during training and inference phases. Especially,
our experiments on 4 K80 GPUs with a batch size
of 128 shows that HABERTOR-VAFOQF is 1.6
times faster than TinyBERT.
Memory consumption: Our experiments with
a batch size of 128 on 4 K80 GPUs show
that among LM baselines, TinyBERT and AL-
BERT are the most lightweight models, consuming
13GB of GPU memory. Compared to TinyBERT
and ALBERT, HABERTOR takes an additional
4GB of GPU memory, while HABERTOR-VQF,
HABERTOR-VAQF hold a similar memory con-
sumption, HABERTOR-VAFQF and HABERTOR-
VAFOQF reduces 1∼3 GB of GPU memory.
Compared to BERT-base: In general, HABER-
TOR is 4∼5 times faster, and 3.1 times GPU mem-
ory usage smaller than BERT-base. Our most
lightweight model HABERTOR-VAFOQF even re-
duces 3.6 times GPU memory usage, while remains
as effective as BERT-base. The memory saving in
our models also indicates that we could increase
the batch size to perform inference even faster.

5.2.3 Generalizability analysis
We perform hatespeech Language Model transfer
learning on other hateful Twitter and Wiki datasets
to understand our models’ generalizability. We use

Table 5: Comparison of the traditional FGM with
a fixed and scalar noise magnitude, compared to the
FGM with our proposed fine-grained and adaptive
noise magnitude. Better results are in bold.

Twitter Wiki
Model Type AUC AP F1 AUC AP F1

HABERTOR
traditional 93.54 87.88 79.84 97.50 88.14 80.13
ours 93.52 88.57 81.22 97.46 88.65 80.81

HABERTOR-
VQF

traditional 93.62 88.09 80.26 97.44 88.19 80.11
ours 93.94 88.45 81.21 97.40 88.64 80.66

HABERTOR-
VAQF

traditional 93.03 86.77 79.56 97.44 88.15 80.16
ours 93.57 87.66 80.23 97.45 88.61 80.63

HABERTOR-
VAFQF

traditional 92.89 86.42 79.64 97.42 88.08 79.71
ours 93.51 87.38 80.16 97.37 88.21 80.23

HABERTOR-
VAFOQF

traditional 93.08 86.67 79.33 97.28 87.40 79.19
ours 93.49 87.14 80.06 97.23 87.94 79.61

our models’ pre-trained language model checkpoint
learned from Yahoo hateful datasets, and fine tune
them on Twitter/Wiki datasets. Note that the fine-
tuned training also includes regularized adversarial
training for best performance. Next, we compare
the performance of our models with Fermi and four
LM baselines – best baselines reported in Table 3.

Table 4 shows that BERT-base performed best
compared to other fine-tuned LMs, which is consis-
tent with our reported results on Yahoo datasets in
Table 3. When comparing with BERT-base’s per-
formance (i.e. best baseline) on the Twitter dataset,
all our models outperformed BERT-base. On Wiki
dataset, interestingly, our models work very com-
petitively with BERT-base, and achieve similar F1-
score results. Recall that BERT-base has a major
advantage of pre-training on 2,500M Wiki words,
thus potentially understands Wiki language styles
and contexts better. In contrast, HABERTOR and
its four factorized versions are pre-trained on 33M
words from Yahoo hatespeech dataset. As shown
in the ablation study (refer to AS2 in Section A.6
of the Appendix), a larger pre-training data size
leads to better language understanding and a higher
hatespeech prediction performance. Hence, if we
acquire larger pre-training data with more hate-
ful representatives, our model’s performance can
be further boosted. All of those results show that
our models generalize well on other hatespeech
datasets compared with BERT-base, with signifi-
cant model complexity reduction.

5.2.4 Ablation study
Effectiveness of the adversarial attacking
method FGM with our fined-grained and adap-
tive noise magnitude: To show the effectiveness
of the FGM attacking method with our proposed
fine-grained and adaptive noise magnitude, we

7494

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Noise magnitude

0

2

4

6

8

10

12
Fr

eq
ue

nc
y

(a) Twitter

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Noise magnitude

0

2

4

6

8

10

12

Fr
eq

ue
nc

y

(b) Wiki.
Figure 2: Histogram of the learned noise magnitude
when performing Language Model transfer learning of
HABERTOR on (a) Twitter, and (b) Wiki datasets.

compare the performance of HABERTOR and its
four factorized versions when (i) using a fixed and
scalar noise magnitude as in the traditional FGM
method, and (ii) using a fine-grained and adaptive
noise magnitude in our proposal. We evaluate the
results by performing the Language Model transfer
learning on Twitter and Wiki datasets and present
results in Table 5. Note that, the noise magnitude
range is set in [1, 5] for both two cases (i) and (ii)
for a fair comparison, and we manually search the
optimal value of the noise magnitude in the tradi-
tional FGM method using the development set in
each dataset. We observe that in all our five models,
learning with our modified FGM produces better re-
sults compared to learning with a traditional FGM,
confirming the effectiveness of our proposed fine-
grained and adaptive noise magnitude.

We also plot the histogram of the learned noise
magnitude of HABERTOR on Twitter and Wiki
datasets. Figure 2 shows that different embed-
ding dimensions are assigned with different learned
noise magnitude, showing the need of our proposed
fine-grained and adaptive noise magnitude, that au-
tomatically assigns different noise scales for differ-
ent embedding dimensions.
Additional Ablation study: We conduct several
ablation studies to understand HABERTOR’s sen-
sitivity. Due to space limitation, we summarize the
key findings as follows, and leave detailed informa-
tion and additional study results in the Appendix:
(i) A large masking factor in HABERTOR is help-
ful to improve its performance; (ii) Pretraining with
a larger hatespeech dataset or a more fine-grained
pretraining can improve the hatespeech prediction
performance; and (iii) Our fine-tuning architecture
with multi-source and ensemble of classification
heads helps improve the performance.

5.2.5 Further application discussion
Our proposals were designed for the hatespeech
detection task, but in an extent, they can be ap-
plied for other text classification tasks. To illus-

Table 6: Application of our models on the sentiment
classification task using Amazon Prime Pantry reviews.

Model AUC AP F1

ALBERT-base 98.77 99.77 97.95
BERT-base 99.16 99.84 98.42

HABERTOR 99.10 99.83 98.39
HABERTOR+VQF 99.09 99.83 98.27
HABERTOR+VAQF 98.90 99.80 98.07
HABERTOR+VAFQF 98.87 99.79 98.05
HABERTOR+VAFOQF 98.61 99.75 97.78

trate the point, we experiment our models (i.e. all
our pretraining and fine-tuning designs) on a senti-
ment classification task. Particularly, we used 471k
Amazon-Prime-Pantry reviews (McAuley et al.,
2015), which is selected due to its reasonable
size for fast pretraining, fine-tuning and result at-
tainment. After some preprocessings (i.e. dupli-
cated reviews removal, convert the reviews with
rating scores ≥ 4 as positive, rating ≤ 2 as neg-
ative, and no neutral class for easy illustration),
we obtained 301k reviews and splited into 210k-
training/30k-development/60k-testing with a ratio
70/10/20. Next, we pretrained our models on 210k
training reviews which contain 5.06M of words.
Then, we fine-tuned our models on the 210k train-
ing reviews, selected a classification threshold on
the 30k development reviews, and report AUC,
AP, and F1 on the 60k testing reviews. We com-
pare the performance of our models with fine-tuned
BERT-base and ALBERT-base – two best baselines.
We observe that though pretraining on only 5.06M
words of 210k training reviews, HABERTOR per-
forms very similarly to BERT-base, while improv-
ing over ALBERT-base. Except HABERTOR-
VAFOQF with a little bit smaller F1-score com-
pared to ALBERT-base, our other three compressed
models worked better than ALBERT-base, showing
the effectiveness of our proposals.

6 Conclusion
In this paper, we presented the HABERTOR model
for detecting hatespeech. HABERTOR understands
the language of the hatespeech datasets better, is
4-5 times faster, uses less than 1/3 of the memory,
and has a better performance in hatespeech clas-
sification. Overall, HABERTOR outperforms 15
state-of-the-art hatespeech classifiers and general-
izes well to unseen hatespeech datasets, verifying
not only its efficiency but also its effectiveness.

Acknowledgments
This work was supported in part by NSF grant
CNS-1755536.

7495

References
Sweta Agrawal and Amit Awekar. 2018. Deep learn-

ing for detecting cyberbullying across multiple so-
cial media platforms. In ECIR, pages 141–153.

Aymé Arango, Jorge Pérez, and Barbara Poblete. 2019.
Hate speech detection is not as easy as you may
think: A closer look at model validation. In SIGIR,
pages 45–54.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In WWW Companion,
pages 759–760.

Barna. 2019. U.S. adults believe hate speech has
increased — mainly online. research releases in
culture & media. https://www.barna.com/
research/hate-speech-increased/.

Valerio Basile, Cristina Bosco, Elisabetta Fersini,
Debora Nozza, Viviana Patti, Francisco Manuel
Rangel Pardo, Paolo Rosso, and Manuela San-
guinetti. 2019. SemEval-2019 task 5: Multilin-
gual detection of hate speech against immigrants and
women in twitter. In SemEval, pages 54–63.

Nicholas Carlini and David Wagner. 2017. Towards
evaluating the robustness of neural networks. In SP,
pages 39–57.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for en-
glish. In EMNLP: System Demonstrations, pages
169–174.

Despoina Chatzakou, Nicolas Kourtellis, Jeremy
Blackburn, Emiliano De Cristofaro, Gianluca
Stringhini, and Athena Vakali. 2017. Mean birds:
Detecting aggression and bullying on twitter. In
WebSci, pages 13–22.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In EMNLP.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann Lecun. 2017. Very deep convolutional net-
works for text classification. In EACL, pages 1107–
1116.

Maral Dadvar and Kai Eckert. 2018. Cyberbullying de-
tection in social networks using deep learning based
models; a reproducibility study. arXiv preprint
arXiv:1812.08046.

Maral Dadvar, Dolf Trieschnigg, and Franciska
de Jong. 2014. Experts and machines against bul-
lies: A hybrid approach to detect cyberbullies. In
CCAI, pages 275–281.

Zihang Dai, Zhilin Yang, Yiming Yang, William W
Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xl: Attentive lan-
guage models beyond a fixed-length context. In
ACL.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
ICWSM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Karthik Dinakar, Roi Reichart, and Henry Lieberman.
2011. Modeling the detection of textual cyberbully-
ing. In ICWSM.

Mai ElSherief, Vivek Kulkarni, Dana Nguyen,
William Yang Wang, and Elizabeth Belding. 2018a.
Hate lingo: A target-based linguistic analysis of hate
speech in social media. In ICWSM.

Mai ElSherief, Shirin Nilizadeh, Dana Nguyen, Gio-
vanni Vigna, and Elizabeth Belding. 2018b. Peer to
peer hate: Hate speech instigators and their targets.
In ICWSM.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In ACL workshop on abusive language on-
line, pages 85–90.

Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro
Conti, and N Asokan. 2018. All you need is: Evad-
ing hate speech detection. In AISEC, pages 2–12.

Vijayasaradhi Indurthi, Bakhtiyar Syed, Manish Shri-
vastava, Nikhil Chakravartula, Manish Gupta, and
Vasudeva Varma. 2019. FERMI at SemEval-2019
task 5: Using sentence embeddings to identify hate
speech against immigrants and women in twitter. In
SemEval, pages 70–74. ACL.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext. zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

https://www.barna.com/research/hate-speech-increased/
https://www.barna.com/research/hate-speech-increased/

7496

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
EMNLP: System Demonstrations.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
2016. Adversarial examples in the physical world.
In Adversarial examples in the physical world.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In AAAI.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations. In ICLR.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In ICLR.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Sean MacAvaney, Hao-Ren Yao, Eugene Yang, Katina
Russell, Nazli Goharian, and Ophir Frieder. 2019.
Hate speech detection: Challenges and solutions.
PloS one, 14(8):e0221152.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based rec-
ommendations on styles and substitutes. In SIGIR,
pages 43–52.

Takeru Miyato, Andrew M Dai, and Ian Goodfel-
low. 2017. Adversarial training methods for semi-
supervised text classification. In ICLR.

Guanyi Mou, Pengyi Ye, and Kyumin Lee. 2020.
Swe2: Subword enriched and significant word em-
phasized framework for hate speech detection. In
CIKM.

Alex Nikolov and Victor Radivchev. 2019. Nikolov-
radivchev at semeval-2019 task 6: Offensive tweet
classification with bert and ensembles. In ACL Se-
mEval, pages 691–695.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In WWW.

Titouan Parcollet, Mirco Ravanelli, Mohamed
Morchid, Georges Linarès, Chiheb Trabelsi,
Renato De Mori, and Yoshua Bengio. 2019. Quater-
nion recurrent neural networks. In International
Conference on Learning Representations.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
twitter. In ACL Workshop on Abusive Language On-
line.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In In EMNLP.

Kelly Reynolds, April Kontostathis, and Lynne Ed-
wards. 2011. Using machine learning to detect cy-
berbullying. In ICMLA, volume 2, pages 241–244.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Yi Tay, Aston Zhang, Anh Tuan Luu, Jinfeng Rao,
Shuai Zhang, Shuohang Wang, Jie Fu, and Siu Che-
ung Hui. 2019. Lightweight and efficient neural nat-
ural language processing with quaternion networks.
In ACL, pages 1494–1503.

Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie
Mennes, Bart Desmet, Guy De Pauw, Walter Daele-
mans, and Véronique Hoste. 2015. Automatic de-
tection and prevention of cyberbullying. In HUSO,
pages 13–18.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In NAACL workshop,
pages 88–93.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon. 2017.
Ex machina: Personal attacks seen at scale. In
WWW, pages 1391–1399.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and cate-
gorizing offensive language in social media (offen-
seval). In SemEval.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing
Liu, and Bill Dolan. 2020. Dialogpt: Large-scale
generative pre-training for conversational response
generation. In ACL.

Ziqi Zhang and Lei Luo. 2019. Hate speech detection:
A solved problem? the challenging case of long tail
on twitter. Semantic Web, 10(5):925–945.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on twitter using a
convolution-gru based deep neural network. In
ESWC, pages 745–760.

7497

A Appendix

A.1 Parameter Estimation for pretraining
HABERTOR with language model tasks

Given the following input sentences
si = [w

(i)
1 , w

(i)
2 , ..., w

(i)
u] and sj = [w

(j)
1 ,

w
(j)
2 , ..., w

(j)
v], let the text sequence be cl = sij =

[w
(i)
1 , w

(i)
2 , ..., w

(i)
u , w

(j)
1 , w

(j)
2 , ..., w

(j)
v]=[w1, ..., wn]

(n = u+ v) with label yl where we already paired
the sentences to generate a next (i.e yl = 1) or
not next (i.e. yl = 0) training instance. Let c̄l
be a corrupted sequence of cl, where we masked
some tokens in cl. Denote C a collection of such
training text sequences cl. The masked token
prediction task aims to reconstruct each cl ∈ C
given the corrupted sequence c̄l. In another word,
the masked token prediction task maximizes the
following log-likelihood:

L1 = argmax
θ

|C|∑
l=1

log pθ(cl|c̄l)

≈
|C|∑
l=1

n∑
t=1

1t log pθ(wt|c̄l)

where 1t is an indicator function and 1t = 1 when
the token tth is a [MASK] token, otherwise 1t =
0. θ refers to all the model’s learning parameters,
wt is the ground truth token at position tth. De-
note Hθ(cl) = [Hθ(cl)1, Hθ(cl)2, ...,Hθ(cl)n] as
the sequence of transformed output embedding vec-
tors obtaining at the final layer of corresponding
n tokens in the sequence cl. Hθ(cl)t ∈ Rd with d
is the embedding size. By parameterizing a linear
layer with a transformation W1 ∈ RV×d (with V
refers to the vocabulary size) as a decoder, we can
rewrite L1 as follows:

L1 = argmin
θ
−
|C|∑
i=1

n∑
t=1

1t log

exp

([
W1Hθ(c̄l)t

]
t

)
∑V

k=1 exp

([
W1Hθ(c̄l)t

]
k

)
where [·]t refers to the output value at position t.

For the next sentence prediction task, the ob-
jective is to minimize the following binary cross
entropy loss function:

L2 = argmin
θ

−
|C|∑
i=1

yl log
(
σ(W2Hθ(cl)1)

)
+

(1− yl) log
(
σ(W2Hθ(cl)1)

)
where W2 ∈ Rd and Hθ(cl)1 refers to the em-
bedding vector of the first token in the sequence

cl, or the [CLS] token. The intuition behind this
is that the [CLS]’s embedding vector summarizes
information of all other tokens via the attention
Transformer network (Vaswani et al., 2017).

Then, pretraining with two language modeling
tasks aims to minimize both loss functions L1 and
L2 by: LLM = argminθ

(
L1 + L2

)
A.2 Quaternion
In mathematics, Quaternions5 are a hypercomplex
number system. A Quaternion number P in a
Quaternion space H is formed by a real component
(r) and three imaginary components as follows:

P = r + ai + bj + ck, (4)

where ijk = i2 = j2 = k2 = −1. The non-
commutative multiplication rules of quaternion
numbers are: ij = k, jk = i, ki = j, ji = −k,
kj = −i, ik = −j. In Equa (4), r, a, b, c are
real numbers ∈ R. Note that r, a, b, c can also be
extended to a real-valued vector ∈ R to obtain a
Quaternion embedding, which we use to represent
each word-piece embedding.
Algebra on Quaternions: We present the Hamil-
ton product on Quaternions, which is the heart of
the linear Quaternion-based transformation. The
Hamilton product (denoted by the ⊗ symbol) of
two Quaternions P ∈ H and Q ∈ H is defined as:

P ⊗Q =(rP rQ − aPaQ − bP bQ − cP cQ)+

(rPaQ + aP rQ + bP cQ − cP bQ)i+

(rP bQ − aP cQ + bP rQ + cPaQ)j+

(rP cQ + aP bQ − bPaQ + cP rQ)k+
(5)

Activation function on Quaternions: Similar to
(Tay et al., 2019; Parcollet et al., 2019), we use
a split activation function because of its stability
and simplicity. Split activation function β on a
Quaternion P is defined as:

β(P) = f(r) + f(a)i + f(b)j + f(c)k (6)

, where f is any standard activation function for
Euclidean-based values.
Why does a linear Quaternion transformation
reduce 75% of parameters compared to the lin-
ear Euclidean transformation? Figure 3 shows a
comparison between a traditional linear Euclidean
transformation and a linear Quaternion-based trans-
formation.

In Euclidean space, the same input will be mul-
tiplied with different weights to produce different

5https://en.wikipedia.org/wiki/Quaternion

7498

Input

rin ain bin cin

Real-valued representation

Output

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

rout aout bout cout

Dot Product

rin

ain

bin

cin

aout

rw

aw

-bw

cw

rin

ain

bin

cin

bout

rw

aw

bw

-cw

rin

ain

bin

cin

cout

rw

-aw

bw

cw

Quaternion representation

rin ain bin cin

r i j k

rw aw bw cw

-aw rw -cw bw

-bw cw rw -aw

-cw -bw aw rw

Dot Product

rout aout bout cout

r i j k

rin

ain

bin

cin

rout
rw

-aw

-bw

-cw

rin

ain

bin

cin

rout
w11
w21

w31

w41

rin

ain

bin

cin

aoutw12

w22

w32

w42

rin

ain

bin

cin

cout
w14

w24

w34

w44

rin

ain

bin

cin

bout
w13

w23

w33

w43

weight

Linear Euclidean transformation Linear Quaternion transformation

Figure 3: Comparison between linear Euclidean transformation (Left) and linear Quaternion transformation
(Right). The Hamilton product in Quaternion space is replaced with an equivalent dot product in real space for
an easy reference. Computing each output dimension in real-valued transformation (left) always need 4 new pa-
rameters, resulting in 16 degrees of freedom. In contrast, only 4 parameters are used and shared in producing all
4 output dimensions in Quaternion transformation, leading to a better inter-dependency encoding and a 75% of
parameter saving.

output dimensions. Particularly, given a real-valued
4-dimensional vector [rin, ain, bin, cin], we need
to parameterize a weight matrix of 16 parameters
(i.e. 16 degrees of freedom) to transform the 4-
dimensional input vector into a 4-dimensional out-
put vector [rout, aout, bout, cout]. However, with
Quaternion transformation, the input vector now is
represented with 4 components, where rin is the
value of the real component, ain, bin, cin are the
corresponding value of the three imaginary parts i,
j, k, respectively. Because of the weight sharing
nature of Hamilton product, different output dimen-
sions take different combinations with the same
input with exactly same 4 weighting parameters
{rw, aw, bw, cw}. Thus, the Quaternions transfor-
mation reduces 75% of the number of parameters
compared to the real-valued representations in Eu-
clidean space.
Quaternion-Euclidean conversion: Another ex-
cellent property of using Quaternion representa-
tions and Quaternion transformations is that con-
verting from Quaternion to Euclidean and vice
versa are convenient. To convert a real-valued
based vector v ∈ Rd into a Quaternion-based vec-
tor, we consider the first d/4 dimensions of v as the
value of the real component, and the corresponding
next three d/4 dimensions are for the three imag-
inary parts, respectively. Similarly, to convert a
Quaternion vector v ∈ Hd into a real-valued vec-
tor, we simply concatenate all four components of
the Quaternion vector, and treat the concatenated
vector as a real-valued vector in Euclidean space.

A.3 Analysis on the BERT’s Parameters
Figure 4 presents a general view of the BERT ar-
chitecture. Each BERT layer contains three parts:
(i) attention, (ii) filtering, and (iii) output.

The attention part parameterizes three weight
transformation matrices H×H to form key, query,
and value from the input, and another weight ma-
trix H×H to transform the output attention results.
The total parameters of this part are 4H2. The fil-
tering part parameterizes a weight matrix H×4H
to transform the output of the attention part, lead-
ing to a total of 4H2 parameters. The output part
parameterizes a weight matrix 4H×H to transform
the output of the filtering part from 4H back to H,
resulting in 4H2 parameters.

Thus, a BERT layer has 12H2 parameters, and
a BERT-base setting with 12 layers has 144H2 pa-
rameters. By taking into account the number of
parameters for encoding V vocabs, the total param-
eters of BERT is VH + 144H2.

A.4 50-50 Rule
To ensure the 50-50 rule, we perform the fol-
lowing method: Let M be the number of input
text sequences that we can split into multiple sen-
tences, and N be the number of input sequences
that can be tokenized into only one sentence. We
want the number of sentences to be generated
as next sentence pairs (sampling with probabil-
ity p1) to be roughly equal to the number of sen-
tences to be formed as not next sentence pairs
(sampling with probability p2). In another word,

7499

Bert Attention

Bert Filtering/
Feedforward

Bert Output

Bert Layer

Output to next Bert Layer

Bert
attention

Self
attention

Output

Dense (H —> H)

Dropout

Add

Query Key Value
H x H H x H H x H

N x H

Scaled Multi-
head attention

Context
embeddings

Bert Layer

Bert Layer

. . .n
la

ye
rs

output

Bert
Filtering/

Feed forward

Bert Attention
output

Dense
(H —> 4H)

Gelu activation
function

Bert
output

Bert
Attention

output

Bert Filtering
output

Dense (4H —> H)

Dropout

Add

LayerNorm

Bert Attention
output

Bert Output

LayerNorm

Input sequence Input sequence

Input sequence

Figure 4: General view of the BERT architecture. Uncovering the architecture from left to right.

M × p1 = (M +N)× p2 or p1p2 = (M+N)
M . Since

p1 + p2 = 1, replacing p2 = 1 − p1, we have:
M × p1 = (M +N)(1− p1) −→ p1 = (M+N)

(2M+N) .
With p1 established, we set p1 as the probability for
a sentence to be paired with another consecutive
sentence in a same input sequence to generate a
next sentence example.

A.5 Baselines and Hyper-parameter Settings
15 Baselines are described as follows:

• BOW: Similar to Dinakar et al. (2011);
Van Hee et al. (2015), we extract bag of words
features from input sequences, then a tradi-
tional machine learning classifier is built on
top of the extracted features.

• NGRAM: It is similar to BOW model, except
using n-gram features of the input sequence.

• CNN (Kim, 2014): It is a state-of-the-art word
based CNN neural network model.

• VDCNN (Conneau et al., 2017): It is a charac-
ter based CNN model with a deeper architec-
ture and optional shortcut between layers.

• FastText (Joulin et al., 2016): An extension
of the Word2Vec model, where it represents
each word as an n-gram of characters to provide
embeddings for rare words.

• LSTM (Cho et al., 2014): We use: (i) the last
LSTM output vector, and (ii) a pooling layer
(max and mean) to aggregate LSTM output vec-
tors and report only the best results.

• att-LSTM: A LSTM model with an attention
layer to aggregate LSTM hidden state vectors.

• RCNN (Lai et al., 2015): A combination be-
tween a bi-directional recurrent structure to cap-
ture contextual information and a max pooling
layer to extract key features.

• att-BiLSTM (Lin et al., 2017): It is a self-
attentive Bidirectional LSTM model.

• Fermi (Indurthi et al., 2019): The best hate-
speech detection method, as reported in (Basile
et al., 2019). It built a SVM classifier on top of
the pretrained embeddings from Universal Sen-
tence Encoder (USE) (Cer et al., 2018) model.

• Q-Transformer (Tay et al., 2019): It is a
Quaternion Transformer. It replaces all Eu-
clidean embeddings and linear transformations
by Quaternion emddings and Quaternion lin-
ear transformation. We use the full version of
Q-Transformer due to its high effectiveness.

• Tiny-BERT (Jiao et al., 2019): It is a com-
pressed model of BERT-base by performing
knowledge distillation on BERT-base during its
pretraining phase with smaller number of layers
and embedding sizes. We adopt the Tiny-BERT
4 layers with 14.5M of parameters.

• DistilBERT-base (Sanh et al., 2019): another
knowledge distillation of the BERT-base model
during the BERT’s pre-training phase.

• ALBERT-base (Lan et al., 2020): a light-

7500

weight version of BERT-base model with
parameters sharing strategies and an inter-
sentence coherence pretraining task.

• BERT-base (Devlin et al., 2019): Similar to
Nikolov and Radivchev (2019), we use pre-
trained BERT with 12 layers and uncased (our
experiments show uncased works better than
cased vocab) to perform fine-tuning for the hate-
speech detection.

For baselines that require word embeddings, to
maximize their performances, we initialize word
embeddings with both GloVe pre-trained word em-
beddings (Pennington et al., 2014) and random
initialization and report their best results. We im-
plement BOW and NGRAM with Naive Bayes,
Random Forest, Logistic Regression, and Xgboost
classifiers, and then report the best results.

By default, our vocab size is set to 40k. The num-
ber of pretraining epochs is set to 60, and the batch
size is set to 768. The learning rate is set to 5e-5
for the masked token prediction and next sentence
prediction tasks, which are the two pretraining
tasks, and 2e-5 for the hatespeech prediction task,
which is the fine-tuning task. The default design of
HABERTOR is given at Figure 1b, with one sepa-
rated classification net with an ensemble of 2 heads
for each input source. The masking factor τ is
set to 10. The noise magnitude’s bound constraint
[a, b] = [1, 2] in Yahoo dataset, and [a, b] = [1, 5]
in Twitter and Wiki datasets. λadv=1.0, and λε=1
in all three datasets. We use min pooling func-
tion to put a more stringent requirement on clas-
sifying hatespeech comments, as the number of
hatespeech-labeled comments is the minority. All
the pre-trained language models are fined-tuned
with the Yahoo train set. For all other baselines,
we vary the hidden size from {96, 192, 384} and
report their best results. We build VDCNN with
4 convolutional blocks, which have 64, 128, 256
and 512 filters with a kernel size of 3, and 1 con-
volution layer. Each convolutional block includes
two convolution layers. For FastText, we find that
1,2,3-grams and 1,2,3,4,5-character grams give the
best performance. All models are optimized using
Adam optimizer (Kingma and Ba, 2014).

A.6 Ablation Study

Effectiveness of regularized adversarial train-
ing and masking factor τ (AS1): Recall that by
default, HABERTOR has 2 classification nets, each
of the two nets has an ensemble of 2 classification

heads, masking factor τ = 10, and is trained with
regularized adversarial training. HABERTOR -
adv indicates HABERTOR without regularized ad-
versarial training, and HABERTOR - adv + τ=1
indicates HABERTOR without regularized adver-
sarial training and masking factor τ of 1 instead
of 10. Comparing HABERTOR with HABERTOR
- adv, we see a drop of AP by 1.16%, F1-score
by 1.16%, and the average error rate increases
by 0.78% (i.e. average of FPR@5%FNR and
FNR@5%FPR). This shows the effectiveness of
additional regularized adversarial training to make
HABERTOR more robust. Furthermore, compar-
ing HABERTOR - adv (with default τ=10) with
HABERTOR - adv + τ = 1, we observe a drop
of AP by 0.92%, F1-score by 0.24%, and an incre-
ment of average error rate by 1.01%. This shows
the need of both regularized adversarial training
with our proposed fine-grained and adaptive noise
magnitude, and a large masking factor in HABER-
TOR.

Is pretraining with a larger domain-specific
dataset helpful? (AS2): We answer the question
by answering a reverse question: does pretrain-
ing with smaller data reduce performance? We
pre-train HABERTOR with 250k Yahoo comments
data (4 times smaller), and 500k Yahoo comments
data (2 times smaller). Then, we compare the re-
sults of HABERTOR - adv + τ = 1 with HABER-
TOR - adv + τ = 1 under 250k data, and HABER-
TOR - adv + τ = 1 under 500k data. Table 7 shows
the results. We observe that pretraining with a
larger data size increases the hatespeech prediction
performance. We see a smaller drop when pretrain-
ing with 1M data vs 500k data (AP drops 0.6%),
and a bigger drop when pretraining with 500k data
vs 250k data (AP drops 4.4%). We reason that
when the pretraining data size is too small, impor-
tant linguistic patterns that may exist in the test set
are not fully observed in the training set. In short,
pretraining with larger hatespeech data can improve
the hatespeech prediction performance. Note that
BERT-base is pre-trained on 3,300M words, which
are 106 times larger than HABERTOR (only 31M
words). Hence, the performance of HABERTOR
can be boosted further when pre-training a hate-
speech language model with a larger number of
hateful representatives.

Usefulness of separated source prediction and
ensemble heads (AS3): We compare HABER-
TOR from Default settings to using single source

7501

Table 7: Ablation study of HABERTOR on Yahoo dataset (i.e. both Yahoo News + Finance, to save space). Default
results are in bold. Better results compared to the default one are underlined.

Goal Model
Yahoo

AUC AP
FPR@

5%FNR
FNR@
5%FPR

F1

Default 94.77 72.35 26.11 25.08 66.18

AS1 - adv 94.60 71.19 26.97 25.78 65.02
- adv + τ = 1 94.32 70.27 28.08 26.69 64.78

AS2 - adv + τ = 1 under 250k data 92.61 64.71 36.43 32.51 60.13
- adv + τ = 1 under 500k data 94.04 69.11 29.82 27.99 63.34

AS3
+ single source + single head 94.70 71.82 26.82 25.55 65.16
+ single head 94.70 72.15 26.66 25.20 65.59
+ ensemble 4 94.78 72.18 26.29 24.97 65.78
+ ensemble 8 94.71 72.06 26.13 25.08 65.56

AS4 - adv + τ = 1 - pretraining 92.48 65.26 36.47 32.10 60.66

AS5

+ 3 layers 94.54 71.25 27.15 25.90 64.98
+ 4 layers 94.67 71.53 26.25 25.50 65.38
+ 192 hidden size 94.57 71.00 26.56 25.93 65.05
+ 3 att heads 94.69 72.00 26.72 25.43 65.75
+ 4 att heads 94.69 72.06 26.61 25.22 65.80
+ 12 att heads 94.70 72.01 26.28 25.14 65.64

+ single source (i.e. one classification head for all
data sources, see Figure 1a), single head (i.e. multi-
source and each source has a single classification
head, see Figure 1b), and using more ensemble
heads (i.e. multi-source + more ensemble classifi-
cation heads, see Figure 1b). Table 7 shows that
the overall performance order is multi-source + en-
semble of 2 heads > multi-source + single head >
single source + single head, indicating the useful-
ness of our multi-source and ensemble of classifi-
cation heads architecture in the fine-tuning phase.
However, when the number of ensemble heads ≥
4, we do not observe better performance.

Is pretraining two language modeling tasks
helpful for the hatespeech detection task?
(AS4) We compare HABERTOR-adv + τ = 1 with
HABERTOR-adv + τ = 1 - pretraining, where we
ignore the pretraining step and consider HABER-
TOR as an attentive network for pure supervised
learning with random parameter initialization. In
Table 7, the performance of HABERTOR without
the language model pretraining is highly down-
graded: AUC drops ∼-2%, AP drops ∼-5%, FPR
and FNR errors are ∼+9% and ∼+5% higher, re-
spectively, and F1 drops -4%. These results show a
significant impact of the pretraining tasks for hate-
speech detection.

Is HABERTOR sensitive when varying its num-
ber of layers, attention heads, and embedding

size? (AS5) In Table 7, we observe that HABER-
TOR+3 layers and HABERTOR+4 layers work
worse than HABERTOR (6 layers), indicating that
a deeper model does help to improve hatespeech
detection. However, when we increase the number
of attention heads from 6 to 12, or decrease the
number of attention heads from 6 to 4, we observe
that the performance becomes worse. We reason
that when we set the number of attention heads
to 12, since there is no mechanism to constrain
different attention heads to attend on different in-
formation, they may end up focusing on the sim-
ilar things, as shown in (Clark et al., 2019). But
when reducing the number of attention heads to
4, the model is not complex enough to attend on
more relevant information, leading to worse perfor-
mance. Similarly, when we reduce the embedding
size from 384 in HABERTOR to 192, the perfor-
mance is worse. Note that we could not perform
experiments with larger embedding sizes and/or
more number of layers due to high running time
and memory consumption. However, we can see in
Table 7 performance of smaller HABERTOR with
3 layers, 4 layers, or 192 hidden size still obtain
slightly better than BERT-base results reported in
Table 3. This again indicates the need for pretrain-
ing language models on hatespeech-related corpus
for the hatespeech detection task.

Effectiveness of fine-grained pretraining

7502

(a) AUC. (b) AP.

Figure 5: AUC and AP of HABERTOR without reg-
ularized adversarial training on Yahoo dataset when
varying the number of epochs for the pretraining task.

(AS6)? Since the pretraining phase is unsu-
pervised, a question is how much fine-grained
pretraining should we perform to get a good
hatespeech prediction performance? Or how
many pretraining epochs are good enough? To
answer the question, we vary the number of the
pretraining epochs from {10, 20, 30, ..., 60} before
performing the fine-tuning phase with hatespeech
classification task. We report the changes in AUC
and AP of fine-tuned HABERTOR on the Yahoo
dataset without performing regularized adversarial
training in Figure 5. We observe that a more
fine-grained pretraining helps to increase the
hatespeech prediction results, which is similar to a
recent finding at Liu et al. (2019), especially from
10 epochs to 40 epochs. However, after 40 epochs,
the improvement is smaller.

