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Abstract

Previous neural coherence models have fo-
cused on identifying semantic relations be-
tween adjacent sentences. However, they do
not have the means to exploit structural infor-
mation. In this work, we propose a coherence
model which takes discourse structural infor-
mation into account without relying on human
annotations. We approximate a linguistic the-
ory of coherence, Centering theory, which we
use to track the changes of focus between dis-
course segments. Our model first identifies
the focus of each sentence, recognized with re-
gards to the context, and constructs the struc-
tural relationship for discourse segments by
tracking the changes of the focus. The model
then incorporates this structural information
into a structure-aware transformer. We eval-
uate our model on two tasks, automated es-
say scoring and assessing writing quality. Our
results demonstrate that our model, built on
top of a pretrained language model, achieves
state-of-the-art performance on both tasks. We
next statistically examine the identified trees
of texts assigned to different quality scores. Fi-
nally, we investigate what our model learns in
terms of theoretical claims1.

1 Introduction

Coherence describes the semantic relation between
elements of a text. It identifies a text passage as
either a unified whole or a collection of unrelated
sentences. The most well-known formal theory,
Centering theory, determines the most salient item
in each sentence, the center or focus, and tracks
the changes of the focus (Grosz et al., 1995). Prior
studies of coherence have mainly focused on mod-
eling local coherence in Centering theory (Barzilay
and Lapata, 2008). They aim to identify the seman-
tic relations between adjacent sentences. However,

1Our code is available at: https://github.com/
sdeva14/emnlp20-centering-neural-hds

coherence arises not only at the local level, but
also at the document level giving insight into the
structure of the discourse.

Discourse structure represents the semantic or-
ganization of a text. Incorporating structural in-
formation into the model has been beneficial for
diverse downstream tasks including text summa-
rization (Marcu, 2000), translation (Guzmán et al.,
2014), sentiment analysis (Bhatia et al., 2015), and
text classification (Ji and Smith, 2017).

To identify discourse structure, earlier work
adopts a supervised approach, relying on human an-
notations (Hernault et al., 2010; Wang et al., 2017).
However, annotating discourse structure is time
consuming and costly. It requires annotators to
understand not only the local context surrounding
the target sentence but also higher level relations.
Learning latent structure has been proposed to al-
leviate this limitation. This approach induces the
discourse structure from a text without annotations
using an attention layer (Liu and Lapata, 2018).
Recent work argues that, however, the learned trees
have mostly little to no structure at the document
level, and the model relies on specific linguistic
cues (Ferracane et al., 2019).

In this paper, we propose a coherence model in-
spired by Centering theory which takes structural
information into consideration. Our model does
not rely on human annotations to identify this in-
formation. Our model consists of two components:
(1) a discourse segments parser which constructs
structural relationship for discourse segments by
tracking the changes of the focus between discourse
segments, and (2) a structure-aware transformer
which exploits structural information to update sen-
tence representations.

The discourse segments parser first identifies the
hierarchical discourse segments of a text, building
upon an approximation of Centering theory (Grosz
et al., 1995). This theory first defines three data

https://github.com/sdeva14/emnlp20-centering-neural-hds
https://github.com/sdeva14/emnlp20-centering-neural-hds
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structures to describe the focus of a sentence, a
list of forward-looking centers (Cf ), the preferred
center (Cp), and a single backward-looking center
(Cb). Cf indicates the salient items of the sentence,
that are candidates of the focus in the next sen-
tence, and Cp indicates the most preferred item
of Cf. Cb describes the focus of a sentence with
regards to the previous context. The theory also de-
fines centering transitions to describe the changes
of focus by comparing two centers, Cp and Cb. We
propose an algorithm to approximate this theory
using a pretrained language model. Our algorithm
first identifies the focus of sentences using multi-
head attention scores provided by the pretrained
language model and semantic similarity between
vector representations. Our algorithm then con-
structs hierarchical discourse segments using a fo-
cus stack – inspired by the concept of Grosz and
Sidner (1986) – to track the changes of the focus
between discourse segments.

Secondly, we propose a structure-aware trans-
former to account for structural information.
Vaswani et al. (2017) introduce the transformer,
a model solely based on a self-attention mecha-
nism. This mechanism relates all items to capture
semantic relations in a sequence. In contrast, the
self-attention of our transformer is restricted to
considering sentences with regards to the identified
hierarchical discourse segments. We first calculate
document structure priors to allow self-attention to
relate sentences connected in the identified struc-
ture. Then, the document structure attention is
calculated by element-wise multiplication of the
document structure priors and the self-attention of
a naive transformer.

We evaluate our model on two tasks: automated
essay scoring (AES) and assessing writing quality
(AWQ). AES is the task of assigning a score for
a given essay, aiming to replicate human scoring
results (Dong and Zhang, 2016). This task has been
used to evaluate coherence models (Burstein et al.,
2010). Secondly, AWQ is the task of assigning
labels of text quality recognized by human annota-
tors. Coherence is one of the most essential aspects
of text quality (Feng et al., 2014). We first show
that a simple fine-tuned model, relying on a pre-
trained language model, outperforms the state of
the art on both tasks. We then demonstrate that
our model achieves state-of-the-art performance
on both tasks. Our results indicate that the identi-
fied trees let the model assess text quality better by
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Figure 1: Our model architecture.

structure-aware coherence modeling. We then ex-
amine the identified trees to investigate differences
of texts in writing quality. We finally inspect iden-
tified centers to investigate what our model learns
in terms of theoretical claims.

2 Related Work

While unsupervised approaches for discourse
parser have been developed (Marcu and Echihabi,
2002; Ji et al., 2015), earlier work mostly adopted
a supervised approach to identify discourse struc-
ture relying on human annotations. Subba and
Di Eugenio (2009) incorporate various linguistic
features, including compositional semantics and
part-of-speech information, to propose a discourse
parser based on Inductive Logic Programming.
Hernault et al. (2010) introduce a discourse parser
which constructs discourse structure from a full in-
put text. They train classifiers to identify discourse
relations, and use them to build a tree structure of
an input text. Feng and Hirst (2012) improve the
tree building algorithm of this system by incorpo-
rating more linguistic features. Wang et al. (2017)
introduce an SVM-based model that consists of two
stages, one identifying discourse structure, and the
other classifying types of relations between units.

More recently, neural models have been devel-
oped to recognize discourse structure. Li et al.
(2014) present a simple model based on a recur-
sive neural network. Li et al. (2016) claim that this
model suffers from a vanishing gradient problem
caused by long sequences, and propose an attention-
based hierarchical neural network model. To al-
leviate the shortage of human annotations, Braud
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Figure 2: An overview of selecting forward-looking looking centers (Cf ), preferred centers (Cp), and backward-
looking centers (Cb).

et al. (2016) introduce a simple LSTM-based model
which has a multi-view learning architecture. This
model uses different views of the same data. Yu
et al. (2018) extract syntactical representations by
a neural syntax parser, and incorporate them into
an RNN-based model.

Previous models of discourse parsing are mostly
based on Rhetorical Structure Theory (Mann and
Thompson, 1988). This theory represents a docu-
ment as a tree structure built by connecting dis-
course units recursively through predefined dis-
course relations. Another line of work is based
on the Penn Discourse Treebank (Webber et al.,
2019), which annotates discourse structure in a
lexically-grounded approach. These studies rep-
resent discourse structure with discourse relations.
Unlike these studies, our model does not consider
discourse relations but we investigate Centering
theory to take structural relationships for discourse
segments into account.

A supervised approach requires annotations for
each task. To overcome the lack of a labeled
dataset, recent work has investigated to learn la-
tent structures, which induce the tree structure di-
rectly from a text. While Yogatama et al. (2017)
and Choi et al. (2018) induce structure at the sen-
tence level to learn syntax, Liu and Lapata (2018)
propose a neural model which induces structural
information without a labeled resource. They in-
duce the non-projective dependency structure from
a text by structured attention. More recently, how-
ever, Ferracane et al. (2019) claim that induced
document-level structures do neither match human
intuitions nor align with linguistic theories. Unlike
latent structure learning, we identify hierarchical
discourse segments using a pretrained language
model. It lets our model identify the focus of a sen-
tence by comparing semantic similarities between
representations of sentences without relying on a
resource of manually labeled discourse structure.

3 Our Model

Figure 1 presents the architecture of our coher-
ence model. We first introduce input representa-
tions at the sentence level using a pretrained lan-
guage model. We then describe the algorithm of
the discourse segments parser. Finally, we present
a structure-aware transformer and the document
representation created.

3.1 Sentence Representations
We use a pretrained language model to obtain rep-
resentations of sentences. In this work, we employ
XLNet for the pretrained language model (Yang
et al., 2019). XLNet not only outperforms BERT
(Devlin et al., 2019), XLNet also has the advantage
to model coherence because of its training objec-
tive. XLNet maximizes the expected likelihood
over all permutations in the training.

We first encode an input document using XL-
Net to produce word representations. We obtain
sentence representations by averaging all word rep-
resentations in a sentence. We then feed the sen-
tence representations to the discourse parser and
the structure-aware transformer.

3.2 Discourse Segment Parser
Our discourse segment parser is inspired by Center-
ing theory Grosz et al. (1995). We modify Center-
ing theory to approximate it in a neural model. The
theory considers entities as candidates of centers.
To determine centers at the phrase level or the en-
tity level, we would need to incorporate an external
parser into the model to identify phrases or entities.
The performance of the model then crucially would
rely on how accurately the external parser would
identify them. Hence, we determine centers at the
word level so that our model is not affected by the
performance of an external parser.

Figure 2 gives an overview of our approach
to identify the focus of sentences. To represent
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Cb(Si−1) ≈ Cb(Si) Cb(Si−1) 6= Cb(Si)
Cb(Si) Continue

Shifting≈ Cp(Si)
Cb(Si) Retain6= Cp(Si)

Table 1: Three types of centering transitions.

the focus of a sentence, we model the backward-
looking center and forward-looking centers using
scores computed by multi-head self-attention in
XLNet. Recent work shows that multi-head at-
tention of a pretrained language model represents
important linguistic notions of the input sequence
(Clark et al., 2019; Vig and Belinkov, 2019; Sen
et al., 2020). It also claims that self-attention might
be biased to specialized tokens used in training,
<SEP>, <CLS> and the token of a punctuation
mark, hence we only consider actual items by filter-
ing these tokens. Following previous work, we use
the averaged scores of the multi-head self-attention
extracted from the last layer of the model. To iden-
tify the salient items of sentences, we encode each
sentence separately to identify centers of the sen-
tence.

To determine the forward-looking centers of the
sentence at the word level, we extract diagonal el-
ements of the matrix representing multi-head self-
attention of the encoded sentence. We then select
the top-k vectors obtained by XLNet as the forward-
looking centers in the extracted elements. The pre-
ferred center of a sentence is the top-1 item in the
forward-looking centers. The backward-looking
center of a sentence is the item most related to one
of the forward-looking centers of the immediately
preceding sentence (Brennan et al., 1987). We
compare semantic similarity between the averaged
word representations of the current sentence and
each forward-looking center of the immediately
preceding sentence. We use cosine similarity to
measure semantic similarity.

Previous work introduces concepts to describe
the changes of focus. Grosz et al. (1995) describe
three types of centering transitions: Continue, Re-
tain, and Shifting, as shown in Table 1. Continue
maintains the current focus, and Retain intends to
change the focus to an item recognized in the cur-
rent sentence. Shifting indicates that the focus is
different from the previous sentence. Grosz and
Sidner (1986) introduce a focus stack which stores
discourse segments related to the current focus.

In this work, we propose an algorithm to con-

struct the hierarchical discourse segments of a text
using these concepts (Algorithm 1). For each sen-
tence, we iterate the process until the focus stack is
empty or we find a change of the focus. For Con-
tinue, we add the current sentence to the current
segment without changing the stack (line 9-10). For
Retain, we push the current segment to the stack,
which results in connecting the discourse segment
of the top item in the stack to the current segment
(line 11-13). For Shifting, we pop the discourse seg-
ment from the stack, and iterate the process for the
next sentence (line 16-17). If the process is com-
pleted because of an empty stack, then we push si
as a new segment to process the next sentence (line
20-23). During the process, we build an adjacency
matrix to represent the changes of the focus stack.
Finally, we connect the adjacent sentences in the
discourse segment.

Algorithm 1 The discourse segment parser.
1: procedure PARSER(S, Cb, Cp, tsim)
2: Seg ← {} . A list for the current segment
3: for si ← s1 to sn do
4: Seg ← Seg + si
5: while f stack 6= � do
6: simCbi−1,Cbi = Sim(Cbi−1, Cbi)
7: simCbi,Cpi = Sim( Cbi, Cpi)
8: if simCbi,Cbi−1

> tsim then
9: if simCpi,Cbi > tsim then

10: isCont← True
11: else
12: Push(f stack, Seg)
13: Seg ← {}
14: end if
15: break . Exit the loop
16: else
17: Pop(f stack)
18: isCont← False
19: end if
20: end while
21: if ∼ isCont and f stack = � then
22: Push(f stack, Seg)
23: Seg ← {}
24: end if
25: end for
26: Adj Mat = Gen Ad Mat(Adj List)
27: return Adj Mat
28: end procedure
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3.3 Structure-aware Transformer

To take structural information into account, we
propose a structure-aware transformer. Our
structure-aware transformer is inspired by the Tree-
Transformer (Wang et al., 2019), which updates its
hidden representations by inducing a tree-structure
from a document. The Tree-Transformer gener-
ates constituent priors by calculating neighboring
attention which represents the probability whether
adjacent items are in the same constituent. The
constituent priors constrain the self-attention of the
transformer to follow the induced structure. In-
stead of inducing a tree structure, our model uses
input structural information to generate document
structure priors, which guide the self-attention of
the transformer. The sentences which are not con-
nected in the structure are constrained to not attend
each other. Document structure priors are then used
to calculate structure-aware attention.

We calculate structure-aware attention scores us-
ing the identified hierarchical discourse segments.
We compute the score si,j to relate si and sj by the
scaled dot-product attention: si,j = (qdsi · kdsj )/d.
We use (qdsi ·kdsj ) to represent the semantic relation
between si and sj , where qds is a query matrix and
kds is a key matrix of document structure attention.
We represent hierarchical discourse segments by an
adjacency matrix. To let the model learn attention
with the structural information, we mask scores by
the adjacency matrix: Ŝ = mask(S, adj) where
adj is the adjacency matrix representing document
structure. We apply a softmax function to each
row of the score matrix to represent the probabil-
ity that si attends to other connected sentences:
pi = softmax(ŝi). To make a symmetric matrix,
we calculate the structure-aware attention score:
â =
√
pi,j × pj,i. We follow Wang et al. (2019) to

cover more relations at the higher level by applying
a hierarchical constraint. This restricts alk to be
larger than alk − 1 for layer l and sentence index k:
alk = al−1

k + (1− al−1
k )âlk.

We then calculate document structure priors
(Di,j) using a log-sum instead of multiplication
to calculate it efficiently:

Di,j = e
∑j−1

k=i
log(ak) (1)

Finally, the attention score (E) of the structure-
aware transformer is calculated by element-wise
multiplication of the document structure priors and

Multi-head

 Attention

Add & Norm

Feed

Forward

Add & Norm

Document Structure

Attention

Document Structure

Priors

Adjacency 

Matrix

Figure 3: Structure-Aware Transformer.

the self-attention of a naive transformer:

E = D � softmax(
QKT

d
) (2)

where Q is query vectors, K is key vectors with
dimension dk in the naive transformer.

3.4 Document Representation
In the last layer of our model, we apply docu-
ment attention to produce the weighted sum of
all the updated sentence representations. The docu-
ment attention identifies relative weights of updated
sentence representations which enables our model
to handle any document length. Finally, a feed-
forward network is applied to the representation to
produce the output value.

4 Experiments

4.1 Implementation Details
We implement our model using the PyTorch library
and use the Stanford Stanza library2 for sentence
tokenization. We employ XLNet for the pretrained-
language model. For the baselines that do not use
the pretrained language model, we use Glove for
word embeddings, the pretrained word embeddings
trained on Google News (Pennington et al., 2014).
We set the top-n for selecting Cf to 3 and the se-
mantic threshold to compare vector representations
to 0.945 (see Appendix B for more training details
and parameters).

Due to memory constraints, we encode each sen-
tence separately using XLNet instead of the whole
document at once. Our dataset consists of long doc-
uments i.e., journal articles with more than 3,000
tokens. For employing the pretrained model, it is

2https://stanfordnlp.github.io/stanza/
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Model Prompt Avg Acc1 2 3 4 5 6 7 8
Dong et al. (2017) 69.30 66.47 65.84 66.38 68.89 64.20 67.11 65.73 66.74
Mesgar and Strube (2018) 56.25 55.94 55.20 57.20 56.57 55.10 56.97 58.39 56.45
Liu and Lapata (2018) 55.60 55.80 65.60 61.30 57.80 57.50 52.40 52.80 57.80
Averaged-XLNet 70.73 69.48 68.98 67.52 72.35 70.94 70.14 69.01 69.89
XLNet + Wang et al. (2019) 71.65 71.50 71.71 71.64 74.23 69.58 70.76 68.98 71.26
Our Model 75.10 73.35 74.75 74.18 76.38 74.30 73.61 73.44 74.39

Table 2: TOEFL Accuracy performance comparison on the test sets (see Appendix D for more details).

practically infeasible to encode all words in a doc-
ument at once due to memory limitations. We use
46GB GPU memory of two NVidia P40s for each
run.

We re-implemented all baselines to compare on
the same deep-learning framework, PyTorch. We
then used our re-implementation to report the per-
formance of models with 10 runs with different
random seeds. We verified statistical significance
(p-value<0.01) in both a one-sample t-test, which
verifies the reproducibility of the performance of
each model, and a two-sample t-test, which verifies
that the performance of our model is statistically
significant compared to other models. To fulfill
the request for fairer comparisons between neural
models (Dodge et al., 2019), we also report vali-
dation performance and standard deviation of the
performance (see Appendix D for more details).

4.2 Baselines

We first compare against the latent learning model
for discourse parsing by Liu and Lapata (2018).
While their model induces structure at both the
sentence level and the document level, we only in-
duce structure at the document level due to memory
constraints for large documents. We then compare
against a neural coherence model. Mesgar and
Strube (2018) propose a local coherence model in-
spired by Centering Theory. This model finds the
two most similar RNN outputs to determine the
most salient part of sentences to connect adjacent
sentences. This model is evaluated on the AES task
as well as the task of assessing readability.

To investigate the influence of a pretrained lan-
guage model on this task, we implement two mod-
els for baselines. We first develop a simple fine-
tuned model relying on the pretrained language
model (Averaged-XLNet). This simple model en-
codes an input document at the sentence level and
averages the encoded representations. We also im-
plement a second model which combines a state-of-
the-art latent tree learning model and the pretrained

language model (XLNet+Wang et al. (2019)). This
model encodes an input document at the sentence
level and updates representations using the Tree-
Transformer (Wang et al., 2019). Instead of aver-
aging, document attention is applied to produce a
weighted-sum vector representation.

For AES, we also compare against the state of
the art for this task. Dong et al. (2017) introduce
a model which consists of a convolutional layer
followed by a recurrent layer and an attention layer
(Bahdanau et al., 2015).

4.3 Automated Essay Scoring

Datasets. To examine the effectiveness of our
model on AES, we evaluate our model on the Test
of English as a Foreign Language (TOEFL) dataset.
TOEFL has overall higher quality of essays com-
pared to essays in the frequently used dataset for
AES, the Automated Student Assessment Prize
(ASAP) dataset3. The prompts in ASAP are written
by students in grade levels 7 to 10 of US middle
schools. Many essays in ASAP consist of only a
few sentences. In contrast, the prompts in TOEFL
are submitted for the standard English test for the
entrance to universities by non-native students. The
prompts in TOEFL do not vary so much, the stu-
dent population is more controlled, and the essays
have a similar length (see Appendix A for more
details).

Evaluation Setup. We follow the evaluation setup
of previous work on AES (Taghipour and Ng,
2016). For TOEFL, we evaluate performance with
accuracy for the three-class classification problem
with 5-fold cross-validation. We deploy the cross-
entropy loss for training. We use the ADAM opti-
mizer with a learning rate of 0.003. We evaluate
performance for 20 epochs on the validation set.
The model which reaches the best accuracy on the
validation set is then applied to the test set. We use
a mini-batch size of 32 with random shuffle.

3https://kaggle.com/c/asap-aes/
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Figure 4: Accuracy per score in TOEFL (see Appendix D for more details).

NYT
Liu and Lapata (2018)-reported 82.69 (1.36)
Liu and Lapata (2018)-ours 54.35 (1.00)
Averaged-XLNet 67.53 (3.48)
XLNet+Wang et al. (2019) 71.79 (0.77)
Our Model 75.12 (1.10)

Table 3: Mean (standard deviation) accuracy perfor-
mance of assessing writing quality on the test sets in
NYT. We compare the performance of Liu and Lapata
(2018), reported in Ferracane et al. (2019) which uses
an embedding layer trained on NYT and our implemen-
tation which uses a pretrained Glove embedding layer.

Results. Table 2 shows the performance on
TOEFL. Dong et al. (2017), the state of the art on
AES, show significantly better performance than
the model of discourse structure parsing and the
neural model of coherence. Interestingly, the sim-
ple model relying on the pretrained language model
outperforms these three models. XLNet+Wang
et al. (2019) then shows better performance. Since
we encode a text at the sentence level and not the
whole document at once, encoded representations
do not include any structural information at the
document level. Hence, this indicates that struc-
tural information improves the performance of this
model compared to Averaged-XLNet. Finally, our
model achieves state-of-the-art performance.

To better understand how the model works, we
conduct an error analysis. This analysis shows
that uneven label distributions cause biased predic-
tions in the model of Liu and Lapata (2018). The
TOEFL dataset has an uneven label distribution,
11.0%/54.3%/34.7% for low, mid, and high scores,
respectively. In contrast, all models built upon
pretrained language models generally predict dif-
ferent scores in an unbiased fashion. XLNet+Wang
et al. (2019) shows, however, more bias toward

the middle score than Averaged-XLNet. This indi-
cates that, as the model of Liu and Lapata (2018),
the baseline model predicts the uneven distribu-
tion which leads to better performance. Our model
mostly predicts the low and the high score better.
This suggests that our model does not take advan-
tage of the uneven distribution but assesses essay
quality by modeling coherence.

4.4 Assessing Writing Quality
Datasets. Louis and Nenkova (2013) use a dataset
of scientific articles from the New York Times
(NYT) for assessing writing quality. They as-
sign each article to one of two classes by a semi-
supervised approach: typical or good. Though
articles included in both classes are of good qual-
ity generally, Louis and Nenkova (2013) show that
linguistic features can distinguish different classes
of writing quality. Ferracane et al. (2019) use this
dataset to evaluate the model of Liu and Lapata
(2018).

Evaluation Setup. For NYT, we follow the setup
used in previous work. Louis and Nenkova (2013)
and Ferracane et al. (2019) undersample the dataset
to alleviate the bias of the uneven label distribution.
We partition the dataset following Ferracane et al.
(2019), into 80% training, 10% validation, and 10%
test set, respectively. We use the ADAM optimizer
with a learning rate of 0.001. For training, we
evaluate performance for 20 epochs and use a mini-
batch size of 128 with random shuffle.

Results. We first compare against the state-of-the-
art model in latent learning on NYT. Ferracane
et al. (2019) show the performance of the latent
learning model in Liu and Lapata (2018) on NYT4.

4https://github.com/elisaF/structured
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TOEFL NYT
Low Mid High Typical Good

Normalized tree height 0.362 (0.190) 0.277 (0.142) 0.242 (0.119) 0.102 (0.051) 0.100 (0.049)
Proportion of leaf nodes 0.149 (0.095) 0.110 (0.073) 0.096 (0.061) 0.037 (0.032) 0.036 (0.031)
Normalized arc length 0.740 (0.279) 0.806 (0.238) 0.846 (0.197) 0.954 (0.058) 0.953 (0.056)
Ratio of small trees 0.0% 0.0% 0.0% 0.0% 0.0%
Proportion of nodes at the top level 0.470 (0.193) 0.505 (0.194) 0.536 (0.187) 0.664 (0.120) 0.660 (0.117)

Table 4: Statistics for learned trees as labels by our model described as mean (standard deviation).

They report the performance of this model with
an embedding layer trained on the NYT corpus
itself5. To ensure fair comparison of the model
across different datasets, we use a pretrained Glove
embedding layer.

Table 3 reports performance of models on the
NYT test set. The model of Liu and Lapata (2018)
with the pretrained Glove embedding layer shows
significantly lower performance than the same
model with the embedding layer trained on NYT.
Averaged-XLNet performs better, which shows that
employing a pretrained language model is benefi-
cial, and XLNet+Wang et al. (2019) outperforms
this model. Our model achieves state-of-the-art
performance on NYT among the models using the
pretrained embedding layer, but it still shows lower
performance than the model using the embedding
layer trained on the target corpus. This suggests
that linguistic cues have the potential to improve
this model further.

4.5 Learned Discourse Structure

We next statistically examine the discourse struc-
ture identified by our parser. Ferracane et al. (2019)
evaluate the induced structure learned by the model
of Liu and Lapata (2018) using four measures: the
average height of trees, the proportion of leaf nodes,
the normalized arc length, and the ratio of vacuous
trees. They define a vacuous tree as a shallow tree
whose nodes are connected to the root directly.

We report statistics on the trees identified by
our parser as shown in Table 4. We modify two
measures, the normalized tree height and the ratio
of small trees. We normalize the tree height by the
number of nodes to take the length of documents
into account. Since there are no vacuous trees in
our trees, we report the ratio of small trees, defined
as a tree whose normalized tree height is smaller
than 0.2 and whose height is smaller than 3. In
addition, we report the proportion of the nodes at
the top level.

5We confirmed this by examining their implementation
and emailing the first author.

Figure 5: Example of the identified hierarchical dis-
course segments where DS is a discourse segment and
s is a sentence: An essay of high score whose essay-id
is 913590 in TOEFL (see Appendix E for more details).

Ferracane et al. (2019) show that trees learned
by the model of Liu and Lapata (2018) mostly are
vacuous or shallow trees, whose proportion of leaf
nodes is greater than 0.9. In contrast, the mea-
sures confirm that our model finds differences in
the structure of texts of different score levels. The
trees are not shallow trees, there is even no small
tress, and the proportion of leaf nodes is less than
15%. The normalized arc length is high in our trees,
which indicates that there is content connected to
the root in the late part of a document. We suspect
that this is the result of modeling the changes of
focus instead of being biased to the focus captured
in the beginning a document.

Figure 5 visualizes an example essay in TOEFL.
If texts are scored lower, trees are higher with more
leaf nodes, and the proportion of nodes at the top
level is lower. In NYT, we observe that the trees
are more similar according to the four measures.
However, we still observe texts of lower quality
in NYT have higher trees and more leaf nodes.
These trees are more skewed. This suggests that
the focus is more biased to specific content in the
texts of lower quality. In our manual examination,
we also observe a few cases that texts of lower
quality show very shallow trees. This suggests that
the focus changes less frequently than in texts of
higher quality.
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TOEFL-P1 (%) TOEFL-P5 (%) NYT-1458761 (%) NYT-1516415 (%)
broad (3.63) use (2.14) wyoming (4.44) theory (4.03)
many (1.79) twenty (1.79) colorado (4.44) universe (3.22)

special (1.50) cars (1.29) montana (4.44) said (3.23)
i (1.47) years (1.20) ut (2.96) stan (2.42)

specialize (1.46) i (0.99) high (2.96) ein (2.42)
know (1.05) fewer (0.78) good (2.22) dr (2.42)

specialized (0.99) think (0.75) pi (1.48) do (2.42)
knowledge (0.90) car (0.69) so (1.48) can (1.61)

academic (0.90) today (0.67) could (1.48) extra (1.61)
major (0.65) number (0.55) ver (1.48) co (1.61)

Table 5: Top-10 most preferred centers (proportions) of essays submitted to the same prompt in TOEFL, a NYT
article whose id is 1458761, and a NYT article whose id is 1516415 (see Appendix F for more details).

T-P1 T-P5 N-14* N-15*
Prop of “ the” (%) 0.12 0.40 0.00 0.00
Prop of “ a” (%) 0.19 0.18 0.00 0.08
Prop of “ an” (%) 0.04 0.02 0.07 0.00
Prop of “,” (%) 0.37 0.40 0.00 0.81
Prop of “ at” (%) 0.03 0.01 0.00 0.00
Prop of “ on” (%) 0.08 0.07 0.00 0.00
Avg prop (%) 0.03 0.03 0.95 1.00
Std prop (%) 0.10 0.07 0.71 0.57

Table 6: Proportion of function words determined as
centers in essays submitted to the prompt 1 and 5 in
TOEFL (T), a NYT article whose id is 1458761 (N-
14*), and a NYT article whose id is 1516415 (N-15*).

4.6 Centering Analysis

We finally inspect the identified centers to investi-
gate what our model learns with regard to the most
preferred centers in Centering theory. We explore
two questions, (1) whether the identified centers are
related to the given topic of a text and (2) whether
the centers rely on function words.

While all essays submitted to a prompt in
TOEFL have the same topic, articles in NYT have
different topics. Hence, we inspect centers at the
prompt level in TOEFL and for each document in
NYT.

We first examine the proportion of most pre-
ferred centers. Table 5 shows that our discourse
structure parser indeed identifies centers related
to the topic of prompts in TOEFL and to the ti-
tle of each document in NYT. For instance, the
given topic of prompt 1 in TOEFL is “Is it better to
have a broad knowledge of many academic subjects
than to specialize in one specific subject?”, and we
observe that preferred centers are related to their
topic. However, we also observe a few types of
undesirable cases when interpreting centers. The
most common case is that the identified centers
are related to the topic but also are redundant to
other centers. They indicate the same meaning, but

they have a different form, such as different tense
or grammatical number. Another undesirable case
is when centers are subword-level tokens which
are produced by subword tokenization deployed in
the pretrained language model. It not only makes
us difficult to interpret centers intuitively, but also
the model might capture a focus different from the
author’s intention.

We then verify whether our model determines
function words as centers. Table 6 shows the pro-
portion of function words determined as centers
and the average proportion among all centers. It
shows that the proportion of function word is less
or comparable to other centers. Hence, this analysis
indicates that our model does not exploit function
words to capture focus.

5 Conclusions

We propose a neural model of coherence inspired
by Centering theory. The intuition is that it de-
scribes coherence by tracking the changes of the fo-
cus between discourse segments. Our model iden-
tifies the hierarchy of discourse segments without
human annotations, and incorporates structural in-
formation into the model. We demonstrate that the
identified hierarchical discourse segments improve
performance of the model on two tasks, automated
essay scoring and assessing writing quality. In-
terestingly, we find statistical differences of trees
generated from texts of different quality.
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A Data Description Details

Table 7 describes statistics on two datasets,
TOEFL6 and NYT7. We split a text at the sentence
level by Stanford Stanza library, and tokenize them
by the XLNet tokenizer. Table 8 describes the topic
of each prompt in TOEFL. They are all open-ended
tasks, that do not have given context but require
students to submit their opinion.

Dataset #Texts Avg len (Std) Max len Scores
T-P1 1,656 401 (97) 902 1-3
T-P2 1,562 423 (97) 902 1-3
T-P3 1,396 407 (102) 837 1-3
T-P4 1,509 405 (99) 852 1-3
T-P5 1,648 424 (101) 993 1-3
T-P6 960 425 (101) 925 1-3
T-P7 1,686 396 (87) 755 1-3
T-P8 1,683 407 (92) 795 1-3
NYT 8,512 1,841 (1,221) 18,728 1-2

Table 7: Dataset statistics on tokenization: each
TOEFL prompt (T-P) and NYT.

B Training and Parameters

For TOEFL, we use a mini-batch size of 32 with
random-shuffle. For NYT, we use a mini-batch
size of 128 with random-shuffle. For both datasets,
we train models with a learning rate of 0.003 and
epsilon of 1e-4. We use the ADAM optimizer with
a learning rate of 0.003. We evaluate performance
for 20 epochs. For the baseline models which do
not use a pretrained language model, we use Glove
pretrained embeddings with 100-dimensional for
TOEFL and with 50-dimensional for NYT. We clip
gradients by 1.0 excepts for the latent learning
model of discourse parsing. To update sentence
representations obtained by a pretrained language
model, we use the same dimension of the pretrained
language model on a structure-aware transformer.
We manually tune hyperparameters.

We use 46GB GPU memory of two NVidia P40s
for each run. For training our model, it takes ap-
proximately 0.3 days on TOEFL and 11 days on
NYT. It takes less processing time to train other
two baselines relying on the pretrained language
model.

C Scores on Muti-head Attention

Figure 6 visualizes multi-head self-attention scores
obtained by XLNet for the example which consists
of four sentences as follows. The visualization

6https://catalog.ldc.upenn.edu/LDC2014T06
7https://catalog.ldc.upenn.edu/LDC2008T19

Prompt 1 Agree or Disagree: It is better to
have broad knowledge of many
academic subjects than to special-
ize in one specific subject.

Prompt 2 Agree or Disagree: Young people
enjoy life more than older people
do.

Prompt 3 Agree or Disagree: Young people
nowadays do not give enough time
to helping their communities.

Prompt 4 Agree or Disagree: Most advertise-
ments make products seem much
better than they really are.

Prompt 5 Agree or Disagree: In twenty
years, there will be fewer cars in
use than there are today.

Prompt 6 Agree or Disagree: The best way
to travel is in a group led by a tour
guide.

Prompt 7 Agree or Disagree: It is more im-
portant for students to understand
ideas and concepts than it is for
them to learn facts.

Prompt 8 Agree or Disagree: Successful peo-
ple try new things and take risks
rather than only doing what they
already know how to do well.

Table 8: Topic description: TOEFL.

shows that multi-head self-attention scores capture
salient items such as a piano or a home, or linguistic
notions such as he or it.

• s1: Peter wants to play the piano.

• s2: He went to the piano store to buy one.

• s3: It was closed.

• s4: So, he went home.

D Experiments Details

We report not only performance of models on test
sets, also performance on validation sets, and stan-
dard deviation in 10 runs as shown in Table 9-10.
These results indicate that our model achieves state-
of-the-art performance on both validation sets and
test sets. Figure 7 shows the error analysis on
TOEFL.
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Figure 6: Multi-head self-attention scores for four sentences, obtained by XLNet.
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(h) TOEFL: P8

Figure 7: Accuracy per score in TOEFL.

E Example of a identified structure

Figure 8 visualizes the identified structure from
the essay whose score is low. We only present the
identified structure due to licensing restrictions of
TOEFL.

F Centering Analysis Details

Table 11 shows top-10 most preferred centers in
TOEFL and four articles in NYT.

Figure 8: Example of the identified hierarchical dis-
course segments where DS is a discourse segment and
s is a sentence: an essay of low score whose essay-id is
1563434 in TOEFL (see Appendix E for more details).
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Model Prompt Avg Acc1 2 3 4 5 6 7 8
Liu and Lapata (2018) 55.60 55.80 65.60 61.30 57.80 57.50 52.40 52.80 57.80

(0.72) (0.44) (0.75) (0.16) (0.49) (0.39) (0.56) (0.29)
Averaged-XLNet 69.69 69.99 68.58 66.78 72.01 70.68 68.80 68.59 69.39

(0.73) (0.53) (1.12) (0.51) (0.46) (0.82) (0.42) (0.56)
XLNet + Wang et al. (2019) 71.65 71.50 71.71 71.64 74.23 69.58 70.76 68.98 71.26

(0.66) (1.04) (0.58) (0.80) (0.50) (0.61) (0.78) (1.04)
Our Model 75.10 73.35 74.75 74.18 76.38 74.30 73.61 73.44 74.39

(0.74) (0.92) (0.61) (1.07) (0.91) (1.13) (0.72) (1.15)

Table 9: TOEFL accuracy performance comparison on the test sets, described as mean (std).

Model Prompt Avg Acc1 2 3 4 5 6 7 8
Liu and Lapata (2018) 54.97 57.54 54.81 54.08 55.52 54.69 55.19 57.41 55.53

(0.59) (0.38) (0.48) (0.31) (0.55) (0.38) (0.62) (0.53)
Averaged-XLNet 71.06 70.56 67.17 67.02 71.42 69.76 68.54 68.72 69.28

(0.43) (0.50) (0.99) (0.98) (0.31) (0.77) (0.73) (0.51)
XLNet + Wang et al. (2019) 71.44 71.40 71.49 73.85 73.86 69.38 70.86 69.67 71.49

(0.89) (0.88) (0.78) (1.50) (0.75) (0.70) (0.85) (0.63)
Our Model 73.76 71.09 72.57 71.86 73.87 71.08 71.49 71.46 72.15

(0.74) (0.92) (0.61) (1.07) (0.91) (1.13) (0.72) (1.15)

Table 10: TOEFL accuracy performance comparison on the validation sets, described as mean (std).

TOEFL-P1 (%) TOEFL-P2 (%) TOEFL-P3 (%) TOEFL-P4 (%)
broad (3.63) young (5.27) young (4.77) most (1.44)
many (1.79) enjoy (5.11) i (1.54) i (1.43)

special (1.50) older (2.23) helping (1.33) advert (1.22)
i (1.47) i (1.14) help (0.99) good (0.87)

specialize (1.46) enjoying (0.82) community (0.96) advertisement (0.87)
know (1.05) they (0.76) communities (0.95) advertisements (0.82)

specialized (0.99) younger (0.66) time (0.93) tv (0.73)
knowledge (0.90) , (0.53) think (0.68) seem (0.72)

academic (0.90) people (0.52) they (0.64) agree (0.70)
major (0.65) more (0.47) enough (0.62) better (0.70)

TOEFL-P5 (%) TOEFL-P6 (%) TOEFL-P7 (%) TOEFL-P8 (%)
use (2.14) tour (4.43) ideas (6.47) successful (3.27)

twenty (1.79) guide (3.27) learn (1.80) succ (1.63)
cars (1.29) best (2.37) understand (1.48) risk (1.32)

years (1.20) group (2.05) understanding (1.48) i (1.27)
i (0.99) i (0.99) facts (1.37) try (1.19)

fewer (0.78) led (1.26) i (1.30) new (1.11)
think (0.75) travel (1.16) learning (1.26) success (0.98)

car (0.69) good (0.66) and (1.08) taking (0.80)
today (0.67) alone (0.64) concepts (0.91) agree (0.70)

number (0.55) traveling (0.55) idea (0.86) already (0.69)
NYT-1458761 (%) NYT-1516415 (%) NYT-1705265 (%) NYT-1254567 (%)

wyoming (4.44) theory (4.03) stamp (3.97) quantum (4.20)
colorado (4.44) universe (3.22) prostate (2.65) ein (4.20)
montana (4.44) said (3.23) by (2.65) led (2.80)

ut (2.96) stan (2.42) say (1.99) quant (2.10)
high (2.96) ein (2.42) diet (1.99) hr (2.10)
good (2.22) dr (2.42) said (1.99) cope (2.10)

pi (1.48) do (2.42) cancer (1.99) computation (2.10)
so (1.48) can (1.61) ele (1.99) physicist (1.40)

could (1.48) extra (1.61) ich (1.32) plan (1.40)
ver (1.48) co (1.61) ate (1.32) ger (1.40)

Table 11: Top-10 most preferred centers (proportions) of essays submitted to the same prompt in TOEFL (see
Appendix. A for given topics) and four articles in NYT whose id is 1458761, 1516415, 1705265, and 1254567,
respectively. The title of NYT articles are as follows, 1458761: “Among 4 States, a Great Divide in Fortunes”,
1516415: “One Cosmic Question, Too Many Answers”, 1705265: “Which of These Foods Will Stop Cancer?”,
and 1254567: “Quantum Theory Tugged, And All of Physics Unraveled”.


