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Abstract

Interest in emotion recognition in conversa-
tions (ERC) has been increasing in various
fields, because it can be used to analyze user
behaviors and detect fake news. Many re-
cent ERC methods use graph-based neural net-
works to take the relationships between the ut-
terances of the speakers into account. In par-
ticular, the state-of-the-art method considers
self- and inter-speaker dependencies in con-
versations by using relational graph attention
networks (RGAT). However, graph-based neu-
ral networks do not take sequential informa-
tion into account. In this paper, we propose re-
lational position encodings that provide RGAT
with sequential information reflecting the rela-
tional graph structure. Accordingly, our RGAT
model can capture both the speaker depen-
dency and the sequential information. Exper-
iments on four ERC datasets show that our
model is beneficial to recognizing emotions
expressed in conversations. In addition, our
approach empirically outperforms the state-of-
the-art on all of the benchmark datasets.

1 Introduction

Interest in emotion recognition in conversations
(ERC) has been increasing in various fields (Pi-
card, 2010), because it can be used to analyze user
behaviors (Lee and Hong, 2016) and detect fake
news (Guo et al., 2019). With the recent prolifer-
ation of social media platforms such as Facebook,
Twitter, and YouTube, as well as conversational
assistants such as Amazon Alexa, there is a need to
study how emotions are expressed in natural con-
versation.

Recent research on ERC processes the utter-
ances of dialogues in sequence by using recurrent
neural network (RNN)-based methods (Hochreiter
and Schmidhuber, 1997; Chung et al., 2014; Liu
et al., 2016). However, these methods are not

] Speaker Utterance Emotion

1 A I’m just so tired all the time. Sad

2 B
Well have you been trying to get a job,

look for a job or...?
Neutral

3 A I’ve been looking for like eight months. Frustrated

4 B
I know., It- It’s really tough out there.,

It’s really hard to find a job.
Frustrated

5 A

I’m tired of the same excuses.,

No, no you’re not qualified enough,

wish you had more education.

Frustrated

6 B Well what are you looking for?, I mean– Neutral

7 B Well, okay. Well that’s– Neutral

8 A Cause I went to Harvard. Anger

Table 1: Example for contextual emotion analysis on
the IEMOCAP dataset (Busso et al., 2008), which con-
tains emotion-labeled utterances in multi-party conver-
sations.

able to process long series of information (Brad-
bury et al., 2016). DialogueRNN tries to make
up for this problem by using an attention mecha-
nism to focus on the relevant utterances in the en-
tire conversation (Majumder et al., 2019). How-
ever, these methods do not take self-dependency
or inter-speaker dependency into account. Table 1
shows the importance of these dependencies, as il-
lustrated by an example dialogue depicting an ar-
gument about a job search. Because speaker A
has not been able to find a job for a long time,
his emotional state is consistently negative. In this
way, self-dependency is critical to understanding
his own emotional transitions in the conversation.
On the other hand, B’s emotions shift at utterance
]4 to commiserate on A’s situation. This inter-
speaker dependency captures how the utterances
of other speakers affect emotions.

The state-of-the-art method, DialogueGCN
(Ghosal et al., 2019), uses relational graph at-
tention networks (RGAT) to take the dependency
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into account; it is inspired by relational graph
convolutional networks (RGCN) (Schlichtkrull
et al., 2018) and graph attention networks (GAT)
(Veličković et al., 2017). This method takes into
account the conversational context by using a di-
rected graph, where the nodes denote individual
utterances, the edges represent relationships be-
tween pairs of nodes (utterances), and the labels
of the edges represent the types of relationships.
However, graph-based neural networks do not take
sequential information contained in utterances into
account. Table 1 also represents the importance of
the sequential information. B’s emotional change
at utterance ]4 is caused by utterance ]3 rather than
]2 or ]1. In this way, human emotions may depend
on more immediate utterances in the temporal or-
der, and thus it is essential to take the sequence of
utterances into account.

A common response to this issue is to en-
code information about absolute position features
(Vaswani et al., 2017) or relative position fea-
tures (Shaw et al., 2018), where these encodings
are added to nodes (utterances) or edges (relation-
ships). However, in order to account for self- and
inter-speaker dependency, our model focuses on
relation types rather than nodes (utterances) and
edges (relationships); thus, our position encoding
also focuses on relation types.

In this paper, we propose novel position encod-
ings (relational position encodings) that provide
the RGAT model with sequential information re-
flecting relation types. By using the relational po-
sition encodings, our RGAT model can capture
both the speaker dependency and the sequential in-
formation. Experiments on four ERC benchmark
datasets showed that our relational position en-
coding outperformed baselines and state-of-the-art
methods. In addition, our method outperformed
both the absolute and relative position encodings.

In summary, our contributions are as follows:
(1) For the first time, we apply position encod-
ings to RGAT to account for sequential informa-
tion. (2) We propose relational position encodings
for the relational graph structure to reflect both se-
quential information contained in utterances and
speaker dependency in conversations. (3) We con-
duct extensive experiments demonstrating that the
graphical model with relational position encod-
ings is beneficial and that our method outperforms
state-of-the-art methods on four ERC datasets. (4)
We also empirically demonstrate that our model is

an effective representation of other positional vari-
ations with absolute or relative position encodings.

2 Related Work

Emotion Recognition in Conversation Several
studies have tackled the ERC task. Hazarika
et al. (2018a,b) used memory networks for rec-
ognizing humans emotion in conversation, where
two distinct memory networks consider the inter-
speaker interaction. DialogueRNN (Majumder
et al., 2019) employs an attention mechanism
for grasping the relevant utterance from the en-
tire conversation. More related to our method
is the DialogueGCN model proposed by Ghosal
et al. (2019), in which RGAT is used for model-
ing both self-dependency and inter-speaker depen-
dency. This model has achieved state-of-the-art
performance on several conversational datasets.
On the other hand, as a way of considering contex-
tual information, Luo and Wang (2019) proposed
to propagate each of the utterances into an embed-
ded vector. Likewise, a pre-trained BERT model
(Devlin et al., 2018) has been used for generating
dialogue features to combine several utterances by
inserting separate tokens (Yang et al., 2019).

Graph Neural Network Graph-based neural
networks are used in various tasks. The fun-
damental model is the graph convolutional net-
work (GCN) (Kipf and Welling, 2016), which
uses a fixed adjacency matrix as the edge weight.
Our method is based on RGCN (Schlichtkrull
et al., 2018) and GAT (Veličković et al., 2017).
The RGCN model prepares a different structure
for each relation type and hence considers self-
dependency and inter-speaker dependency sepa-
rately. The GAT model uses an attention mech-
anism to attend to the neighborhood’s representa-
tions of the utterances.

Position Encodings In our work, positional in-
formation is added to the graphical structure. Sev-
eral studies add position encodings to several
structures, such as self-attention networks (SANs)
and GCN. SANs (Vaswani et al., 2017) perform
the attention operation under the position-unaware
assumption, in which the positions of the input are
ignored. In response to this issue, the absolute po-
sition (Vaswani et al., 2017) or relative position
(Shaw et al., 2018), or structure position (Wang
et al., 2019) are used to capture the sequential or-
der of the input. Similarly, graph-based neural net-
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Figure 1: Our entire framework. First, we obtain a contextual embedding for each utterance by using BERT.
Then, we modify this embedding by using RGAT to consider speaker dependency. The position encodings in the
RGAT structure take sequential information into account. Finally, after concatenating the contextual embedding
to the output embedding through RGAT, we classify the concatenated vector into emotion labels by using a fully
connected feed-forward network.

works do not take sequential information. In the
design of proteins, the relative spatial structure be-
tween proteins is modeled in order to account for
the complex dependencies in the protein sequence
and is applied to the edges of the graph represen-
tations (Ingraham et al., 2019).

3 Method

First, we define the problem of the ERC task. The
task is to recognize emotion labels (Happy, Sad,
Neutral, Angry, Excited, and Frustrated) of utter-
ances u1, u2, · · · , uN , where N denotes the num-
ber of utterances in a conversation. Let sm for
m = 1, · · · ,M be a collection of speakers in a
given conversational dataset, whereM denotes the
number of speakers. The utterance ui is uttered by
speaker sm, where m is the correspondence be-
tween the utterance and its speaker.

Our framework consists of three components -
contextual utterance embedding, speaker depen-
dency modeling with position encodings and emo-
tion classification. The entire model architecture
is shown in Figure 1. Although our method is
based on the DialogueGCN (Ghosal et al., 2019)
model, it considers the positional information con-
tained in utterances in a sequential conversation
as described in Section 3.2.3, whereas the Dia-

logueGCN model does not.

3.1 Contextual Utterance Embedding

We generate contextual utterance features from the
tokens by following the method in (Luo and Wang,
2019). First, every utterance u1, u2, · · · , uN is
tokenized by the BPE tokenizer (Sennrich et al.,
2015), i.e., ui = (ui,1, ui,2, · · · , ui,Ti), where Ti
denotes the number of tokens. The tokens are
embedded through WordPiece embeddings (Wu
et al., 2016). The pre-trained uncased BERT-Base1

model converts the token embeddings into con-
textualized token representations, which can be
converted to the vector representations via max
pooling, so that they are regarded as the contex-
tual utterance embeddings h

(0)
i ∈ RDm for i =

1, · · · ,M , where Dm denotes the dimension of
the utterance embeddings. This BERT model is
fine-tuned through a training process.

3.2 Speaker Dependency Modeling with
Position Encodings

Graph-based neural networks are used to cap-
ture the speaker dependency features of conver-
sations. We design relational graph attention net-

1See https://github.com/google-research/bert for
details.

https://github.com/google-research/bert
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works to capture both self-dependency and inter-
speaker dependency of utterances. In addition, we
introduce an attention mechanism to attend to the
neighborhood’s representations of the utterances.
Furthermore, novel position encodings (relational
position encodings) are added to the graph to ac-
count for the sequential information contained in
utterances.

3.2.1 Graphical Structure

We introduce the following notation: we denote
directed and multi-graphs as G = (V, E ,R) with
a node (utterance) vi ∈ V and a labeled edge (re-
lation) (vi, r, vj) ∈ E , where r ∈ R is a relation
type.

Nodes Representation Each utterance in a con-
versation is represented as a node vi ∈ V . Each
node vi is initialized with the contextual utterance
embeddings h

(0)
i . Through a stack of graphical

layers, this embedding is modified by aggregating
their neighborhood’s representations, described as
h
(L)
i , where L denotes the number of graphical

layers.

Labeled Edges Representation Following the
state-of-the-art method (Ghosal et al., 2019), the
labeled edges depend on two aspects: (a) speak-
ers dependency - this depends upon both self-
dependency and inter-speaker dependency. In
detail, the former indicates how utterance ui of
speaker sm influences sm’s other utterances (in-
cluding itself). On the other hand, the latter de-
scribes how utterance ui of speaker sm influences
the other speaker sk 6=m’s utterances; (b) temporal
dependency - this also depends on temporal turns
in conversation. Namely, it relies upon whether
one utterance uj is uttered in the past or future
of the target utterance ui. While the future de-
pendencies are not used in on-going conversation,
the ERC task is an offline system. Furthermore,
as past utterances plausibly influence future ut-
terances, the converse may help the model fill in
some missing information like the speaker’s back-
ground. For these reasons, we take the converse
influence into account, referring to (Ghosal et al.,
2019).

Accordingly, there are four relation types of
edges: (1) self - past type, (2) inter - past type,
(3) self - future type, and (4) inter - future type,
described as (r1, r2, r3, r4). Note that this is in

contrast to the 8 types used by DialogueGCN2.
In addition, the window sizes p and f repre-

sent the number of past or future utterances from
a target utterance in a neighborhood where each
utterance ui has an edge with the p utterances
(i.e. ui−1, ui−2, · · · , ui−p), the f utterances (i.e.
ui+1, ui+2, · · · , ui+f ), and itself. An appropriate
window size has to be determined because a small
window makes each utterance connect to too small
a neighborhood while an immense window size
makes the calculation very expensive. Although
the window size can be different for each type, we
determine the same window size for each relation.

3.2.2 Edge Weight
We introduce an edge weight by using an attention
mechanism. Although our attention mechanism is
based on the GAT (Veličković et al., 2017) model,
it is independent for each relational type r:

αijr = softmaxi

(
LRL

(
aTr [Wrhi||Wrhj ]

))
(1)

where αijr denotes the edge weight from a tar-
get utterance i to its neighborhood j under rela-
tional type r, Wr denotes a parametrized weight
matrix for the attention mechanism, ar denotes
a parametrized weight vector, and ·T represents
transposition. After applying LeakyReLU nonlin-
earity (LRL), a softmax function is used to obtain
the incoming edges whose sum total weight is 1.

3.2.3 Position Encodings
We propose relational position encodings for the
relational graph attention networks. Our position
encodings are based on the relative position since
it is appropriate for graph-based neural networks.
The target utterance feature is connected to its
neighborhood by an edge in the graph. There-
fore, in order to account for the sequential infor-
mation between them, we need to consider the dis-
tance from the target to its neighborhood, which
is undoubtedly the relative distance between ut-
terances. Furthermore, we follow the speaker de-
pendency modeling described in 3.2.1 and use re-
lational graph attention networks. It is necessary
that the sequential information depends on the re-
lation type r. In summary, we use a different rel-
ative distance for each relation type, which is re-

2The type of DialogueGCN depends on 2 distinct speak-
ers and therefore implies 2× 4 distinct relation types, which
indicates that both the speaker dependency and the temporal
dependency are prepared for each distinct speaker.
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Figure 2: Example of relational positions. The rela-
tional position depends on each relational type, and the
background color represents the relational type from
the target utterance h4. These positions, which are
based on the relative distance, are different for each re-
lation.

PE PE PE PE

Figure 3: Illustration of relational position encodings.
The encodings, which are composed of four represen-
tations, are added to the edges in a graph for each rela-
tion. “PE” denotes the position encodings.

ferred to as relational position encodings. Figure 2
illustrates the idea of relational positions.

We compare two types of relational position en-
coding, i.e., a fixed function and a learned repre-
sentation (Gehring et al., 2017). As the fixed posi-
tional function, we define its representation as

PEijr =


max(−p,min(p, j − i)) r = 1, where j ∈ N 1(i)

max(−p,min(p, j − i)) r = 2, where j ∈ N 2(i)

max(−f,min(f, j − i)) r = 3, where j ∈ N 3(i)

max(−f,min(f, j − i)) r = 4, where j ∈ N 4(i)
(2)

where PEijr denotes the relational distance from
a target utterance i to its neighborhood j under
relational type r. The maximum relational po-
sition is clipped to a size of p or f , which de-
notes the window size of past or future utterances.
N r(i) denotes the neighborhood of the target i un-
der relation type r. As the learned representations,
we use one-layer feed-forward neural networks for
positional embeddings, whose argument is the re-
lational fixed function.

Our relational position is based on the relative
position; thus, it can be added to the edge weight,
as illustrated in Figure 3. We redefine the attention

weight in (1) as

αijr = softmaxi

(
LRL

(
aT
r [Wrhi||Wrhj ] + PEijr

))
(3)

To add position encodings to the edge weight,
our relational position has the same scalar dimen-
sion as the edge weight. Because it is a scalar
value, it may have limited ability to express po-
sitional information. In future studies, we will in-
crease the dimension of the position encodings.

3.2.4 RGAT
A graphical propagation module modifies the rep-
resentation of a node h(l)

i by aggregating represen-
tations of its neighborhoodN r(i), and an attention
mechanism is used to attend to the neighborhood’s
representations. The features h(l−1)

ir under relation
r are summed to compose the output embedding
of a node h

(l)
i . Through a stack of graphical lay-

ers l, the representation of a node changes within
its l-hop neighborhood. We define the propagation
module as follows:

h
(l−1)
ir =

∑
j∈N r(i)

α
(l−1)
ijr W (l−1)

r h
(l−1)
j (4)

h
(l)
i =

R∑
r=1

h
(l−1)
ir (5)

where W (l−1)
r denotes a learnable weight matrix

for each relation r. In addition, We apply multi-
head attention to the aggregation module in (4)
and concatenate its outputs. After this propagation
module in (5), we use layer normalization with
learnable affine transform parameters.

3.3 Emotion Classification
After obtaining the representations h

(L)
i of each

node through the speaker dependency modeling
with relational position encodings, we concatenate
the contextual utterance embeddings h

(0)
i and the

representation of h(L)
i . The concatenated vector is

classified by using a fully connected feed-forward
network, which consists of two linear transforma-
tions with a ReLu activation between them:

Classifier(x) = max(0,xW1 + b1)W2 + b2

(6)
where W1 and W2 denote learnable weight ma-

trixes, and b1 and b2 denote learnable bias vec-
tors.
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Datasets Conversations Utterances Classes Evaluation Metrics
train validation test train validation test

IEMOCAP 108 12 31 5320 490 1623 6 Weighted-F1
MELD 1038 114 280 9989 1109 2610 7 Weighted-F1
EmoryNLP 713 99 85 9934 1344 1328 7 Weighted-F1
DailyDialog 11118 1000 1000 87170 8069 7740 7 Micro-F1

Table 2: Dataset descriptions.

4 Experimental Settings

4.1 Datasets
We evaluated our method on four ERC benchmark
datasets of various sizes. Training, validation, and
test data distributions are reported in Table 2.

IEMOCAP (Busso et al., 2008) is an audio-
visual database consisting of recordings of ten
speakers in dyadic conversations. The utterances
are annotated with one of six emotional labels:
happy, sad, neutral, angry, excited, or frustrated.

MELD (Poria et al., 2018) is a multimodal
multi-party emotional conversational database
created from scripts of the TV series Friends. The
utterances are annotated with one of seven labels:
neutral, happiness, surprise, sadness, anger, dis-
gust, or fear.

EmoryNLP (Zahiri and Choi, 2018) was also
collected from Friends’ TV scripts. It contains dif-
ferent sizes and different types of annotations from
those of MELD. The emotion labels include neu-
ral, sad, mad, scared, powerful, peaceful, and joy-
ful.

DailyDialog (Li et al., 2017) is a multi-turn
daily dialogue dataset, which contains human-
written daily communications. The emotion labels
are the same as the ones used in MELD.

4.2 Evaluation Metrics
For DailyDialog, following (Zhong et al., 2019),
we calculated the micro-averaged F1 score exclud-
ing the majority class (neutral), due to it being an
extremely high majority (over 80% occupancy in
both training and test sets). For the rest of the
datasets, we followed (Zhong et al., 2019; Ghosal
et al., 2019) and used the weighted-average F1
score.

4.3 Baselines and State-of-the-Art
For a comprehensive performance evaluation, we
compared our model with the following baseline
and state-of-the-art methods:

CNN (Kim, 2014) This is a convolutional neu-
ral network trained at the utterance-level without
contextual information.

CNN+cLSTM (Poria et al., 2017) This model
extracts utterance features by using a CNN and
captures contextual information from surrounding
utterances by using a bi-directional long short term
memory (LSTM).

BERT BASE (Devlin et al., 2018) This BERT-
based model extracts contextual information from
single sentences and uses it as input. After obtain-
ing the sentence feature, it is classified with emo-
tion labels. We used this model as a contextual
utterance feature extractor (Section 3.1).

KET (Zhong et al., 2019) This is the state-of-
the-art model for the EmoryNLP and DailyDialog
benchmark datasets. KET considers contextual in-
formation by using hierarchical self-attention and
leverages external commonsense knowledge by
using a context-aware graph attention mechanism.

DialogueRNN (Majumder et al., 2019) This
model uses a CNN to extract textual information.
It uses three GRUs to account for the context
and the speakers’ features and track the emotional
state.

DialogueGCN (Ghosal et al., 2019) This is
the state-of-the-art model for the IEMOCAP and
MELD datasets. DialogueGCN extracts textual ut-
terance features by using a CNN and extracts se-
quential contextual features by using a GRU. Fur-
ther, it captures self-dependency and inter-speaker
dependency by using two-layer graph neural net-
works, which consists of one layer RGAT and one
layer GCN.

4.4 Other Settings

We used cross entropy as a training loss for our
approach on all datasets. The learning rate was
decreased in accordance with a cosine annealing
schedule (Loshchilov and Hutter, 2016). We set
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Models IEMOCAP MELD EmoryNLP DailyDialog
CNN 48.18 55.86 32.59 49.34
CNN+cLSTM 54.95 56.87 32.89 50.24
BERT BASE 53.31 56.21 33.15 53.12
KET 59.56 58.18 34.39 53.37
DialogueRNN 62.75 57.03 31.70 50.65
DialogueGCN 64.18 58.10 - -
Ours 65.22 60.91 34.42 54.31

Table 3: Performance of our method, baseline, and state-of-the-art methods on the three test sets (the values in the
table are in terms of the evaluation metrics listed in Table 2). Bold font denotes the best performance. “-” signifies
that no results were reported for the given dataset. “Ours” denotes our methods, which are composed of a BERT
model and RGAT with relational position encodings. The position representations were learned.

initial learning rates of 4e-5 in the BERT struc-
ture and 2e-3 in the RGAT structure and used the
Adam optimizer (Kingma and Ba, 2014) under
the scheduled learning rate with a batch size of 1.
The number of dimensions of the contextual em-
beddings and utterance representations was set to
768, and the size of the internal hidden layer in
the emotion classification module was set to 384.
We used 8-head attention for calculating the edge
weight of RGAT and set 0.1 as the dropout rate in
the BERT structure. We also carried out experi-
ments with different contextual past window sizes
p and future window sizes f , (1, 1), (2, 2), (3, 3),
(10, 10), (all, all), and RGAT layers, 1, 2, 3. We
selected either a concatenated function or a sum-
mation function as a mixing operation in the emo-
tion classification module, as described in 3.3. We
chose the hyper-parameter that achieved the best
score on each dataset by using development data.
All of the presented results are averages of 5 runs.
We conducted all experiments on a CentOS server
using Xeon(R) Gold 6246 CPU with 512GB of
memory, and we used Quadro RTX 8000 GPU
with 48GB of memory.

5 Results and Discussion

5.1 Comparison with Baselines and
State-of-the-Art

We compared the performance of our approach
with those of the baselines and state-of-the-art
methods listed in Table 3. We have quoted the
results for the baselines and state-of-the-art re-
sults reported in (Zhong et al., 2019; Ghosal et al.,
2019), except for the results of BERT BASE on
IEMOCAP.

For IEMOCAP, our model obtained a weighted
average F1 score of 65.22%, outperforming Di-
alogueGCN by more than 1 point. Further-

more, it achieved a weighted average F1 score
of 60.91% on the MELD dataset, outperform-
ing DialogueGCN by more than 2 points. For
EmoryNLP, it achieved a weighted average F1
score of 34.42%. It achieved a micro-averaged
F1 score of 54.31% on the DailyDialog dataset,
improving recognition performance over the base-
lines and KET model by around 1 point. From
these results, we can see that adding our posi-
tion encodings caused an improvement over the
baselines, KET, and DialogueGCN on all datasets.
Further, it is obvious that our approach is robust
across datasets having varying training-data sizes,
conversation lengths, and numbers of speakers.

5.2 Analysis of the Experimental Results

Let us investigate the importance of our model
components by analyzing the predicted emotional
labels, as shown in Table 4. The results of the
model using BERT without speaker dependency
modeling are listed on row ]0, while the results of
DialogueRNN, as described in Section 4.3, are on
row ]1. The results of DialogueGCN, as described
in Section 4.3, are reported in ]2. The results of the
BERT and RGAT model without position encod-
ings are on row ]3, and those of our model are on
]4. Note that DialogueGCN’s RGAT differs from
our model in terms of its graphical structure and
relational types.

As shown in the table, our method did not
achieve the best score for almost all labels. How-
ever, interestingly, it achieved a state-of-the-art av-
erage F1 score, which is the target metric on the
dataset. A possible reason for this performance is
that our method consists of effective components.
Each component of BERT and RGAT with posi-
tion encodings worked well for each label. As a re-
sult, these components led to a strong average per-
formance. Each effective component is explained
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] Models

Background Components

Happy Sad Neutral Angry Excited Frustrated Average
Contextual
Utterance

Embedding

Speaker
Dependency

Modeling

0 BERT BASE BERT × 37.09 59.53 51.73 54.33 54.26 55.83 53.31
1 DialogueRNN CNN, GRU 33.18 78.80 59.21 65.28 71.86 58.91 62.75
2 DialogueGCN CNN, GRU RGAT 42.75 84.54 63.54 64.19 63.08 66.99 64.18

3 Ours(without PE) BERT RGAT 50.69 76.78 65.85 59.66 64.04 62.37 64.36
4 Ours BERT RGAT with PE 51.62 77.32 65.42 63.01 67.95 61.23 65.22

Table 4: Weighted average F1 scores of ours (with or without PE), baseline, and state-of-the-art methods for each
label in the IEMOCAP dataset. Bold font denotes the best performance. “Average” denotes the weighted average
F1 score. The variations of their background components are shown in the third and fourth columns.

as follows:

Effect of Speaker Dependency We observed
that DialogueGCN and ours (with or without PE)
achieved an F1 score of more than 60% on Frus-
trated, higher than the other methods. This may
be due to the well-functioning RGAT model. On
the IEMOCAP dataset, the utterances often keep
on influencing the other utterances through self
and inter-speaker dependency; thus, the same la-
bel continues in these utterances. Most of the la-
bels in this case are annotated with Frustrated. Be-
cause of the speaker dependency modeling, these
consecutive utterances can be well classified using
RGAT.

Effect of Contextual Information Ours (with
or without PE) achieved an F1 score of more than
50% on Happy, outperforming the other baselines
by around 10 points. On the dataset, the Happy
label appears in several utterances including par-
ticular words like ’love’ or ’great’. The BERT
model with RGAT may have led to better perfor-
mance. Due to the representational power afforded
by its bi-directional context modeling, the BERT
model may have functioned well in these utter-
ances. Note that the combination of BERT and
RGAT is probably essential because the samples
of Happy are also influenced by speaker depen-
dency, as compared with ]0.

Effect of Sequential Feature Our position en-
codings contributed to the strong performance on
the Sad and Angry labels, our model with PE out-
performed our model without PE (]3 and ]4). The
two labels often appear in the utterances influ-
enced by the other immediate utterances. As the
RGAT with position encodings not only captures
self and inter-speaker dependency but clearly dis-
tinguishes between immediate and far utterances;
thus, it possibly performs well on these utterances.

Despite its strong performance, our model did not
outperform DialogueGCN and DialogueRNN on
these labels (]1, ]2, and ]4). A possible explana-
tion is that these label’s utterances are mainly in-
fluenced by the immediately preceding utterances;
thus, RNN-based models such as GRU may be
more adequate for these two labels.

From these results, we can see that each com-
ponent of our method functioned successfully on
each label. Our method achieved a state-of-the-art
average F1 score. Moreover, it was useful on any
label; thus, it is a well-balanced method.

Other Analyses We analyzed other aspects of
our models. We observed that our model misclas-
sified some samples of Excited as Happy. The
cause of this issue may be due to the similarity
of the sentences these labels appear in. There is
almost no difference in the meanings of sentences,
so our method may have had difficulty distinguish-
ing these labels. In future work, we will utilize ad-
ditional audio and visual information to help our
model by taking voice tones and facial expressions
into account.

5.3 Model Variations

We evaluated the importance of our relational po-
sition encoding and studied the positional varia-
tions on the IEMOCAP dataset. The experimental
results are reported in Table 5.

To make comparisons with the other position
encoding methods, absolute and relative position
representations were prepared; these are referred
to as node-based position encodings and edge-
based position encodings, respectively. Inspired
by (Vaswani et al., 2017), we added node-based
position encoding to the nodes (utterances) at the
bottoms of the RGAT layers. Similarly, edge-
based position encoding was added to the edges
in the graph. We also compared two types of posi-
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] Position Encodings (PE) Type Average
0 - - 64.36
1 Node-based PE fixed 63.95
2 learn 64.95
3 Edge-based PE fixed 63.97
4 learn 64.59
5 Relational PE fixed 63.99
6 learn 65.22

Table 5: Impact of various position encodings compo-
nents on the IEMOCAP dataset. The base model using
BERT and RGAT without position encodings is shown
in ]0. “fixed” and “learn” denote a fixed function and a
learned representation respectively.

Figure 4: Effect of different window sizes on the
weighted average F1 score of our method (Ours) and
the baseline model (Base) on the IEMOCAP dataset.
We plotted the scores by using a marker with a con-
fidence interval of 95%, which was estimated using a
bootstrap.

tion encoding, i.e., a fixed function and a learned
representation.

The baseline model using BERT and RGAT
without position encodings (]0) had a recogni-
tion performance of 64.36%. We added various
position encodings to the baseline model and se-
lected fixed functions or learned representations
as the position representation (from ]1 to ]6). The
model using the relational position encodings with
learned representations had a recognition perfor-
mance of 65.22%, the best score and outperform-
ing the base model by around 1 point. Our rela-
tional position encodings were more effective than
the other position encodings.

We also found that the fixed functions in various
positions resulted in a score lower than that of the
baseline model. We can conclude that it is required
to learn a position representation.

5.4 Effect of Varying the Window Size
We conducted another experiment to evaluate the
key aspects of our framework. We carried out an

experiment by increasing the past and future win-
dow sizes [(1,1), (3,3), (5,5), (7,7), (9,9), (11,11),
(20,20), (30,30), and (40,40)] on the IEMOCAP
dataset and compared the results with those of the
baseline model using BERT and RGAT without
positional information. The experimental results
are illustrated in Figure 4.

As an illustration, it is clear that both models
perform better with a window size around 3, 5, 7.
On the other hand, long utterance information may
obstruct efficient recognition (see the results for
a window size around 30, 40). Although it is re-
quired to select a small window size, too small
a size results in poor performance, no better than
choosing a size of 1.

Furthermore, the proposed position encoding
method is robust to a varying window size. As
the window size increased, the baseline model’s
F1 score decreased, while our model maintained
its performance even with a large window. One
possible reason is that, as our position encodings
clearly distinguish between immediate and far ut-
terances, it can reduce the influence of these dis-
tant utterances.

6 Conclusion

We proposed relational position encodings for
RGAT to recognize human emotions in textual
conversation. We incorporated the relational po-
sition encodings in the RGAT structure to cap-
ture both speaker dependency and the sequen-
tial order of utterances. On four ERC datasets,
our model improved recognition performance over
those of the baselines and existing state-of-the-art
methods. Additional experimental studies demon-
strated that the relational position encoding ap-
proach outperformed the other position encodings
and showed that it is robust to changes in window
size.

In future studies, we plan to increase the number
of dimensions of the relational position encodings,
since a scalar value may not be able to express po-
sitional information adequately.
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