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Abstract

The task of procedural text comprehension
aims to understand the dynamic nature of en-
tities/objects in a process. Here, the key is
to track how the entities interact with each
other and how their states are changing along
the procedure. Recent efforts have made great
progress to track multiple entities in a procedu-
ral text, but usually treat each entity separately
and ignore the fact that there are often multi-
ple entities interacting with each other during
one process, some of which are even explic-
itly mentioned. In this paper, we propose a
novel Interactive Entity Network (IEN), which
is a recurrent network with memory equipped
cells for state tracking. In each IEN cell, we
maintain different attention matrices through
specific memories to model different types of
entity interactions. Importantly, we can update
these memories in a sequential manner so as to
explore the causal relationship between entity
actions and subsequent state changes. We eval-
uate our model on a benchmark dataset, and
the results show that IEN outperforms state-
of-the-art models by precisely capturing the
interactions of multiple entities and explicitly
leverage the relationship between entity inter-
actions and subsequent state changes. Our
code is available at: https://github.com/
esddse/IEN.

1 Introduction

Procedural texts, e.g., scientific articles, instruction
books, or recipes, are widely spread and useful. En-
tity state tracking is the key task for procedural text
comprehension. Usually, an entity could have sev-
eral targets (e.g., existence, location) to be tracked,
and the system needs to predict the target changes
of each entity involved in the process. State track-
ing is challenging because of the dynamic nature,
the involvement of multiple entities, and the com-
plexity of tracking targets.

Most recent approaches often use an RNN-based
method to model the state changes across the pro-
cess in an entity-by-entity manner, and use different
classifiers for different targets (Dalvi et al., 2018;
Tandon et al., 2018; Gupta and Durrett, 2019).

While these models can learn to leverage either
local or global information and make state predic-
tions to one entity with fair accuracy, they ignore
the fact that there are often multiple entities inter-
acting with each other during the procedure. Here
is an example that describes a chemical transforma-
tion step in the photosynthesis process:

The water breaks into oxygen, hydrogen,
and electrons.

To perfectly capture this chemical conversion in
the process, ”entity-by-entity” systems need to sep-
arately find out that water is destroyed at this step,
oxygen is created, hydrogen is created, and elec-
trons are created at the same step, respectively. It
is easy to see that if the system ignores the inter-
actions among multiple entities, it will be prone to
misunderstanding the role of different entities in the
conversion, and consequently make similar state
prediction for water as the other entities, although
they are opposite in fact.

Another challenge is how to properly capture the
relationship between entity interactions and their
state changes. For example, consider the following
steps in blood circulation:

Blood travels to the lungs.
Carbon dioxide is removed from the
blood.
Oxygen is added to your blood.

In order to figure out where the carbon dioxide is
after the second sentence, humans may first want
to see what role the carbon dioxide acts in that
sentence, and quickly find that carbon dioxide is

https://github.com/esddse/IEN
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just taken away from the blood thus impossible
to be in the blood. Furthermore if we look back
to the first sentence, we can finally get the right
answer, lung. This tells us that an entity’s loca-
tion is closely related or even determined by the
most recent event it involves in. However, current
systems either model a general state of an entity
regardless of specific tracking targets (Dalvi et al.,
2018), or model different tracking targets (e.g., ac-
tion, location) completely separately (Gupta and
Durrett, 2019), without considering the relationship
between different tracking targets.

In this work, we focus on the scientific process
understanding task (Dalvi et al., 2018), in which the
tracking targets are action and location of entities.
We propose a novel Interactive Entity Network,
IEN, that explicitly models the interactions among
multiple entities and explores the relationship be-
tween an entity’s action and its location. IEN is a
two-layer RNN model, the bottom RNN encodes
word-level information, and the upper RNN en-
codes the sentence-level information while keeping
tracking entities’ states. Specifically, we design a
new RNN cell, the IEN cell, for the upper RNN,
which contains two types of memory slots, entity
slots, and location slots, for recording the states
of all entities and location candidates, respectively.
To track the state changes, all memory slots will
be updated at each time step. We use two atten-
tion modules to model entity-entity interaction and
location-entity interaction, respectively, thus each
entity/location slot is able to obtain information
from other entities before updating. To model the
causal relationship between different tracking tar-
gets, we arrange the entity updating module to pre-
cede the location updating module in a sequential
manner. In this way, we can use the action-aware
entity information to update the location slots. We
evaluate IEN on ProPara, and the results show that
our model can effectively model the interaction
among multiple entities and leverage the causal
relationship between entity actions and locations,
thus outperforms existing systems.

Our contributions are in two-fold: 1) We propose
a new model, IEN, and design a new recurrent unit
that explicitly models the interactions among mul-
tiple entities and leverages the causal relationship
between entity actions and their subsequent state
changes. 2) We conduct intensive experiments to
show how our IEN learns to encourage the syn-
ergy among different entities involved in one event,

and explain how multiple tracking targets can be
properly leveraged to improve context reasoning.

2 Related Work

Recently, many procedural text comprehension
datasets are constructed and relesed to prompt the
research in this direction. bAbI (Weston et al.,
2015) is a QA dataset that the questions are about
movements of entities, however it is synthetically
generated and the language expression is relatively
simple. RECIPES (Kiddon et al., 2015) dataset
introduces the task of predicting the locations of
cooking ingredients. ProPara (Dalvi et al., 2018)
includes scientific procedural paragraphs, and the
task is to predict the entities’ actions and locations.
In this paper, we continue this line of exploration
using ProPara.

The solutions are mainly RNN based or memory
network based. Most early models are designed
for QA task, e.g., bAbI, and thus researchers pay
more attention to question processing. EntNet
(Henaff et al., 2016) uses dynamic memories to
maintain entity states, with a gated update at each
step. These states are decoded to answer ques-
tions after each sentence is read. QRN (Seo et al.,
2016) is an RNN-based model. Given a question,
QRN recurrently reduces the original query to a
more informed query as it observes each context
sentence through time. More recently, ProPara be-
comes the popular testbed and methods on ProPara
focus more on state tracking. ProLocal (Dalvi
et al., 2018) locally predicts the state changes de-
scribed in each individual sentence. ProGlobal
(Dalvi et al., 2018) considers the entire paragraph
while predicting states for an entity. As the whole
context is incorporated, more state changes are
captured, and result in a higher recall. However,
this may lead to over-prediction. To address these
problems, several models are proposed to incor-
porate different constraints. ProStruct (Tandon
et al., 2018) reformulate the procedural text com-
prehension task as a structured prediction task, and
incorporates a set of commonsense constraints for
globally consistent predictions. LACE (Du et al.,
2019) leverages label consistency among differ-
ent paragraphs on the same topic during training.
NCET (Gupta and Durrett, 2019) uses a neural
CRF to explicitly capture the constrains. Other in-
teresting attempts include KG-MRC (Das et al.,
2018), which constructs dynamic bipartite graphs
from the procedural text, and updates the graphs
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Figure 1: The left is an example of the procedural text comprehension task and ProPara dataset. The paragraph
describes the process of photosynthesis in five sentences, and the system needs to track the actions and locations
of the three entities listed below, water, CO2, and sugar. The right is the architecture of IEN.

recurrently at each step.

3 Task Formulation

In this paper, we focus on the task of tracking mul-
tiple entities’ states in scientific procedural text.
Formally, given:

• A paragraph of procedural text S = {st}Tt=1,
consisting of T sentences, which describes a
process about a given topic (e.g., photosynthe-
sis, fossil formation) in detailed steps, with
multiple entities involved.

• A set of entities E = {ei}ni=1, representing
the entities mentioned in S that need to be
tracked.

• A set of tracking targets P = {pj}kj=1. Each
pj is a specific property of an entity, e.g., ex-
istence or location, and each can have limited
or infinite numbers of values.

The state tracking task is to predict the states of
each entity ei after reading each sentence st, where
an entity’s state is a value of a property pj . For
example, after reading CO2 enters leaf, the system
should predict that the existence of CO2 is true,
and the location of CO2 is leaf.

We use the ProPara dataset (Dalvi et al., 2018)
for experiments. ProPara contains 488 procedural

texts, 391 for training, 43 for development and 54
for testing. Each paragraph describes a particular
scientific process. There are in total 3302 sentences,
and 6.77 sentences per paragraph. On average, each
paragraph contains 3.92 entities. The dataset tracks
two types of entity property, action and location.
For action, the model needs to determine which
of the following actions the entity performed in
the sentence: (1) CREATE, the entity is created at
this step. (2) DESTROY, the entity is destroyed
at this step. (3) MOVE, the entity is moved from
one location to another. (4) NONE, none of above.
For location, the model needs to determine where
the entity locates before and after one sentence.
The location could be any arbitrary span in the
paragraph and needs to be extracted. There are two
special locations: ”-” denotes non-existence and
”?” denotes unknown location. Figure 1 gives an
example of ProPara dataset.

4 Methods

Our complete approach consists of 3 stages: 1)
Preprocessing: we use off-the-shelf NLP tools to
prepare the neural network inputs, including entity
recognition and location candidates generation. 2)
Main Model: we use Interactive Entity Network to
predict all entities’ actions and locations sequen-
tially. 3) Postprocessing: we use human-written
rules to revise some of the predictions to keep com-
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Figure 2: The structure of an IEN cell. The thick arrows indicate the directions of data flow.

monsense consistency.

4.1 Preprocessing

We use NLTK 1 and Stanford CoreNLP (Manning
et al., 2014) for lemmatization and POS tagging.
For entity recognition, we just use the simple string
matching algorithm. Unlike entities, location in-
formation in this task is not given initially. To
predict the entities’ location, there are mainly two
approaches. One is to view this problem as a
SQuAD-style QA task(Rajpurkar et al., 2016), and
to find a location span sentence by sentence from
the paragraph, e.g., ProLocal (Dalvi et al., 2018) or
KG-MRC (Das et al., 2018). The other approach
is to first dig out all possible location candidates
during preprocessing, and then use a classifier to
select one candidate as the best location at each
step, e.g., NCET (Gupta and Durrett, 2019). We
use the latter paradigm and collect the location can-
didate set L = {lj}mj=1 by gathering all nouns and
noun phrases. This strategy has a 86.75% recall
rate on the training set.

4.2 Interactive Entity Networks

We design a new model, Interactive Entity Network
(IEN), to characterize the process with multiple
entities involved. Figure 1 shows the architecture
of our model. IEN consists of three levels. The
bottom is for word-level language comprehension,
which encodes words to distributed vectors. The
middle is for sentence-level process understanding,
which conducts entity state tracking. At the top, we
use different classifiers to predict entities’ actions
and locations, respectively.

1http://www.nltk.org/

Word-Level Encoding Given a procedural text,
our model first encodes each word wi in the para-
graph to a vector wi = [emb(wi); vi]. Here,
emb(wi) is an embedding function, and we use
fastText (Bojanowski et al., 2017) and ELMo (Pe-
ters et al., 2018) for experiments. vi is a scalar bi-
nary indicator for identifying whether wi is a verb.
Then we use a BiLSTM (Hochreiter and Schmidhu-
ber, 1997) over the whole paragraph for contextual
encoding. We denote ui = BiLSTM([wi]) as the
output of BiLSTM with respect to word wi.

Sentence-Level Encoding and IEN cell To
track the state changes, we extract sentence fea-
tures from word-level encodings by running an-
other RNN at the sentence level. In order to take
entity interactions into consideration, we propose a
novel IEN cell that leverages attention mechanisms
to help entities or locations get information from
each other.

The inputs to an IEN cell include the represen-
tations of all entities and all location candidates in
a single sentence st, or a mask vector if the entity
or location candidate is not in st. Formally, let
xei
t ∈ Rd denote the representation of entity ei in

sentence st, x
lj
t ∈ Rd denote the representation of

location candidate lj in sentence st. Then,

xei
t =

{
[uei

t ;u
v
t ], if ei ∈ st

0, otherwise
(1)

x
lj
t =

{
[u

lj
t ;u

v
t ], if lj ∈ st

0, otherwise
(2)

where ue
t , ul

t and uv
t denote the contextual en-

codings of the entity, location candidate and the
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predicate verb, respectively. If the entity or loca-
tion candidate consists of multiple words, mean
pooling over the word representations is used. We
stack all the entity representations together to get
xe
t ∈ Rn×d, and similarly get xl

t ∈ Rm×d. xe
t and

xl
t are the inputs to the tth IEN cell.
Inspired by GRU (Chung et al., 2014) and key-

value memory networks (Miller et al., 2016), we
place memory slots inside IEN cells and let them
recurrently update as GRU. In each IEN cell, there
are n entity slots and m location slots, correspond-
ing to the given entity set E and the extracted lo-
cation candidate set L, respectively. Each memory
slot represents the state of a specific entity or a loca-
tion candidate. We use he

t ∈ Rn×d to represent all
the entity memory slots in the tth IEN cell, and use
hl
t ∈ Rm×d to represent all the location memory

slots in the tth IEN cell. The detailed structure of
an IEN cell is shown in Figure 2.

First, we update the entity memory slots as fol-
lows:

ze
t = σ([he

t−1;x
e
t ] ·W e

z ) (3)

ret = σ([he
t−1;x

e
t ] ·W e

r ) (4)

ĥe
t = [ret � he

t−1;x
e
t ] (5)

h̃e
t = tanh(Att(ĥe

t , ĥ
e
t , ĥ

e
t ) ·W e) (6)

he
t = (1− ze

t )� he
t−1 + ze

t � h̃e
t (7)

where � represents element-wise multiplication.
W e

z ∈ R2d×d, W e
r ∈ R2d×d and W e ∈ Rd×d

are trainable parameters. Att is a scaled key-value
attention function (Vaswani et al., 2017), defined
as:

Att(q,k,v) = Softmax(
(qW q)(kW k)T√

da
)(vW v)

(8)
where W q ∈ Rd×da , W k ∈ Rd×da and W v ∈
Rd×da are trainable parameters.

Then we update the location slots similarly:

zl
t = σ([hl

t−1;x
l
t] ·W l

z) (9)

rlt = σ([hl
t−1;x

l
t] ·W l

r) (10)

ĥl
t = [rlt � hl

t−1;x
l
t] (11)

h̃l
t = tanh(Att(ĥl

t,h
e
t ,h

e
t ) ·W l) (12)

hl
t = (1− zl

t)� hl
t−1 + zl

t � h̃l
t (13)

where W l
z ∈ R2d×d, W l

r ∈ R2d×d and W l ∈
Rd×d are trainable parameters. We initialize he

0

and hl
0 using zero matrices.

The two key steps are Eq 6 and Eq 12. We use
key-value attention to explicitly model the entity-
entity interactions and the location-entity interac-
tions. According to our intuition that an entity
location is closely related by its most recent ac-
tion, in Eq 12, we use he

t , the newly-updated entity
representation, as the input to the location-entity
attention.

The newly updated entity and location represen-
tations he

t and hl
t are then sent to different classi-

fiers to predict the actions and locations, respec-
tively, at this timestep.

Output 1: Entity Actions Following NCET
(Gupta and Durrett, 2019), We use CRF to model
the dependency of actions. We use hei

t , which is the
ith row of he

t , to generate emission potentials for
each action tag yt at each time step t with respect
to entity ei:

φ(yt, t, ei) = he
t ·H (14)

where H ∈ Rd×1 is a trainable matrix. Addition-
ally, we train a transition matrix to get the transition
potentials among the 4 action tags and two extra
tags (”START” and ”END”) which we denote by
ψ(yt−1, yt). Finally for an action sequence y, we
get the probability as:

P (y|ei) ∝ exp(
T∑
t=0

φ(yt, t, ei) + ψ(yt−1, yt))

(15)

Output 2: Entity Locations To get the probabil-
ity that entity ei at location li at step t, we simply
compute the probability matrix as follows:

Mt = Softmax((he
tU) · (letV )T ) (16)

where U ∈ Rd×d, V ∈ Rd×d are trainable param-
eter matrices. And the probability P (ei, lj) is the
element at the ith row and jth column of Mt.

Training and Loss Function We jointly train
the action prediction task and location prediction
task, and the objective is to minimize the sum of
their log likelihood losses. For each training step,
we only use one paragraph. We use Adam (Kingma
and Ba, 2014) with learning rate 0.0002 for train-
ing.

4.3 Postprocessing
Following previous conventions (Dalvi et al., 2018)
to make the predictions consistent with common-
sense (e.g., an entity cannot be destroyed if it is



7286

Model Document Level Sentence Level

Precision Recall F1 Cat-1 Cat-2 Cat-3 Macro-Avg Micro-avg

ProLocal 81.7 36.8 50.7 62.7 30.5 10.4 34.5 34.0
ProGlobal 48.8 61.7 51.9 63.0 36.4 35.9 45.1 45.4
ProStruct 74.3 43.0 54.5 - - - - -

LACE 75.3 45.4 56.6 - - - - -
KG-MRC 69.3 49.3 57.6 62.9 40.0 38.2 47.0 46.7
NCET* 71.0 51.1 59.4 70.4 44.3 40.6 51.7 51.2

NCET+ELMo* 70.9 53.7 61.1 71.1 46.6 41.0 52.9 52.4

IEN 69.5 55.1 61.4 71.2 45.6 40.0 52.6 52.1
IEN+ELMo 69.8 56.3 62.3 71.8 47.6 40.5 53.3 53.0

Table 1: Main results on ProPara. * represents our implementation, which we keep the preprocessing and postpro-
cessing steps the same as IEN. For other methods, document level results are taken from the official leaderboard
and sentence level results are taken from the original papers.

Model Inputs Outputs Conversions Moves Overall

P R F1 P R F1 P R F1 P R F1 P R F1

NCET* 78.6 55.7 65.1 78.7 76.8 77.7 71.2 36.6 48.2 55.3 35.4 43.0 71.0 51.1 59.4
NCET+ELMo* 80.0 61.0 69.0 84.3 76.3 80.0 66.3 41.2 50.6 53.1 36.3 43.0 70.9 53.7 61.1

IEN (no l2e) 76.8 60.0 67.3 78.6 77.0 77.8 64.5 45.1 53.0 55.4 34.5 42.4 68.9 54.2 60.6
IEN (parallel) 76.1 59.5 66.7 81.1 76.1 78.5 65.9 44.6 53.1 60.0 35.2 44.2 70.8 53.9 61.1

IEN 77.1 62.3 68.8 80.7 76.7 78.6 65.1 43.4 51.9 55.3 37.7 44.8 69.5 55.1 61.4
IEN+ELMo 79.2 66.6 72.6 84.0 75.3 79.3 63.1 45.3 52.7 52.7 37.4 43.6 69.8 56.3 62.3

Table 2: Detailed results on four kinds of questions asked by the document level evaluator.

not exist), we apply two kinds of rules to the pre-
dictions: 1) correct invalid actions according to the
whole action sequence, and 2) locally correct the
locations according to the corresponding actions.

5 Experiments

We evaluate our model on the two comprehension
tasks of ProPara dataset using the official evalua-
tor2, and compare against competitive systems on
the official leaderboard3.

5.1 Evaluation Metrics

Document Level (Tandon et al., 2018) Given the
predictions of a paragraph, the document level eval-
uation is to answer four templated questions, whose
answers are deterministically computed from the
predictions:
Q1: What are the inputs to the process?
Q2: What are the outputs of the process?
Q3: What conversions occur, when and where?
Q4: What movements occur, when and where?
Inputs are entities that exist at the start of the pro-
cess, but not at the end. Outputs are entities that
do not exist at the start, but do at the end. A con-
version is when some entities are destroyed and

2https://github.com/allenai/aristo-
leaderboard/tree/master/propara

3https://leaderboard.allenai.org/propara/submissions/public

others created. A movement is an event where an
entity changes its location. For each paragraph, the
evaluator compute a F1 score for each question,
and the overall F1 score is the macro-average of
the four questions.

Sentence Level (Dalvi et al., 2018) Given the
predictions of an entity e in a paragraph, the sen-
tence level task aims to answer 10 fine grained
sentence level templated questions, which can be
summarized into 3 categories:
Cat-1: Is e Created (Moved, Destroyed) in the pro-
cess?
Cat-2: When was e Created (Moved, Destroyed)?
Cat-3: Where was e Created (Moved from/to, De-
stroyed)?
The evaluator automatically extracts the answer
from the predictions and compute the accuracy for
each question. Each category’s accuracy is the
macro-average of the containing questions, and the
overall macro-average is the mean of the three cat-
egories’ accuracy.

In this paper, we particularly concern about the
ability of modeling entity interaction in event gran-
ularity (e.g., a conversion, which often contains
more than one entities), and thus give more detailed
results and analysis on document level evaluation.
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Figure 3: Case 1. The heatmap shows the entity-entity
attention matrix for the example sentence.

5.2 Comparison Models

We compare our IEN with the following models:
ProLocal (Dalvi et al., 2018) predicts the state
changes described in each individual sentence, and
then uses commonsense rules of inertia to propa-
gate state values forwards and backwards in time.
ProGlobal (Dalvi et al., 2018) predicts states of an
entity across all timesteps by considering the entire
paragraph.
ProStruct (Tandon et al., 2018) adopts a structured
prediction method and incorporates a set of com-
monsense constraints for global consistency.
LACE (Du et al., 2019) leverages label consistency
during training and allows consistency bias to be
built into the model.
KG-MRC (Das et al., 2018) constructs dynamic bi-
partite graphs from the text, and updates the graphs
at each step. It also extends a machine reading
comprehension model for location extraction.
NCET (Gupta and Durrett, 2019) proposes a two-
layer LSTM model to model state changes. Ad-
ditionally, a neural CRF is used over the top to
explicitly capture the constrains.

5.3 Results

As the size of ProPara is small and the variance
cannot be ignored, we train NCET and IEN 10
times separately with different random seeds and
take the average results.

Table 1 summarizes the main results. In the
document level evaluation, ProLocal has the high-
est precision and ProGlobal gets the highest recall.
Other models from the leaderboard use different
methods to introduce constraints and get more bal-
anced precision and recall scores, which lead to
higher F1 scores. Among them, NCET achieves
the previously best result with 59.4% in F1. Al-
though NCET can well model the sequential con-
text of a single entity, it ignores the context from
another dimension, the interaction among different
entities in the same event. We can see that IEN
significantly outperforms all other models in the
official leaderboard, achieving a new high in F1
(61.4%), 2% more than NCET, while getting the
second place in recall (55.1%) and maintaining a
relatively high precision (69.5%). This suggests
that by exploiting the entity interactions, IEN is
able to leverage a broader context for prediction,
and thus correctly predicts more state changes com-
pared to other methods. As (Gupta and Durrett,
2019) indicate that a pre-trained language model,
e.g., ELMo (Peters et al., 2018) or BERT (Devlin
et al., 2019), can help improve model performance
when the training set is small, we apply ELMo to
IEN, and obtain great improvement in recall, lead-
ing to 0.9% more in F1.

Table 2 shows the detailed results with respect to
the four kinds of questions asked by the document
level evaluator. Compared to NCET, although IEN
has a lower precision, only 65.1%, to identify Con-
versions, it achieves a higher recall for Conversions,
6.8% more than NCET, resulting in a substantial in-
crease in F1. Besides, we can see that IEN performs
better than NCET on both Inputs and Outputs: IEN
gets a higher recall for Inputs, with a 6.6% mar-
gin, and a higher precision to recognize Outputs.
These two indicators suggest that more CREATE
and DESTROY actions are correctly found in the
process by IEN. We can see that IEN can better un-
derstand the role of each entity in a conversion by
explicitly modeling the entity-entity interactions,
thus can capture more accurate state changes that
NCET may ignore.

As can be seen in columns Moves of Table 2,
IEN outperforms NCET in recall by 2.3%. This
is because by modeling location-entity interaction
and the causal relationship of action and location,
IEN is able to maintain the location information
of each entity, and bring it to the next time step
to prevent the absence of location information in
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Figure 4: Case 2. Below are excerpts of three heatmaps, the left is the location-entity attention matrix of the first
sentence, the middle and the right is the entity-entity attention matrix, and the location-entity attention matrix of
the second sentence. There are some inconsistencies in the results, e.g., after the first step, oxygen locates at ”?”,
but before the second step, oxygen locates at ”blood”. This is due to the rule-based postprocessing, which keeps
local consistency, e.g., keeps the location before and after a step to be the same when this step’s action is ”NONE”.

the sentence. We will use the ”carbon dioxide and
lung” case in Sec. 5.5 for a detailed illustration.

As for sentence level evaluation, IEN also
achieves higher overall macro- and micro- accu-
racy than the previous best method, NCET. More
precisely, IEN gets higher Cat-1 and Cat-2 accuracy
and competitive Cat-3 accuracy. The improvement
of Cat-1 and Cat-2 accuracy can be attributed to
the effectiveness of modeling entity interactions.

5.4 Ablation Analysis

We perform ablation studies to evaluate each
component of IEN cells. We design two variants:
1) IEN (no l2e) tracks entity actions using
simplified IEN cells that only contain entity slots
and entity updating module, i.e., hl

t and Eq 9 to
Eq 13 are removed from the cells. For location
prediction, we separately use BiLSTM like NCET.
2) IEN (parallel) contains IEN cells that run the
entity updating module and location updating
module in a parallel manner, i.e., in Eq 12, the
input to location-entity attention module changes
to ĥe

t instead of he
t .

From table 2, compared to NCET, IEN (no l2e)
performs well in the recall of Conversions, while
the recall of Moves is similar to NCET and lower
than IEN. This result confirms the effect of entity-
entity interaction and location-entity interaction we
discussed in the previous subsection.

As for IEN (parallel), even though this model
explicitly models entity-entity interactions and
location-entity interactions, the recall of Moves
is lower than IEN by 2.5%, which indicates the
importance of understanding the causal relation-
ship between entity action and its location. As an
entity’s action is a decisive property, it is definitely
helpful to have thorough and accurate information
about the entity’s action before figuring out its lo-
cation.

5.5 Case Study

To better understand how the IEN works, here we
conduct a case study using the examples in Sec. 1.

Figure 3 shows the results of NCET and IEN in
the first case, in which 4 entities are involved in a
chemical transformation. The key is to correctly
identify the role of each entity in the conversion.
Even though NCET correctly predicts the actions
of oxygen, hydrogen, and electrons, it makes a
wrong prediction on water, this is because NCET
performs separate predictions for multiple entities
in the same event. IEN models all entities and their
interactions simultaneously, and perfectly predict
all their actions. The heatmap in Figure 3 is the
corresponding entity-entity attention matrix in the
IEN cell. We find that the water row presents which
entities have a higher probability of changing from
water. Surprisingly, if we notice the oxygen (or
hydrogen, electrons) row, the model even makes a
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pre-filtering about what the oxygen will become,
which even appears before the actual description.
We think this may be because that oxygen, hydro-
gen, and electrons are simultaneously come from
water, thus are less likely to be the next product.
Such pre-filtering mechanism may help future pre-
diction by reducing the candidates. Besides, IEN
correctly predicts all the locations which are not ex-
plicitly mentioned in the sentence. In fact, ”plant”
comes from a previous sentence that describes ”the
plant absorbs water from soil”. To pass the correct
location from water to oxygen, the model needs
first to identify which entity is the reactant in the
chemical reaction, and then pass the reactant’s loca-
tion information to other entities. This shows that
feeding up-to-date entity information for subse-
quent location prediction can help the model better
understand what happens to the entity in the cur-
rent action and know which states of the entity may
change accordingly.

The second case is more complicated because it
requires context reasoning across three sentences.
As shown in Figure 4, similar to the case 1, NCET
does not identify the role of all entities well, and
confuses carbon dioxide with oxygen, resulting in
redundant predictions for MOVEs, while IEN per-
forms well on action prediction. As for predicting
locations, IEN is able to correctly predict that, after
removed from the blood, carbon dioxide locates at
the lung, while the lung is actually mentioned in
the previous sentence. IEN manages to capture the
interaction between carbon dioxide and blood, and
that between lung and blood in nearby sentences,
making a reasoning chain from carbon dioxide to
blood, and to lung. To see how IEN achieves this,
we show the excerpts of 3 heatmaps in Figure 4.
In the first step, IEN builds a connection between
location lung and entity blood through location-
entity interaction. At the second step, from the
entity-entity attention matrix, we can see that IEN
correctly finds out that carbon dioxide is moving
apart from blood and thus gives a low attention
weight. And from the location-entity attention ma-
trix, we notice that carbon dioxide has correctly got
the location information from the blood. Another
interesting finding is that IEN can correctly predict
that the oxygen is originally located at the lung
even before reading the third sentence, where the
oxygen first appears. This may be the combined ef-
fect of location-entity interactions and pre-filtering.

6 Conclusion

In this paper, we propose the Interactive Entity Net-
work, IEN, for the multi-entity state tracking task,
which learns to interpret complex processes by ex-
plicitly modeling the synergy among different enti-
ties involved in one event and leveraging the causal
relationship between entity actions and their subse-
quent state changes. Experiments on ProPara show
that IEN can better understand scientific procedural
texts and outperforms state-of-the-art models.
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