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Abstract

Language representation models such as
BERT could effectively capture contextual se-
mantic information from plain text, and have
been proved to achieve promising results in
lots of downstream NLP tasks with appropri-
ate fine-tuning. However, most existing lan-
guage representation models cannot explicitly
handle coreference, which is essential to the
coherent understanding of the whole discourse.
To address this issue, we present CorefBERT,
a novel language representation model that can
capture the coreferential relations in context.
The experimental results show that, compared
with existing baseline models, CorefBERT
can achieve significant improvements consis-
tently on various downstream NLP tasks that
require coreferential reasoning, while main-
taining comparable performance to previous
models on other common NLP tasks. The
source code and experiment details of this pa-
per can be obtained from https://github.

com/thunlp/CorefBERT.

1 Introduction

Recently, language representation models such as
BERT (Devlin et al., 2019) have attracted consid-
erable attention. These models usually conduct
self-supervised pre-training tasks over large-scale
corpus to obtain informative language representa-
tion, which could capture the contextual semantic
of the input text. Benefiting from this, language rep-
resentation models have made significant strides in
many natural language understanding tasks includ-
ing natural language inference (Zhang et al., 2020),
sentiment classification (Sun et al., 2019b), ques-
tion answering (Talmor and Berant, 2019), relation
extraction (Peters et al., 2019), fact extraction and
verification (Zhou et al., 2019), and coreference
resolution (Joshi et al., 2019).

However, existing pre-training tasks, such as
masked language modeling, usually only require

models to collect local semantic and syntactic infor-
mation to recover the masked tokens. Hence, lan-
guage representation models may not well model
the long-distance connections beyond sentence
boundary in a text, such as coreference. Previous
work has shown that the performance of these mod-
els is not as good as human performance on the
tasks requiring coreferential reasoning (Paperno
et al., 2016; Dasigi et al., 2019), and they can be
further improved on long-text tasks with external
coreference information (Cheng and Erk, 2020; Xu
et al., 2020; Zhao et al., 2020). Coreference occurs
when two or more expressions in a text refer to
the same entity, which is an important element for
a coherent understanding of the whole discourse.
For example, for comprehending the whole context
of “Antoine published The Little Prince in 1943.
The book follows a young prince who visits various
planets in space.”, we must realize that The book
refers to The Little Prince. Therefore, resolving
coreference is an essential step for abundant higher-
level NLP tasks requiring full-text understanding.

To improve the capability of coreferential reason-
ing for language representation models, a straight-
forward solution is to fine-tune these models on
supervised coreference resolution data. Neverthe-
less, on the one hand, we find fine-tuning on ex-
isting small coreference datasets cannot improve
the model performance on downstream tasks in
our preliminary experiments. On the other hand,
it is impractical to obtain a large-scale supervised
coreference dataset.

To address this issue, we present CorefBERT, a
language representation model designed to better
capture and represent the coreference information.
To learn coreferential reasoning ability from large-
scale unlabeled corpus, CorefBERT introduces a
novel pre-training task called Mention Reference
Prediction (MRP). MRP leverages those repeated
mentions (e.g., noun or noun phrase) that appear

https://github.com/thunlp/CorefBERT
https://github.com/thunlp/CorefBERT
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Figure 1: An illustration of CorefBERT’s training process. In this example, the second Claire and a common
word defense are masked. The overall loss of Claire consists of the loss of both Mention Reference Prediction
(MRP) and Masked Language Modeling (MLM). MRP requires model to select contextual candidates to recover
the masked tokens, while MLM asks model to choose from vocabulary candidates. In addition, we also sample
some other tokens, such as defense in the figure, which is only trained with MLM loss.

multiple times in the passage to acquire abundant
co-referring relations. Among the repeated men-
tions in a passage, MRP applies mention reference
masking strategy to mask one or several mentions
and requires model to predict the masked men-
tion’s corresponding referents. Figure 1 shows an
example of the MRP task, we substitute one of
the repeated mentions, Claire, with [MASK] and
ask the model to find the proper contextual candi-
date for filling it. To explicitly model the coref-
erence information, we further introduce a copy-
based training objective to encourage the model
to select words from context instead of the whole
vocabulary. The internal logic of our method is
essentially similar to that of coreference resolution,
which aims to find out all the mentions that refer
to the masked mentions in a text. Besides, rather
than using a context-free word embedding matrix
when predicting words from the vocabulary, copy-
ing from context encourages the model to generate
more context-sensitive representations, which is
more feasible to model coreferential reasoning.

We conduct experiments on a suite of down-
stream tasks which require coreferential reason-
ing in language understanding, including extrac-
tive question answering, relation extraction, fact
extraction and verification, and coreference reso-
lution. The results show that CorefBERT outper-
forms the vanilla BERT on almost all benchmarks
and even strengthens the performance of the strong
RoBERTa model. To verify the model’s robust-
ness, we also evaluate CorefBERT on other com-
mon NLP tasks where CorefBERT still achieves
comparable results to BERT. It demonstrates that

the introduction of the new pre-training task about
coreferential reasoning would not impair BERT’s
ability in common language understanding.

2 Related Work

Pre-training language representation models aim
to capture language information from the text,
which facilitate various downstream NLP appli-
cations (Kim, 2014; Lin et al., 2016; Seo et al.,
2017). Early works (Mikolov et al., 2013; Pen-
nington et al., 2014) focus on learning static word
embeddings from the unlabeled corpus, which have
the limitation that they cannot handle the poly-
semy well. Recent years, contextual language rep-
resentation models pre-trained on large-scale un-
labeled corpora have attracted intensive attention
and efforts from both academia and industry. SA-
LSTM (Dai and Le, 2015) and ULMFiT (Howard
and Ruder, 2018) pre-trains language models on un-
labeled text and perform task-specific fine-tuning.
ELMo (Peters et al., 2018) further employs a bidi-
rectional LSTM-based language model to extract
context-aware word embeddings. Moreover, Ope-
nAI GPT (Radford et al., 2018) and BERT (Devlin
et al., 2019) learn pre-trained language representa-
tion with Transformer architecture (Vaswani et al.,
2017), achieving state-of-the-art results on various
NLP tasks. Beyond them, various improvements
on pre-training language representation have been
proposed more recently, including (1) designing
new pre-trainning tasks or objectives such as Span-
BERT (Joshi et al., 2020) with span-based learn-
ing, XLNet (Yang et al., 2019) considering masked
positions dependency with auto-regressive loss,
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MASS (Song et al., 2019) and BART (Wang et al.,
2019b) with sequence-to-sequence pre-training,
ELECTRA (Clark et al., 2020) learning from re-
placed token detection with generative adversar-
ial networks and InfoWord (Kong et al., 2020)
with contrastive learning; (2) integrating external
knowledge such as factual knowledge in knowledge
graphs (Zhang et al., 2019; Peters et al., 2019; Liu
et al., 2020a); and (3) exploring multilingual learn-
ing (Conneau and Lample, 2019; Tan and Bansal,
2019; Kondratyuk and Straka, 2019) or multimodal
learning (Lu et al., 2019; Sun et al., 2019a; Su et al.,
2020). Though existing language representation
models have achieved a great success, their corefer-
ential reasoning capability are still far less than that
of human beings (Paperno et al., 2016; Dasigi et al.,
2019). In this paper, we design a mention reference
prediction task to enhance language representation
models in terms of coreferential reasoning.

Our work, which acquires coreference resolu-
tion ability from an unlabeled corpus, can also be
viewed as a special form of unsupervised corefer-
ence resolution. Formerly, researchers have made
efforts to explore feature-based unsupervised coref-
erence resolution methods (Bejan et al., 2009; Ma
et al., 2016). After that, Word-LM (Trinh and Le,
2018) uncovers that it is natural to resolve pro-
nouns in the sentence according to the probability
of language models. Moreover, WikiCREM (Ko-
cijan et al., 2019) builds sentence-level unsuper-
vised coreference resolution dataset for learning
coreference discriminator. However, these methods
cannot be directly transferred to language represen-
tation models since their task-specific design could
weaken the model’s performance on other NLP
tasks. To address this issue, we introduce a men-
tion reference prediction objective, complementary
to masked language modeling, which could make
the obtained coreferential reasoning ability compat-
ible with more downstream tasks.

3 Methodology

In this section, we present CorefBERT, a language
representation model, which aims to better capture
the coreference information of the text. As illus-
trated in Figure 1, CorefBERT adopts the deep bidi-
rectional Transformer architecture (Vaswani et al.,
2017) and utilizes two training tasks:

(1) Mention Reference Prediction (MRP) is a
novel training task which is proposed to enhance
coreferential reasoning ability. MRP utilizes the

mention reference masking strategy to mask one
of the repeated mentions and then employs a copy-
based training objective to predict the masked to-
kens by copying from other tokens in the sequence.

(2) Masked Language Modeling (MLM)1 is
proposed from vanilla BERT (Devlin et al., 2019),
aiming to learn the general language understanding.
MLM is regarded as a kind of cloze tasks and aims
to predict the missing tokens according to its final
contextual representation. Except for MLM, Next
Sentence Prediction (NSP) is also commonly used
in BERT, but we train our model without the NSP
objective since some previous works (Liu et al.,
2019; Joshi et al., 2020) have revealed that NSP is
not as helpful as expected.

Formally, given a sequence of tokens2 X =
(x1, x2, . . . , xn), we first represent each token by
aggregating the corresponding token and position
embeddings, and then feeds the input representa-
tions into deep bidirectional Transformer to ob-
tain the contextual representations, which is used
to compute the loss for pre-training tasks. The
overall loss of CorefBERT is composed of two
training losses: the mention reference prediction
loss LMRP and the masked language modeling loss
LMLM, which can be formulated as:

L = LMRP + LMLM. (1)

3.1 Mention Reference Masking
To better capture the coreference information in the
text, we propose a novel masking strategy: men-
tion reference masking, which masks tokens of
the repeated mentions in the sequence instead of
masking random tokens. We follow a distant su-
pervision assumption: the repeated mentions in a
sequence would refer to each other. Therefore, if
we mask one of them, the masked tokens would
be inferred through its context and unmasked refer-
ences. Based on the above strategy and assumption,
the CorefBERT model is expected to capture the
coreference information in the text for filling the
masked token.

In practice, we regard nouns in the text as men-
tions. We first use a part-of-speech tagging tool to
extract all nouns in the given sequence. Then, we
cluster the nouns into several groups where each
group contains all mentions of the same noun. Af-
ter that, we select the masked nouns from different
groups uniformly. For example, when Jane occurs

1Details of MLM are in the appendix due to space limit.
2In this paper, tokens are at the subword level.
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three times and Claire occurs two time in the text,
all the mentions of Jane or Claire will be grouped.
Then, we choose one of the groups, and then sam-
ple one mention of the selected group.

To maintain the universal language represen-
tation ability in CorefBERT, we utilize both the
MLM (masking random word) and MRP (masking
mention reference) in the training process. Empir-
ically, the masked words for MLM and MRP are
sampled on a ratio of 4:1. Similar to BERT, 15% of
the tokens are sampled for both masking strategies
mentioned above, where 80% of them are replaced
with a special token [MASK], 10% of them are
replaced with random tokens, and 10% of them are
unchanged. We also adopt whole word masking
(WWM) (Joshi et al., 2020), which masks all the
subwords belong to the masked words or mentions.

3.2 Copy-based Training Objective
In order to capture the coreference information
of the text, CorefBERT models the correlation
among words in the sequence. Inspired by copy
mechanism (Gu et al., 2016; Cao et al., 2017) in
sequence-to-sequence tasks, we introduce a copy-
based training objective to require the model to pre-
dict missing tokens of the masked mention by copy-
ing the unmasked tokens in the context. Since the
masked tokens would be copied from context, low-
frequency tokens, such as proper nouns, could be
well processed to some extent. Moreover, through
copying mechanism, the CorefBERT model could
explicitly capture the relations between the masked
mention and its referring mentions, therefore, to
obtain the coreference information in the context.

Formally, we first encode the given input se-
quence X = (x1, . . . , xn) into hidden states H =
(h1, . . . ,hn) via multi-layer Transformer (Vaswani
et al., 2017). The probability of recovering the
masked token xi by copying from xj is defined as:

Pr(xj |xi) =
exp((V � hj)

Thi)∑
xk∈X exp((V � hk)Thi)

, (2)

where � denotes element-wise product function
and V is a trainable parameter to measure the im-
portance of each dimension for token’s similarity.

Moreover, since we split a word into several
word pieces as BERT does and we adopt whole
word masking strategy for MRP, we need to ex-
tend our copy-based objective into word-level. To
this end, we apply the token-level copy-based train-
ing objective on both start and end tokens of the

masked word, because the representations of these
two tokens could typically cover the major infor-
mation of the whole word (Lee et al., 2017; He
et al., 2018). For a masked noun wi consisting of a
sequence of tokens (x(i)s , . . . , x

(i)
t ), we recover wi

by copying its referring context word, and define
the probability of choosing word wj as:

Pr(wj |wi) = Pr(x(j)s |x(i)s )× Pr(x
(j)
t |x

(i)
t ). (3)

A masked noun possibly has multiple referring
words in the sequence, for which we collectively
maximize the similarity of all referring words. It
is an approach widely used in question answering
(Kadlec et al., 2016; Swayamdipta et al., 2018;
Clark and Gardner, 2018) designed to handle multi-
ple answers. Finally, we define the loss of Mention
Reference Prediction (MRP) as:

LMRP = −
∑

wi∈M
log

∑
wj∈Cwi

Pr(wj |wi), (4)

where M is the set of all masked mentions for
mention reference masking, and Cwi is the set of
all corresponding words of word wi.

4 Experiment

In this section, we first introduce the training de-
tails of CorefBERT. After that, we present the fine-
tuning results on a comprehensive suite of tasks,
including extractive question answering, document-
level relation extraction, fact extraction and verifi-
cation, coreference resolution, and eight tasks in
the GLUE benchmark.

4.1 Training Details
Since training CorefBERT from scratch would
be time-consuming, we initialize the parameters
of CorefBERT with BERT released by Google3,
which is also used as our baselines on downstream
tasks. Similar to previous language representation
models (Devlin et al., 2019; Joshi et al., 2020), we
adopt English Wikipeida4 as our training corpus,
which contains about 3,000M tokens. We employ
spaCy5 for part-of-speech-tagging on the corpus.
We train CorefBERT with contiguous sequences of
up to 512 tokens, and randomly shorten the input
sequences with 10% probability in training. To ver-
ify the effectiveness of our method for the language

3https://github.com/google-research/bert
4https://en.wikipedia.org
5https://spacy.io
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representation model trained with tremendous cor-
pus, we also train CorefBERT initialized with
RoBERTa6, referred as CorefRoBERTa. Addition-
ally, we follow the pre-training hyper-parameters
used in BERT, and adopt Adam optimizer (Kingma
and Ba, 2015) with batch size of 256. Learning rate
of 5×10−5 is used for the base model and 1×10−5
is used for the large model. The optimization runs
33k steps, where the learning rate is warmed-up
over the first 20% steps and then linearly decayed.
The pre-training process consumes 1.5 days for
base model and 11 days for large model with 8
RTX 2080 Ti GPUs in mixed precision. We search
the ratio of MRP loss and MLM loss in 1:1, 1:2
and 2:1, and find the ratio of 1:1 achieves the best
result. Beyond this, training details for downstream
tasks are shown in the appendix.

4.2 Extractive Question Answering

Given a question and passage, the extractive ques-
tion answering task aims to select spans in passage
to answer the question. We first evaluate models
on Questions Requiring Coreferential Reasoning
dataset (QUOREF) (Dasigi et al., 2019). Com-
pared to previous reading comprehension bench-
marks, QUOREF is more challenging as 78% of the
questions in QUOREF cannot be answered without
coreference resolution. In this case, it can be an ef-
fective tool to examine the coreferential reasoning
capability of question answering models.

We also adopt the MRQA, a dataset not spe-
cially designed for examining coreferential rea-
soning capability, which involves paragraphs
from different sources and questions with man-
ifold styles. Through MRQA, we hope to
evaluate the performance of our model in var-
ious domains. We use six benchmarks of
MRQA, including SQuAD (Rajpurkar et al., 2016),
NewsQA (Trischler et al., 2017), SearchQA (Dunn
et al., 2017), TriviaQA (Joshi et al., 2017), Hot-
potQA (Yang et al., 2018), and Natural Questions
(NaturalQA) (Kwiatkowski et al., 2019). Since
MRQA does not provide a public test set, we ran-
domly split the development set into two halves to
generate new validation and test sets.

Baselines For QUOREF, we compare our Coref-
BERT with four baseline models: (1) QANet (Yu
et al., 2018) combines self-attention mechanism
with the convolutional neural network, which

6https://github.com/pytorch/fairseq

Model Dev Test
EM F1 EM F1

QANet∗ 34.41 38.26 34.17 38.90
QANet+BERTBASE

∗ 43.09 47.38 42.41 47.20
BERTBASE

∗ 58.44 64.95 59.28 66.39
BERTBASE 61.29 67.25 61.37 68.56
CorefBERTBase 66.87 72.27 66.22 72.96

BERTLARGE 67.91 73.82 67.24 74.00
CorefBERTLARGE 70.89 76.56 70.67 76.89

RoBERTa-MT+ 74.11 81.51 72.61 80.68
RoBERTaLARGE 74.15 81.05 75.56 82.11
CorefRoBERTaLARGE 74.94 81.71 75.80 82.81

Table 1: Results on QUOREF measured by exact match
(EM) and F1. Results with ∗, + are from Dasigi et al.
(2019) and official leaderboard respectively.

achieves the best performance to date without pre-
training; (2) QANet+BERT adopts BERT repre-
sentation as an additional input feature into QANet;
(3) BERT (Devlin et al., 2019), simply fine-tunes
BERT for extractive question answering. We fur-
ther design two components accounting for coref-
erential reasoning and multiple answers, by which
we obtain stronger BERT baselines; (4) RoBERTa-
MT trains RoBERTa on CoLA, SST2, SQuAD
datasets before on QUOREF. For MRQA, we com-
pare CorefBERT to vanilla BERT with the same
question answering framework.

Implementation Details Following BERT’s set-
ting (Devlin et al., 2019), given the ques-
tion Q = (q1, q2, . . . , qm) and the passage
P = (p1, p2, . . . , pn), we represent them as
a sequence X = ([CLS], q1, q2, . . . , qm, [SEP],
p1, p2, . . . , pn, [SEP]), feed the sequence X into
the pre-trained encoder and train two classifiers on
the top of it to seek answer’s start and end positions
simultaneously. For MRQA, CorefBERT maintains
the same framework as BERT. For QUOREF, we
further employ two extra components to process
multiple mentions of the answers: (1) Spurred by
the idea from MTMSN (Hu et al., 2019) in han-
dling the problem of multiple answer spans, we
utilize the representation of [CLS] to predict the
number of answers. After that, we first selects the
answer span of the current highest scores, then con-
tinues to choose that of the second-highest score
with no overlap to previous spans, until reaching
the predicted answer number. (2) When answering
a question from QUOREF, the relevant mention
could possibly be a pronoun, so we attach a rea-
soning Transformer layer for pronoun resolution
before the span boundary classifier.
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Model SQuAD NewsQA TriviaQA SearchQA HotpotQA NaturalQA Average

BERTBASE 88.4 66.9 68.8 78.5 74.2 75.6 75.4
CorefBERTBASE 89.0 69.5 70.7 79.6 76.3 77.7 77.1

BERTLARGE 91.0 69.7 73.1 81.2 77.7 79.1 78.6
CorefBERTLARGE 91.8 71.5 73.9 82.0 79.1 79.6 79.6

Table 2: Performance (F1) on six MRQA extractive question answering benchmarks.

Results Table 1 shows the performance on QUO-
ERF. Our adapted BERTBASE surpasses original
BERT by about 2% in EM and F1 score, indicating
the effectiveness of the added reasoning layer and
multi-span prediction module. CorefBERTBASE and
CorefBERTLARGE exceeds our adapted BERTBASE

and BERTLARGE by 4.4% and 2.9% F1 respectively.
Leaderboard results are shown in the appendix.
Based on the TASE framework (Efrat et al., 2020),
the model with CorefRoBERTa achieves a new
state-of-the-art with about 1% EM improvement
compared to the model with RoBERTa. We also
show four case studies in the appendix, which indi-
cate that through reasoning over mentions, Coref-
BERT could aggregate information to answer the
question requiring coreferential reasoning.

Table 2 further shows that the effectiveness of
CorefBERT is consistent in six datasets of the
MRQA shared task besides QUOREF. Though the
MRQA shared task is not designed for coreferential
reasoning, CorefBERT still achieves averagely over
1% F1 improvement on all of the six datasets, espe-
cially on NewsQA and HotpotQA. In NewsQA,
20.7% of the answers can only be inferred by
synthesizing information distributed across mul-
tiple sentences. In HotpotQA, 63% of the answers
need to be inferred through either bridge entities or
checking multiple properties in different positions.
It demonstrates that coreferential reasoning is an
essential ability in question answering.

4.3 Relation Extraction

Relation extraction (RE) aims to extract the rela-
tionship between two entities in a given text. We
evaluate our model on DocRED (Yao et al., 2019),
a challenging document-level RE dataset which
requires the model to extract relations between
entities by synthesizing information from all the
mentions of them after reading the whole docu-
ment. DocRED requires a variety of reasoning
types, where 17.6% of the relational facts need to
be uncovered through coreferential reasoning.

Model Dev Test
IgnF1 F1 IgnF1 F1

CNN∗ 41.58 43.45 40.33 42.26
LSTM∗ 48.44 50.68 47.71 50.07
BiLSTM∗ 48.87 50.94 50.26 51.06
ContextAware∗ 48.94 51.09 48.40 50.70

BERT-TSBASE
+ - 54.42 - 53.92

HINBERTBASE
# 54.29 56.31 53.70 55.60

BERTBASE 54.63 56.77 53.93 56.27
CorefBERTBASE 55.32 57.51 54.54 56.96

BERTLARGE 56.51 58.70 56.01 58.31
CorefBERTLARGE 56.82 59.01 56.40 58.83

RoBERTaLARGE 57.19 59.40 57.74 60.06
CorefRoBERTaLARGE 57.35 59.43 57.90 60.25

Table 3: Results on DocRED measured by micro ignore
F1 (IgnF1) and micro F1. IgnF1 metrics ignores the
relational facts shared by the training and dev/test sets.
Results with ∗, +, # are from Yao et al. (2019), Wang
et al. (2019a), and Tang et al. (2020) respectively.

Baselines We compare our model with the fol-
lowing baselines for document-level relation ex-
traction: (1) CNN / LSTM / BiLSTM / BERT.
CNN (Zeng et al., 2014), LSTM (Hochreiter and
Schmidhuber, 1997), bidirectional LSTM (BiL-
STM) (Cai et al., 2016), BERT (Devlin et al., 2019)
are widely adopted as text encoders in relation
extraction tasks. With these encoders, Yao et al.
(2019) generates representations of entities for fur-
ther predicting of the relationships between entities.
(2) ContextAware (Sorokin and Gurevych, 2017)
takes relations’ interaction into account, which
demonstrates that other relations in the context are
beneficial for target relation prediction. (3) BERT-
TS (Wang et al., 2019a) applies a two-step pre-
diction to deal with the large number of irrelevant
entities, which first predicts whether two entities
have a relationship and then predicts the specific re-
lation. (4) HinBERT (Tang et al., 2020) proposes
a hierarchical inference network to aggregate the
inference information with different granularity.

Results Table 3 shows the performance on Do-
cRED. The BERTBASE model we implemented with
mean-pooling entity representation and hyperpa-
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rameter tuning7 performed better than previous
RE models with BERTBASE size, which provides
a stronger baseline. CorefBERTBASE outperforms
BERTBASE model by 0.7% F1. CorefBERTLARGE

beats BERTLARGE by 0.5% F1. We also show a case
study in the appendix, which further proves that
considering coreference information of text is help-
ful for exacting relational facts from documents.

4.4 Fact Extraction and Verification

Fact extraction and verification aim to verify delib-
erately fabricated claims with trust-worthy corpora.
We evaluate our model on a large-scale public fact
verification dataset FEVER (Thorne et al., 2018).
FEVER consists of 185, 455 annotated claims with
all Wikipedia documents.

Baselines We compare our model with four
BERT-based fact verification models: (1) BERT
Concat (Zhou et al., 2019) concatenates all of the
evidence pieces and the claim to predict the claim
label; (2) SR-MRS (Nie et al., 2019) employs hi-
erarchical BERT retrieval to improve the perfor-
mance; (3) GEAR (Zhou et al., 2019) constructs
an evidence graph and conducts a graph attention
network for jointly reasoning over several evidence
pieces; (4) KGAT (Liu et al., 2020b) conducts a
fine-grained graph attention network with kernels.

Results Table 4 shows the performance on
FEVER. KGAT with CorefBERTBASE outperforms
KGAT with BERTBASE by 0.4% FEVER score.
KGAT with CorefRoBERTaLARGE gains 1.9%
FEVER score improvement compared to the model
with RoBERTaLARGE, and arrives at a new state-of-
the-art on FEVER benchmark. It again demon-
strates the effectiveness of our model. Coref-
BERT, which incorporates coreference information
in distant-supervised pre-training, contributes to
verify if the claim and evidence discuss about the
same mentions, such as a person or an object.

4.5 Coreference Resolution

Coreference resolution aims to link referring ex-
pressions that evoke the same discourse entity. We
examine models’ coreference resolution ability un-
der the setting that all mentions have been de-
tected. We evaluate models on several widely-used
datasets, including GAP (Webster et al., 2018),
DPR (Rahman and Ng, 2012), WSC (Levesque,
2011), Winogender (Rudinger et al., 2018) and

7Details are in the appendix due to space limit.

Model LA FEVER

BERT Concat∗ 71.01 65.64
GEAR∗ 71.60 67.10
SR-MRS+ 72.56 67.26
KGAT (BERTBASE) # 72.81 69.40
KGAT (CorefBERTBASE) 72.88 69.82

KGAT (BERTLARGE) # 73.61 70.24
KGAT (CorefBERTLARGE) 74.37 70.86

KGAT (RoBERTaLARGE) # 74.07 70.38
KGAT (CorefRoBERTaLarge) 75.96 72.30

Table 4: Results on FEVER test set measured by label
accuracy (LA) and FEVER. The FEVER score evalu-
ates the model performance and considers whether the
golden evidence is provided. Results with ∗, +, # are
from Zhou et al. (2019), Nie et al. (2019) and Liu et al.
(2020b) respectively.

Model GAP DPR WSC WG PDP

BERT-LMBASE 75.3 75.4 61.2 68.3 76.7
CorefBERTBASE 75.7 76.4 64.1 70.8 80.0

BERT-LMLARGE
∗ 76.0 80.1 70.0 78.8 81.7

WikiCREMLARGE
∗ 78.0 84.8 70.0 76.7 86.7

CorefBERTLARGE 76.8 85.1 71.4 80.8 90.0

RoBERTa-LMLARGE 77.8 90.6 83.2 77.1 93.3
CorefRoBERTaLARGE 77.8 92.2 83.2 77.9 95.0

Table 5: Results on coreference resolution test sets. Per-
formance on GAP is measured by F1, while scores on
the others are given in accuracy. WG: Winogender. Re-
sults with ∗ are from Kocijan et al. (2019).

PDP (Davis et al., 2017). These datasets provide
two sentences where the former has two or more
mentions and the latter contains an ambiguous pro-
noun. It is required that the ambiguous pronoun
should be connected to the right mention.

Baselines We compare our model with two coref-
erence resolution models: (1) BERT-LM (Trinh
and Le, 2018) substitutes the pronoun with
[MASK] and uses language model to compute the
probability of recovering the mention candidates;
(2) WikiCREM (Kocijan et al., 2019) generates
GAP-like sentences automatically and trains BERT
by minimizing the perplexity of correct mentions
on these sentences. Finally, the model is fine-
tuned on supervised datasets. Benefiting from the
augmented data, WikiCREM achieves state-of-the-
art in sentence-level coreference resolution. For
BERT-LM and CorefBERT, we adopt the same
data split and the same training method on super-
vised datasets as those of WikiCREM in order to
make a fair comparison.
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Model MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

BERTBASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
CorefBERTBASE 84.2/83.5 71.3 90.5 93.7 51.5 85.8 89.1 67.2 79.6

BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 81.9
CorefBERTLARGE 86.9/85.7 71.7 92.9 94.7 62.0 86.3 89.3 70.0 82.2

Table 6: Test set performance metrics on GLUE benchmarks. Matched/mistached accuracies are reported for
MNLI; F1 scores are reported for QQP and MRPC, Spearmanr correlation is reported for STS-B; Accuracy scores
are reported for the other tasks.

Model QUOREF SQuAD NewsQA TriviaQA SearchQA HotpotQA NaturalQA DocRED

BERTBASE 67.3 88.4 66.9 68.8 78.5 74.2 75.6 56.8
-NSP 70.6 88.7 67.5 68.9 79.4 75.2 75.4 56.7
-NSP, +WWM 70.1 88.3 69.2 70.5 79.7 75.5 75.2 57.1
-NSP, +MRM 70.0 88.5 69.2 70.2 78.6 75.8 74.8 57.1
CorefBERTBASE 72.3 89.0 69.5 70.7 79.6 76.3 77.7 57.5

Table 7: Ablation study. Results are F1 scores on development set for QUOREF and DocRED, and on test set for
others. CorefBERTBASE combines “-NSP, +MRM” scheme and copy-based training objective.

Results Table 5 shows the performance on the
test set of the above coreference resolution dataset.
Our CorefBERT model significantly outperforms
BERT-LM, which demonstrates that the intrinsic
coreference resolution ability of CorefBERT has
been enhanced by involving the mention reference
prediction training task. Moreover, it achieves com-
parable performance with state-of-the-art baseline
WikiCREM. Note that, WikiCREM is specially
designed for sentence-level coreference resolution
and is not suitable for other NLP tasks. On the
contrary, the coreferential reasoning capability of
CorefBERT can be transferred to other NLP tasks.

4.6 GLUE

The Generalized Language Understanding Evalua-
tion dataset (GLUE) (Wang et al., 2018) is designed
to evaluate and analyze the performance of models
across a diverse range of existing natural language
understanding tasks. We evaluate CorefBERT on
the main GLUE benchmark used in BERT.

Implementation Details Following BERT’s set-
ting, we add [CLS] token in front of the input sen-
tences, and extract its representation on the top
layer as the whole sentence or sentence pair’s rep-
resentation for classification or regression.

Results Table 6 shows the performance on
GLUE. We notice that CorefBERT achieves com-
parable results to BERT. Though GLUE does not
require much coreference resolution ability due to
its attributes, the results prove that our masking
strategy and auxiliary training objective would not

weaken the performance on generalized language
understanding tasks.

5 Ablation Study

In this section, we explore the effects of the Whole
Word Masking (WWM), Mention Reference Mask-
ing (MRM), Next Sentence Prediction (NSP) and
copy-based training objective using several bench-
mark datasets. We continue to train Google’s re-
leased BERTBASE on the same Wikipedia corpus
with different strategies. As shown in Table 7,
we have the following observations: (1) Deleting
NSP training task triggers a better performance
on almost all tasks. The conclusion is consistent
with that of RoBERTa (Liu et al., 2019); (2) MRM
scheme usually achieves parity with WWM scheme
except on SearchQA, and both of them outperform
the original subword masking scheme especially
on NewsQA (averagely +1.7% F1) and TriviaQA
(averagely +1.5% F1); (3) On the basis of MRM
scheme, our copy-based training objective explic-
itly requires model to look for mention’s referents
in the context, which could adequately consider the
coreference information of the sequence. Coref-
BERT takes advantage of the objective and further
improves the performance, with a substantial gain
(+2.3% F1) on QUOREF.

6 Conclusion and Future Work

In this paper, we present a language representation
model named CorefBERT, which is trained on a
novel task, Mention Reference Prediction (MRP),
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for strengthening the coreferential reasoning ability
of BERT. Experimental results on several down-
stream NLP tasks show that our CorefBERT sig-
nificantly outperforms BERT by considering the
coreference information within the text and even
improve the performance of the strong RoBERTa
model. In the future, there are several prospective
research directions: (1) We introduce a distant su-
pervision (DS) assumption in our MRP training
task. However, the automatic labeling mechanism
inevitably accompanies with the wrong labeling
problem and it is still an open problem to mitigate
the noise. (2) The DS assumption does not con-
sider pronouns in the text, while pronouns play an
important role in coreferential reasoning. Hence, it
is worth developing a novel strategy such as self-
supervised learning to further consider the pronoun.
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Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilin-
gual and crosslingual focused evaluation. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation, SemEval@ACL 2017, Vancouver,
Canada, August 3-4, 2017, pages 1–14.

Pengxiang Cheng and Katrin Erk. 2020. Attending
to entities for better text understanding. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7554–
7561. AAAI Press.

Christopher Clark and Matt Gardner. 2018. Simple
and effective multi-paragraph reading comprehen-
sion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Vol-
ume 1: Long Papers, pages 845–855.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 7057–7067.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised sequence learning. In Advances in Neu-
ral Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 3079–3087.

Pradeep Dasigi, Nelson F. Liu, Ana Marasovic,
Noah A. Smith, and Matt Gardner. 2019. Quoref:
A reading comprehension dataset with questions re-
quiring coreferential reasoning. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5924–5931. Association for
Computational Linguistics.

Ernest Davis, Leora Morgenstern, and Charles L. Ortiz
Jr. 2017. The first winograd schema challenge at
IJCAI-16. AI Magazine, 38(3):97–98.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.

http://papers.nips.cc/paper/3637-nonparametric-bayesian-models-for-unsupervised-event-coreference-resolution
http://papers.nips.cc/paper/3637-nonparametric-bayesian-models-for-unsupervised-event-coreference-resolution
http://papers.nips.cc/paper/3637-nonparametric-bayesian-models-for-unsupervised-event-coreference-resolution
https://www.aclweb.org/anthology/P16-1072/
https://www.aclweb.org/anthology/P16-1072/
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14527
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14527
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://aaai.org/ojs/index.php/AAAI/article/view/6254
https://aaai.org/ojs/index.php/AAAI/article/view/6254
https://doi.org/10.18653/v1/P18-1078
https://doi.org/10.18653/v1/P18-1078
https://doi.org/10.18653/v1/P18-1078
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://doi.org/10.18653/v1/D19-1606
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2734
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2734
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/N19-1423/
https://www.aclweb.org/anthology/I05-5002/
https://www.aclweb.org/anthology/I05-5002/


7179

In Proceedings of the Third International Workshop
on Paraphrasing, IWP@IJCNLP 2005, Jeju Island,
Korea, October 2005, 2005.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
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Appendices

A Masked Language Modeling (MLM)

MLM is regarded as a kind of cloze tasks and aims
to predict the missing tokens according to its con-
textual representation. In our work, 15% of the
tokens in input sequence are sampled as the miss-
ing tokens. Among them, 80% are replaced with a
special token [MASK], 10% are replaced with ran-
dom tokens and 10% are unchanged. The task aims
to predict original tokens from corrupted input.

B Leaderboard Results on QUOREF

TASE (Efrat et al., 2020) converts the multi-span
prediction problem as a sequence tagging problem,
which substantially improves the model’s ability
in terms of handling multi-span answer. Though
the study of TASE and our CorefBERT are con-
ducted in the same period, we still run TASE with
CorefRoBERTa encoder. As Table 8 shows, the per-
formance of TASE with CorefRoBERTa encoder
gains about 1% EM improvement compared to that
with RoBERTa encoder, which demonstrates the
effectiveness of CorefBERT for different question
answering frameworks.

Model EM F1

XLNet (Dasigi et al., 2019) 61.88 71.51
RoBERTa-MT 72.61 80.68
CorefRoBERTaLARGE 75.80 82.81
TASE (RoBERTa) (Efrat et al., 2020) 79.66 86.13
TASE (CorefRoBERTa) 80.61 86.70

Table 8: Leaderboard results on QUOREF test set.

C Case Study on QUOREF

Table 9 shows examples from QUOREF (Dasigi
et al., 2019). For the first example, it is essential to
obtain the fact that the asthmatic boy in question
refers to Barry. After that, we should synthesize

(1) Q: Whose uncle trains the asthmatic boy?
Paragraph: [1] Barry Gabrewski is an asth-
matic boy ... [2] Barry wants to learn the martial
arts, but is rejected by the arrogant dojo owner
Kelly Stone for being too weak. [3] Instead, he is
taken on as a student by an old Chinese man called
Mr. Lee, Noreen’s sly uncle. [4] Mr. Lee finds cre-
ative ways to teach Barry to defend himself from
his bullies.

(2) Q: Which composer produced String Quartet
No. 2?
Paragraph: [1] Tippett’s Fantasia on a Theme of
Handel for piano and orchestra was performed at
the Wigmore Hall in March 1942, with Sellick
again the soloist, and the same venue saw the pre-
miere of the composer’s String Quartet No. 2
a year later. ... [2] In 1942, Schott Music began
to publish Tippett’s works, establishing an asso-
ciation that continued until the end of the the
composer’s life.

(3) Q: What is the first name of the person who lost
her beloved husband only six months earlier?
Pargraph: [1] Robert and Cathy Wilson are a timid
married couple in 1940 London. ... [2] Robert
toughens up on sea duty and in time becomes a
petty officer. [3] His hands are badly burned when
his ship is sunk, but he stoically rows in the lifeboat
for five days without complaint. [4] He recuperates
in a hospital, tended by Elena, a beautiful nurse.
[5] He is attracted to her, but she informs him
that she lost her beloved husband only six months
earlier, kisses him, and leaves.

(4) Q: Who would have been able to win the tour-
nament with one more round?
Paragraph: [1] At a jousting tournament in 14th-
century Europe, young squires William Thatcher,
Roland, and Wat discover that their master, Sir Ec-
tor, has died. [2] If he had completed one final
pass he would have won the tournament. [3] Desti-
tute, William wears Ector’s armour to impersonate
him, winning the tournament and taking the prize.

Table 9: Examples from QUOREEF (Dasigi et al.,
2019) that were correctly predicted by CorefBERTBASE,
but wrongly predicted by BERTBASE. Answers
from BERTBASE, Answers from CorefBERTBASE, and
Clue are colored respectively.

information from two Mr. Lee’s mentions: (1)
Mr. Lee trains Barray; (2) Mr. Lee is the uncle of
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https://openreview.net/forum?id=r1eIiCNYwS
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Eclipse (Meyer novel)

[1] Eclipse is the third novel in the Twilight
Saga by Stephenie Meyer. It continues the story
of Bella Swan and her vampire love, Edward
Cullen. [2] The novel explores Bella’s com-
promise between her love for Edward and her
friendship with shape-shifter Jacob Black, ... [3]
Eclipse is preceded by New Moon and followed
by Breaking Dawn. [4] The book was released
on August 7, 2007, with an initial print run of
one million copies, and sold more than 150,000
copies in the first 24 hours alone.

Subject: New Moon / Breaking Dawn
Object: Twilight Saga
Relation: Part of the series

Subject: Edward Cullen / Jacob Black
Object: Stephenie Meyer
Relation: Creator

Subject: Eclipse
Object: August 7, 2007
Relation: Publication date

Table 10: An example from DocRED (Yao et al.,
2019). We show some relational facts detected by
CorefBERTBASE but missed by BERTBASE.

Noreen. Reasoning over the above information, we
could know that Noreen’s uncle trains the asthmatic
boy. For the second example, it needs to infer that
Tippett is a composer from the second sentence for
obtaining the final answer from the first sentence.
After training on the mention reference prediction
task, CorefBERT has become capable of reasoning
over these mentions, summarizing messages from
mentions in different positions, and finally figuring
out the correct answer. For the third and fourth
examples, it is necessary to know she refers to
Elena, and he refers to Ector by respective corefer-
ence resolution. Benefiting from a large amount of
distant-supervised coreference resolution training
data, CorefBERT successfully finds out the refer-
ence relationship and provides accurate answers.

D Case Study on DocRED

Table 10 shows an example from DocRED (Yao
et al., 2019). We show some relational facts de-
tected by CorefBERTBASE but missed by BERTBASE.
For the first relational fact, it is necessary to con-
nect the first and the third sentences through the co-

Claim: Bob Ross created ABC drama The Joy
of Painting.

[1] [Bob Ross] Robert Norman Ross was an
American painter and television host.
[2] [Bob Ross] He was the creator and host of
The Joy of Painting, an instructional television
program that aired from 1983 to 1994 on PBS in
the United States, and also aired in Canada, ...
[3] [Bob Ross] The Joy of Painting is an
American half hour instructional television show
hosted by painter Bob Ross which ran from Jan-
uary 11, 1983, until May 17, 1994.
[4] [The Joy of Painting] In each episode, Ross
taught techniques for landscape oil painting,
completing a painting in each session.
[5] [The Joy of Painting] The program followed
the same format as its predecessor, The Magic of
Oil Painting , hosted by Ross’s mentor.

Label: REFUTES

Table 11: An example from FEVER (Thorne et al.,
2018). Five pieces of evidence from article [Bob Ross]
and [The Joy of Painting] are retrieved by the retriever.

reference of Eclipse for acquiring the fact that New
Moon and Breaking Dawn are also the novel in the
Twilight Saga. For the second and the third rela-
tional fact, the referring expressions it, the novel,
and the book should be linked to Eclipse correctly
to increase model’s confidence to find out all the
characters and the publication date of the novel
from the context. CorefBERT considers corefer-
ence information of text, which helps to discover
relation facts beyond sentence boundary.

E Case Study on FEVER

Table 11 shows an example from FEVER (Thorne
et al., 2018). The given claim is fabricated since
the drama “The Joy of Painting” was aired on PBS
instead of ABC. With the CorefBERT encoder,
KGAT (Liu et al., 2020b) could propagate and ag-
gregate the entity information from evidence for
refuting the wrong claim more accurately.

F Task-Specific Model Details

All the models are implemented based on Hug-
gingface transformers8. We train models on down-

8https://github.com/huggingface/transformers
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stream tasks with Adam optimizer (Kingma and
Ba, 2015).

F.1 Question Answering (QA)

For QA models, we uses a batch size of 32 in-
stances with a maximum sequence length of 512.

We adopt the official data split for
QUOREF (Dasigi et al., 2019), where train
/ development / test set contains 19399 / 2418 /
2537 instances respectively. And we submit our
model to the test sever9 for online evaluation. We
conduct a grid search on the learning rate (lr) in
[1× 10−5, 2× 10−5, 3× 10−5] and epoch number
in [2, 4, 6]. The best BERTBASE configuration on
development set used lr = 2 × 10−5, 6 epochs.
We adopt this configuration for the BERTLARGE and
RoBERTaLARGE models. We regard MRQA (Fisch
et al., 2019) as a testbed to examine whether
models can answer questions well across various
data distributions. For fair comparison, we keep
lr = 3 × 10−5, 2 epochs for all of the MRQA
experiments.

For TASE (Efrat et al., 2020) with Core-
fRoBERTa encoder, we keep the same configu-
ration10 as that of the original paper, which used
a batch size of 12, learning rate of 5 × 10−6, 35
epochs.

F.2 Document-level Relation Extraction

We modify the official code11 to implement BERT-
based models for DocRED (Yao et al., 2019). In
our implementation, the representation of a men-
tion, which consists of several words, is the average
of representations of those words. Furthermore, the
representation of an entity is defined as the mean
of all mentions referring to it. Finally, two entities’
representations are fed to a bi-linear layer to predict
relations between them.

We use the official data split for DocRED, where
train / development / test set consists of 3053 / 1000
/ 1000 documents respectively. We adopt batch size
of 32 instances with maximum sequence length
of 512 and conduct a grid search on the learning
rate in [2 × 10−5, 3 × 10−5, 4 × 10−5, 5 × 10−5]
and number epochs in [100, 150, 200]. We find
the configuration used learning rate of 4 × 10−5,
200 epochs is best for both the base and the large
model. We evaluate models on development set

9https://leaderboard.allenai.org/quoref/submissions/public
10https://github.com/eladsegal/tag-based-multi-span-

extraction
11https://github.com/thunlp/DocRED

every 5 epochs and save the checkpoint with the
highest F1 score. After that, the test results of the
best model are submitted to the evaluation server12.

F.3 Fact Extraction and Verification

We apply the released code13 of KGAT (Liu et al.,
2020b) for evaluating CorefBERT. We use the of-
ficial data split for FEVER (Thorne et al., 2018),
where train / development / test set contains 145449
/ 19998 / 19998 claims respectively. We adopt
a batch size of 32, maximum length of 512 to-
kens and search the learning rate in [2× 10−5, 3×
10−5, 5×10−5]. We achieved the best performance
with learning rate of 5× 10−5 for the base model
and 2 × 10−5 for the large model. All models
are trained with a batch size of 32 instances for
3 epochs and evaluated on development set every
1000 steps. After that, we submit test results of our
best model to evaluation server14.

F.4 Coreference Resolution

We use the released code15 of WikiCREM (Kocijan
et al., 2019) for fine-tuning BERT-LM (Trinh and
Le, 2018) and CorefBERT on supervised datasets.
For a sentence S, which possesses a correct candi-
date a and an incorrect candidate b, the loss con-
sists of two parts: (1) the negative log-likelihood
of the correct candidate; (2) a max-margin between
the log-likelihood of the correct candidate and the
incorrect candidate:

L = − log Pr(a|S)
+ αmax (0, log Pr(b|S)− log Pr(a|S) + β) ,

(5)

where α, β are hyperparameters. We follow the
data split and fine-tuning setting of WikiCREM,
which adopts a batch size of 64, a maximum
sequence length of 128 and 10 epochs train-
ing. We search the learning rate lr ∈ [3 ×
10−5, 1× 10−5, 5× 10−6, 3× 10−6], hyperparam-
eters α ∈ [5, 10, 20], β ∈ [0.1, 0.2, 0.4]. The
best performance of models with base size and
CorefBERTLARGE on validation set were achieved
with lr = 3 × 10−5, α = 10, β = 0.2. We keep
this configuration for the RoBERTa-based models.

12https://competitions.codalab.org/competitions/20717
13https://github.com/thunlp/KernelGAT
14https://competitions.codalab.org/competitions/18814
15https://github.com/vid-koci/bert-commonsense
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Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

CorefBERTBASE 2× 10−5 4× 10−5 3× 10−5 3× 10−5 5× 10−5 4× 10−5 5× 10−5 4× 10−5

CorefBERTLARGE 2× 10−5 2× 10−5 2× 10−5 2× 10−5 3× 10−5 5× 10−5 5× 10−5 3× 10−5

Table 12: Learning rate for CorefBERT on GLUE benchmarks.

Model Parameters Layers Hidden Embedding Vocabulary

CorefBERTBASE 110M 12 768 768 28,996
CorefBERTLARGE 340M 24 1,024 1,024 28,996
CorefRoBERTaLARGE 355M 24 1,024 1,024 50,265

Table 13: Parameter number and the configuration of CorefBERT.

Model QUOREF MRQA DocRED FEVER GLUE Coref.

CorefBERTBASE 13.23 13.15 117.37 18.88 2.95 4.27
CorefBERTLARGE 43.40 43.37 180.65 54.03 9.22 10.90

Table 14: Average inference runtime per example for CorefBERTs on different benchmarks. Inference is done on a
RTX 2080ti GPU with a batch of 32 instances and inference time is measured in milliseconds. The input sequence
length is 512 for QUOREF, MRQA, DocRED, FEVER, and 128 for others. Coref.: Coreference resolution.

F.5 Generalized Language Understanding
(GLUE)

We evaluate CorefBERT on the main GLUE bench-
mark (Wang et al., 2018) used in BERT, including
MNLI (Williams et al., 2018), QQP16, QNLI (Ra-
jpurkar et al., 2016), SST-2 (Socher et al., 2013),
CoLA (Warstadt et al., 2019) , STS-B (Cer et al.,
2017), MRPC (Dolan and Brockett, 2005) and
RTE (Giampiccolo et al., 2007).

We use a batch size of 32, maximum sequence
length of 128, fine-tune models for 3 epochs for all
GLUE tasks and select the learning rate of Adam
among [2×10−5, 3×10−5, 4×10−5, 5×10−5] for
the best performance on the development set. Af-
ter that, we submit the result of our best model to
the official evaluation server17. Table 12 shows
the best learning rate for CorefBERTBASE and
CorefBERTLARGE.

F.6 Number of Parameters and Average
Runtime

CorefBERT’s architecture is a multi-layer bidirec-
tional Transformer (Vaswani et al., 2017). Ta-
bles 13 shows the parameter number of Coref-
BERTs with different model size. Compared to
BERT (Devlin et al., 2019), CorefBERT add a few
parameters for computing the copy-based objec-
tive. Hence, CorefBERT keeps similar number of

16https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

17https://gluebenchmark.com

parameters as BERT with the same size.
Table 14 shows the task-specific average infer-

ence runtime per example for CorefBERT. The in-
ferenece is done on a RTX 2080ti GPU with a batch
of 32 instances. The inference time includes time
on CPU and time on GPU. CorefRoBERTaLARGE

consumes a similar time as CorefBERTLARGE since
they both use a 24-layer Transformer architecture.

F.7 Resolving the Coreference in the Corpus
In our preliminary experiment, we resolve the coref-
erence of training corpus via the StanfordNLP
tool18 and apply our copy-based objective on this
training corpus. We find the obtained model per-
forms better than the BERT model without NSP
but worse than the current CorefBERT. We think
that considering coreference such as pronoun in
pre-training could also enhance model’s coreferen-
tial reasoning ability, while how to deal with the
noise from coreference tools remains a problem to
be explored.

18https://stanfordnlp.github.io/CoreNLP


