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Abstract

Attention is a key component of Transform-
ers, which have recently achieved consider-
able success in natural language processing.
Hence, attention is being extensively studied
to investigate various linguistic capabilities of
Transformers, focusing on analyzing the par-
allels between attention weights and specific
linguistic phenomena. This paper shows that
attention weights alone are only one of the
two factors that determine the output of atten-
tion and proposes a norm-based analysis that
incorporates the second factor, the norm of
the transformed input vectors. The findings
of our norm-based analyses of BERT and a
Transformer-based neural machine translation
system include the following: (i) contrary to
previous studies, BERT pays poor attention to
special tokens, and (ii) reasonable word align-
ment can be extracted from attention mecha-
nisms of Transformer. These findings provide
insights into the inner workings of Transform-
ers.

1 Introduction

Transformers (Vaswani et al., 2017; Devlin et al.,
2019; Yang et al., 2019; Liu et al., 2019; Lan et al.,
2020) have improved the state-of-the-art in a wide
range of natural language processing tasks. The
success of the models has not yet been sufficiently
explained; hence, substantial research has focused
on assessing the linguistic capabilities of these
models (Rogers et al., 2020; Clark et al., 2019).

One of the main features of Transformers is that
they utilize an attention mechanism without the
use of recurrent or convolutional layers. The atten-
tion mechanism computes an output vector by ac-
cumulating relevant information from a sequence
of input vectors. Specifically, it assigns attention
weights (i.e., relevance) to each input, and sums
up input vectors based on their weights. The anal-
ysis of correlations between attention weights and

various linguistic phenomena (i.e., weight-based
analysis) is a prominent research area (Clark et al.,
2019; Kovaleva et al., 2019; Reif et al., 2019; Lin
et al., 2019; Mareček and Rosa, 2019; Htut et al.,
2019; Raganato and Tiedemann, 2018; Tang et al.,
2018).

This paper first shows that weight-based analy-
sis is insufficient to analyze the attention mech-
anism. Weight-based analysis is a common ap-
proach to analyze the attention mechanism by
simply tracking attention weights. The attention
mechanism can be expressed as a weighted sum of
linearly transformed vectors (Section 2.2); how-
ever, the effect of transformed vectors in weight-
based analysis is ignored. We propose a norm-
based analysis that considers the previously ig-
nored factors (Section 3). In this analysis, we mea-
sure the norms (lengths) of the vectors that were
summed to compute the output vector of the atten-
tion mechanism.

Using the norm-based analysis of BERT (Sec-
tion 4), we interpreted the internal workings of
the model in more detail than when weight-based
analysis was used. For example, the weight-based
analysis (Clark et al., 2019; Kovaleva et al., 2019)
reports that specific tokens, such as periods, com-
mas, and special tokens (e.g., separator token;
[SEP]), tend to have high attention weights. How-
ever, our norm-based analysis found that the in-
formation collected from vectors corresponding to
special tokens was considerably lesser than that re-
ported in the weight-based analysis, and the large
attention weights of these vectors were canceled
by other factors. Additionally, we found that
BERT controlled the levels of contribution from
frequent, less informative words by controlling the
norms of their vectors.

In the analysis of a Transformer-based NMT
system (Section 5), we reinvestigated how accu-
rate word alignment can be extracted from the
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source-target attention. The weight-based results
of Li et al. (2019), Ding et al. (2019), and Zenkel
et al. (2019) have empirically shown that word
alignments induced by the source-target attention
of the Transformer-based NMT systems are noisy.
Our experiments show that more accurate align-
ments can be extracted by focusing on the vector
norms.

The contributions of this study are as follows:
• We propose a novel method of analyzing an

attention mechanism based on vector norms
(norm-based analysis). The method considers at-
tention weights and previously ignored factors,
i.e., the norm of the transformed vector.

• Our norm-based analysis of BERT reveals that
(i) the attention mechanisms pay considerably
lesser attention to special tokens than to observa-
tions that are solely based on attention weights
(weight-based analysis), and (ii) the attention
mechanisms tend to discount frequent words.

• Our norm-based analysis of a Transformer-based
NMT system reveals that reasonable word align-
ment can be extracted from source-target atten-
tion, in contrast to the previous results of the
weight-based analysis.

The codes of our experiments are publicly avail-
able.1

2 Background

2.1 Attention mechanism
Attention is a core component of Transformers,
which consist of several layers, each containing
multiple attentions (“heads”). We focused on ana-
lyzing the inner workings of these heads.

As illustrated in Figure 1, each attention head
gathers relevant information from the input vec-
tors. A vector is updated by vector transforma-
tions, attention weights, and a summation of vec-
tors. Mathematically, attention computes each
output vector yi ∈ Rd from the corresponding
pre-update vector ỹi ∈ Rd and a sequence of input
vectors X = {x1, . . . ,xn} ⊆ Rd:

yi =

( n∑
j=1

αi,jv(xj)

)
WO (1)

αi,j := softmax
xj∈X

(
q(ỹi)k(xj)

>
√
d′

)
∈ R, (2)

where αi,j is the attention weight assigned to the
token xj for computing yi, and q(·), k(·), and v(·)
1https://github.com/gorokoba560/
norm-analysis-of-transformer
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Figure 1: Overview of attention mechanism in Trans-
formers. Sizes of the colored circles illustrate the value
of the scalar or the norm of the corresponding vector.

are the query, key, and value transformations, re-
spectively.

q(ỹi) := ỹiW
Q + bQ

(
WQ ∈ Rd×d′ , bQ ∈ Rd′

)
k(xj) := xjW

K + bK
(
WK ∈ Rd×d′ , bK ∈ Rd′

)
v(xj) := xjW

V + bV
(
W V ∈ Rd×d′ , bV ∈ Rd′

)
.

Attention gathers value vectors v(xj) based on at-
tention weights and then, applies matrix multipli-
cation WO ∈ Rd′×d (Figure 1). 2 Boldface letters
such as x denote row (not column) vectors, fol-
lowing the notations in Vaswani et al. (2017).

In self-attention, the input vectors X and the
pre-update vector ỹi are previous layer’s output
representations. In source-target attention, X cor-
responds to the representations of the encoder, and
vector ỹi (and updated vector yi) corresponds to
the vector of the i-th input token of the decoder.

2.2 Attention is a weighted sum of vectors
With a simple reformulation, one can observe that
the attention mechanism computes the weighted
sum of the transformed input vectors. Because of
the linearity of the matrix product, we can rewrite
Equation 1 as

yi =
n∑

j=1

αi,j f(xj) (3)

2Whether bias b is added to calculate query, key, and value
vectors depends on the implementation. WO ∈ Rd′×d in
Equation 1 corresponds to the part of WO ∈ Rhd′×d that
was introduced in Vaswani et al. (2017) which is applied to
each head; where h is the number of heads, and hd′ = d
holds.

https://github.com/gorokoba560/norm-analysis-of-transformer
https://github.com/gorokoba560/norm-analysis-of-transformer


7059

!!!"!#!$!%

! "!! "" ! "#! "$! "%

!!,#" ##!!,$" #$!!,%" #%!!,&" #& !!,'" #'

#&,% #&," #&,# #&,!

Weighted
vectors

Attention
weights

Transformed
vectors

Input vectors

#&,$

Σ

eq. (2)

"&

"#&

Output vector

Pre-
update
vector

' (! ,(	) *(
#

(*&

(!,') *'

Figure 2: Overview of attention mechanism based on
Equation 3. It computes the output vector by summing
the weighted vectors; vectors with larger norms have
higher contributions. Sizes of the colored circles illus-
trate the value of the scalar or the norm of the corre-
sponding vector.

f(x) :=
(
xW V + bV

)
WO. (4)

Equation 3 shows that the attention mechanism
first transforms each input vector x to generate
f(x) ; computes attention weights α ; and then

compute the sum αf(x) (see Figure 2).

2.3 Problems encountered in weight-based
analysis

The attention mechanism has been designed to
update representations by gathering relevant in-
formation from the input vectors. Prior stud-
ies have analyzed attention, focusing on atten-
tion weights, to ascertain which input vectors
contribute (weight-based analysis) (Clark et al.,
2019; Kovaleva et al., 2019; Reif et al., 2019; Lin
et al., 2019; Mareček and Rosa, 2019; Htut et al.,
2019; Raganato and Tiedemann, 2018; Tang et al.,
2018).

Analyses solely based on attention weight are
based on the assumption that the larger the atten-
tion weight of an input vector, the higher its con-
tribution to the output. However, this assumption
disregards the magnitudes of the transformed vec-
tors. The problem encountered when neglecting
the effect of f(xj) is illustrated in Figure 2. The
transformed vector f(x1) for input x1 is assumed
to be very small (‖f(x1)‖ ≈ 0), while its attention
weight αi,1 is considerably large. Note that the
small αi,1f(x1) contributes a little to the output
vector yi because yi is the sum of αf(x), where a

larger vector contributes more to the output. Con-
versely, the large αi,3f(x3) dominates the output
yi. Therefore, in this case, only considering the
attention weight may lead to a wrong interpreta-
tion of the high contribution of input vector x1 to
output yi. Nevertheless, x1 hardly has any effect
on yi.

Analyses based on attention weights have not
provided clear results in some cases. For example,
Clark et al. (2019) reported that input vectors for
separator tokens [SEP] tend to receive remarkably
large attention weights in BERT, while changing
the magnitudes of these weights does not affect
the masked-token prediction of BERT. Such re-
sults can be attributed to the aforementioned issue
of focusing only on attention weights.

3 Proposal: norm as a degree of attention

As described in Section 2.3, analyzing the atten-
tion mechanism with only attention weights ne-
glects the effect of the transformed vector f(xj),
which has a significant impact as we discussed
later.

Herein, we propose the measurement of
the norm of the weighted transformed vector
‖αf(x)‖ , given by Equation 3, to analyze the

attention mechanism behavior.3 Unlike in pre-
vious studies, we analyzed the behaviors of the
norms, ‖αf(x)‖ and ‖f(x)‖, and α to gain more
in-depth insights into the functioning of attention.
The proposed method of analyzing the attention
mechanism is called norm-based analysis and the
method that solely analyzes the attention weights
is called weight-based analysis.

In Sections 4 and 5, we provide insights into the
working of Transformers using norm-based anal-
ysis. Appendix A explains that our norm-based
analysis can also be effectively applied to an en-
tire multi-head attention mechanism.

4 Experiments: BERT

First, we show that the previously ignored
transformed-vector norm affects the analysis of
attention in BERT (Section 4.1). Applying our
norm-based analysis, we re-examine the previ-
ous reports on BERT obtained by weight-based
analysis (Section 4.2). Next, we demonstrate the
previously overlooked properties of BERT (Sec-
tion 4.3).

3We use the standard Euclidean norm.
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Head µ σ CV Max Min

Layer 2–Head 4 (max CV) 4.26 1.59 0.37 12.66 0.96
Layer 2–Head 7 (min CV) 4.00 0.50 0.12 6.15 1.35

Average 5.15 1.17 0.22 - -

Table 1: Mean (µ), standard deviation (σ), coefficient
of variance (CV), and maximum and minimum values
of ‖f(x)‖. In the last row, the former three are aver-
aged over all the heads.

General settings: Following the previous stud-
ies (Clark et al., 2019; Kovaleva et al., 2019; Reif
et al., 2019; Lin et al., 2019; Htut et al., 2019), we
used the pre-trained BERT-base4, with 12 layers,
each containing 12 attention heads. We used the
data provided by Clark et al. (2019) for the anal-
ysis.5 The data contains 992 sequences extracted
from Wikipedia, where each sequence consists of
two consecutive paragraphs, in the form of: [CLS]
paragraph1 [SEP] paragraph2 [SEP]. Each se-
quence consists of up to 128 tokens, with an aver-
age of 122 tokens.

4.1 Does f(x) have an impact?

We analyzed the coefficient of variation (CV)6

of previously ignored effect—‖f(x)‖—to first
demonstrate the degree to which ‖αf(x)‖ differs
from weight α. We computed the CV of ‖f(x)‖ of
all the example data for each head. Table 1 shows
that the average CV is 0.22. Typically, the value
of the norm ‖f(x)‖ varies from 0.78 to 1.22 times
the average value of the ‖f(x)‖. Thus, there is a
difference between the weight α and ‖αf(x)‖ due
to the dispersion of ‖f(x)‖, which motivated us
to consider ‖f(x)‖ in the attention analysis. Ap-
pendix B presents the detailed results.

4.2 Re-examining previous observation

In this section, with the application of our norm-
based analysis, we reinvestigate the previous ob-
servation of Clark et al. (2019); they analyzed
BERT using the weight-based analysis.

Settings: First, all the data were fed into BERT.
Then, the weight α and ‖αf(x)‖ were collected
from each head. Following Clark et al. (2019), we
report the results of the following categories: (i)

4We used PyTorch implementation of BERT-base (un-
cased) released at https://github.com/huggingface/
transformers.

5https://github.com/clarkkev/attention-analysis
6Coefficient of variation (CV) is a standardized (scale-
invariant) measure of dispersion, which is defined by the ra-
tio of the standard deviation σ to the mean µ; CV := σ/µ.
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Figure 3: Each point corresponds to averaged α or
‖αf(x)‖ on a word category in a given layer. Note
that, in each layer, the sum of α among all the cate-
gories is 1. The x-axis denotes the index of the layers.

Token category Number of vectors Spearman’s ρ

[CLS] 17,443,296 -0.34
[SEP] 34,886,592 -0.69

comma & period 182,838,528 -0.25
Others 1,944,928,224 -0.06

Table 2: Spearman rank correlation coefficient between
α and ‖f(x)‖ in each token category.

[CLS], (ii) [SEP], (iii) periods and commas, and
(iv) the other tokens. More specific descriptions
of the experiments are provided in Appendix D.

Results: The weight-based and norm-based
analyses exhibited entirely different trends (Fig-
ure 3). The vectors for specific tokens—[CLS],
[SEP], and punctuations—have remarkably large
attention weights, which is consistent with the re-
port of Clark et al. (2019). In contrast, our norm-
based analysis demonstrated that the contributions
of vectors corresponding to these tokens were gen-
erally small (Figure 3b). The result demonstrates
that the size of the transformed vector f(x) plays
a considerable role in controlling the amount of
information obtained from the specific tokens.

Clark et al. (2019) hypothesized that if the nec-
essary information is not present in the input vec-
tors, BERT assigns large weights to [SEP], which
appears in every input sequence, to avoid the in-
corporation of any additional information via at-

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/clarkkev/attention-analysis
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tention.7 Clark et al. (2019) called this oper-
ation no-operation (no-op). However, it is un-
clear whether assigning large attention weights to
[SEP] realizes the operation of collecting little in-
formation from the input sequence.

Our norm-based analysis demonstrates that the
amount of information from the vectors corre-
sponding to [SEP] is small (Figure 3b). This re-
sult supports the interpretation that BERT con-
ducts “no-op,” in which attention to [SEP] is con-
sidered a signal that does not collect anything. Ad-
ditionally, we hope that our norm-based analysis
can provide a better interpretation of other exist-
ing findings.

Analysis—The relationship between α and
‖f(x)‖: It remains unclear how attention col-
lects only a little information while assigning a
high attention weight to a specific token, [SEP].
Here, we demonstrate an interesting trend of α and
‖f(x)‖ cancelling each other out on the tokens.8

Table 2 shows the Spearman rank correlation co-
efficient between α and ‖f(x)‖, corresponding to
the vectors in each category. The weight α and
the norm ‖f(x)‖ have a negative correlation in
terms of [CLS], [SEP], periods, and commas. This
cancellation manages to collect a little information
even with large weights.

Figure 4 illustrates the contrast between α and
‖f(x)‖ corresponding to [SEP] in each head. For
most of the heads, α and ‖f(x)‖ clearly negate
the magnitudes of each other. A similar trend was
observed in [CLS], periods, and commas. Con-
versely, no significant trend was observed in the
other tokens (see Appendix D.3).

Figure 5 shows 1% randomly selected pairs of
α and ‖f(x)‖ in each word category. Even when
the same weight α is assigned, ‖f(x)‖ can vary,
suggesting that α and ‖f(x)‖ play a different roles
in attention.

4.3 Relation between frequency and ‖f(x)‖

In the previous section, we demonstrated that
‖f(x)‖ corresponding to the specific tokens (e.g.,
[SEP]) is small. Based on the high frequencies9 of

7Note that the attention mechanism has the constraint that the
sum of the attention weights becomes 1.0 (see Equation 2).

8Note that for any positive scalar λ ∈ R and vector x ∈ Rd,
‖λx‖ = λ‖x‖.

9The frequency ranks of the words [CLS], [SEP], period, and
comma, out of approximately 30,000 words, are 50, 28, 2,
and 3, respectively.

(a) α. (b) ‖f(x)‖.

Figure 4: The higher value of averaged α or ‖f(x)‖ for
[SEP] tokens in a given head, the darker its cell.

Figure 5: Relationship between α and ‖f(x)‖. Each
plot corresponds to a pair of αi,j and ‖f(xj)‖ in one
of the attention heads. Each plot is colored by the word
category corresponding to xj . Visualizations by cate-
gory are shown in Appendix D.3.

these word types10, we hypothesized that BERT
controlled contributions of highly frequent, less
informative words by adjusting the norm of f(x).

Settings: First, all the data were fed into the
model. Then, for each input token t, we collected
the weight α and ‖f(x)‖. We averaged α and
‖f(x)‖ for all the heads for each t to analyze the
trend of the entire model. Let r(·) be a function
that returns the frequency rank of a given word.11

We analyzed the relationship of r(t) with α and
‖f(x)‖.

Results: The Spearman rank correlation coeffi-
cient between the frequency rank r(t) and ‖f(x)‖
was 0.75, indicating a strong positive correlation.
In contrast, the Spearman rank correlation coef-
ficient did not show any correlation (ρ = 0.06)
between r(t) and α.12 The visualizations of their
relationships are shown in Appendix D.4.

These results demonstrate that the self-
10We call word type as “word.” Each instance of a word is

called “token.”
11We counted the frequency for each word type by reproduc-

ing the training data of BERT.
12The Spearman rank correlation coefficient without special

tokens, periods, and commas was 0.28 for the attention
weights and 0.69 for the norms.
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attentions in BERT reduce the information from
highly frequent words by adjusting ‖f(x)‖ and
not α. This frequency-based effect is consistent
with the intuition that highly frequent words,
such as stop words, are unlikely to play an
important role in solving the pre-training tasks
(masked-token prediction and next-sentence
prediction).

5 Experiments: Transformer for NMT

Additionally, we analyzed the source-target atten-
tion in a Transformer-based NMT system. One
major research topic in the NMT field is whether
NMT systems internally capture word alignment
between source and target texts, and if so, how
word alignment can be extracted from black-box
NMT systems. Li et al. (2019), Ding et al. (2019),
and Zenkel et al. (2019) empirically showed, us-
ing the weight-based method, that word align-
ment induced by the attention of the Transformer
is noisy. In this section, we show the analy-
sis of source-target attention using vector norms
‖αf(x)‖ and demonstrate that clean alignments
can be extracted from the source-target attention.
Word alignment can be used to provide rich infor-
mation for the users of NMT systems (Ding et al.,
2019).

Experimental procedure: Following Zenkel
et al. (2019) and Ding et al. (2019), we trained
a Transformer-based NMT system for German-to-
English translation on the Europarl v7 corpus13.
Next, we extracted word alignments from α and
‖αf(x)‖ under the force decoding setup. Fi-
nally, we evaluated the derived alignment using
the alignment error rate (AER) (Och and Ney,
2000). A low AER score indicates that the ex-
tracted word alignments are close to the refer-
ence. We used the gold alignment dataset pro-
vided by Vilar et al. (2006)14. Experiments were
performed on five random seeds, and the average
AER scores were reported. The experimental set-
tings are detailed in Appendix E.

5.1 Alignment extraction from attention
Weights or norms: A typical alignment extrac-
tion method uses attention weights (Li et al.,
2019; Ding et al., 2019; Zenkel et al., 2019).
Specifically, given a source-target sentence pair,
13http://www.statmt.org/europarl/v7
14https://www-i6.informatik.rwth-aachen.de/
goldAlignment/

Figure 6: An example of behavior of the source-target
attentions in an NMT system (German-to-English). At-
tentions in the earlier layers focus the source word
“ein” aligned with the input word “a,” while those
in the latter layers focus the source word “Schüler”
aligned with the output word “student.”

{s1, . . . , sJ} and {t1, . . . , tI}, word alignment is
estimated by calculating a source word sj that has
the highest weight when generating a target word
ti. We call this method the weight-based align-
ment extraction. In contrast, we propose a norm-
based alignment extraction method that extracts
word alignments based on ‖αf(x)‖ instead of α.
Formally, in these methods, the source word sj
with the highest attention weight or norm during
the generating of target word ti is extracted as the
word that is aligned with ti:

argmax
sj

αi,j or argmax
sj

‖αi,jf(xj)‖. (5)

In Section 5.2, following Li et al. (2019), we an-
alyze the word alignments that we obtained from
each layer by integrating H heads within the same
layer:

argmax
sj

H∑
h=1

αh
i,j or argmax

sj

‖
H∑

h=1

αh
i,jf

h(xj)‖,

where fh(xj) and αh
i,j are the transformed vector

and the attention weight at the h-th head, respec-
tively.

Alignment with input or output word: In our
preliminary experiments (Appendix E.3), we ob-
served that the behavior of the source-target at-
tention of the decoder differs between the earlier
and later layers. As shown in Figure 6, at the time
decoding the word ti+1 with the input ti, atten-
tion heads in the earlier layers assign large weights
or norms to sj corresponding to the input ti “a,”
whereas those in the latter layers assign large val-
ues to sj corresponding to the output word ti+1

“student.”

http://www.statmt.org/europarl/v7
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
https://www-i6.informatik.rwth-aachen.de/goldAlignment/
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Based on this observation, we explored two set-
tings for investigating alignment extraction meth-
ods: alignment with output (AWO) and alignment
with input (AWI). The AWO setting refers to the
approach introduced in Equation 5. Specifically,
alignments (sj , ti) were extracted by considering
a source word sj that gained the highest weight
(norm) when outputting a particular target word
ti.

In the AWI setting, alignments (sj , ti) were
extracted by considering a source word sj that
gained the highest weight (norm) when inputting
the word ti (i.e., predicting a word ti+1). Formally,
alignment with the AWI setting is calculated as
follows:

argmax
sj

αi+1,j or argmax
sj

‖αi+1,jf(xj)‖.

(6)

5.2 Comparative experiments

We compared the quality of the alignments that
were obtained by the following six methods:

• norm-based extraction with the AWO/AWI set-
tings

• weight-based extraction with the AWO/AWI set-
tings (Li et al., 2019; Zenkel et al., 2019; Ding
et al., 2019)

• gradient-based extraction (Ding et al., 2019)
• existing word aligners (Och and Ney, 2003; Dyer

et al., 2013)

We report the best and averaged AER scores
across the layers. In addition, we report on the
AER score at the head and the layer with the high-
est average ‖αf(x)‖ in the norm-based extrac-
tion.15 The settings are detailed in Appendix E.2.

The AER scores of each method are listed in Ta-
ble 3. The results show that word alignments ex-
tracted using the proposed norm-based approach
are more reasonable than those extracted using the
weight-based approach. Additionally, better word
alignments were extracted in the AWI setting than
in the AWO setting. The alignment extracted us-
ing the layer with the highest average ‖αf(x)‖
in the AWI setting is better than the gradient-
based method, and competitive with one of the ex-
isting word aligners—fast align.16 These results

15The average ‖αf(x)‖ of the layer was determined by the
sum of the average ‖αf(x)‖ at each head in the layer.

16Even at the head with the highest average ‖αf(x)‖. Al-
though the average score of five seeds in the AWI setting
was 35.5, four seeds out of them achieved great score range

Methods AER ±SD

Transformer – Attention-based Approach
— Alignment with output setting —

Weight-based
layer mean 68.4 1.0
best layer (layer 4 or 5) 47.7 1.7

Norm-based (ours)
layer mean 62.9 0.7
best layer (layer 5) 41.4 1.4
layer with the highest average ‖αf(x)‖ 83.0 1.1
head with the highest average ‖αf(x)‖ 87.1 2.3

— Alignment with input setting —
Weight-based

layer mean 68.5 1.9
best layer (layer 2) 29.8 3.7

Norm-based (ours)
layer mean 60.4 1.3
best layer (layer 2) 25.0 1.5
layer with the highest average ‖αf(x)‖ 25.0 1.5
head with the highest average ‖αf(x)‖ 35.5 21.0

Transformer – Gradient-based Approach
SmoothGrad from Ding et al. (2019) 36.4 -

Word Aligner
fast align from Zenkel et al. (2019) 28.4 -
GIZA++ from Zenkel et al. (2019) 21.0 -

Table 3: AER scores with different methods for
German-to-English translation. The closer the ex-
tracted word alignment is to the reference, the lower
the AER score. The “layer mean” denotes the average
of AER scores across all layers. Each value is the aver-
age of five random seeds.

show that much clearer word alignments can be
extracted from a Transformer-based NMT system
than the results reported by existing research.

The primary reason behind the differences be-
tween the results of the weight- and norm-based
methods was analogous to the finding discussed in
Section 4.2, while some specific tokens, such as
〈/s〉, the special token for the end of the sentence,
tended to obtain heavy attention weights; their
transformed vectors were adjusted to be smaller,
as shown in Figure 7.

5.3 Relationship between norms and
alignment quality

We further analyze the relationship between
‖αf(x)‖ and AER scores in the head-level. Fig-
ures 8a and 8b show the AER scores of the align-
ments obtained by the norm based extraction at
each head in the AWO and AWI settings. Fig-
ure 8c shows the average of ‖αf(x)‖ at each head.
The small ‖αf(x)‖ implies that α and ‖f(x)‖
tend to cancel out in the head.

Comparing Figures 8a and 8c, the average
‖αf(x)‖ and AER scores in the AWI setting

from 23.6-to 25.7. The score was 77.5 for a remaining
seed.
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(a) Reference. (b) α. (c) ‖αf(x)‖.

Figure 7: Examples of the reference and extracted alignments using each method in layer 2 (best layer) in the
AWI setting on one out of five seeds. Two misalignments in the weight-based extraction were resolved in the
norm-based analysis—alignments with the green frame. Examples of the extracted alignments in all the layers are
shown in Appendix E.4.

are inversely correlated (the Spearman rank and
Pearson correlation coefficients are −0.44 and
−0.52, respectively). This result is consistent
with Table 3, where the head or the layer with
the highest average ‖αf(x)‖ provides clean align-
ments in the AWI setting. This result suggests
that Transformer-based NMT systems may rely
on specific heads that align source and target to-
kens. This result is also consistent with the ex-
iting reports that pruning some attention heads in
Transformers does not change its performance; on
the contrary, it improves the performance (Michel
et al., 2019; Kovaleva et al., 2019).

In contrast, in the AWO setting (Figures 8b
and 8c), such a negative correlation is not ob-
served; rather, a positive correlation is observed
(Spearman’s ρ is 0.56, and the Pearson’s r is
0.55). Actually, in the AWO setting, the align-
ments extracted from the head/layer with the high-
est ‖αf(x)‖ is considerably worse than those
from the other settings in Table 3. Investigating
the reason for these contrasting results would be
our future work. In Appendix F, we also present
the results of a model with a different number of
heads.

6 Related work

6.1 Probing of Transformers

Transformers are used for many NLP tasks. Many
studies have probed their inner workings to un-
derstand the mechanisms underlying their suc-
cess (Rogers et al., 2020; Clark et al., 2019).

There are mainly two probing perspectives to
investigate these models; they differ based on
whether the target of the analysis is per-token level
or it considers token-to-token interactions. The

first category assesses a single word or phrase-
level linguistic capabilities of BERT, such as its
performance on part-of-speech tagging and word
sense disambiguation performance (Tenney et al.,
2019; Jawahar et al., 2019; Reif et al., 2019; Lin
et al., 2019; Wallace et al., 2019).

The latter category explores the ability of Trans-
formers to capture token-to-token interactions,
such as syntactic relations and word alignment in
the translation (Clark et al., 2019; Kovaleva et al.,
2019; Htut et al., 2019; Reif et al., 2019; Lin et al.,
2019; Goldberg, 2019; Ding et al., 2019; Zenkel
et al., 2019; Li et al., 2019; Raganato and Tiede-
mann, 2018). The present study is closely related
to the latter group; we have provided insights into
the token-to-token attention in Transformer-based
systems.

6.2 Analyzing the token-to-token interaction

Two types of methods are mainly considered to
analyze the token-to-token interactions in Trans-
formers. One is to track the attention weights, and
the other is to check the gradient of the output with
respect to the input of attention mechanisms.

Weight-based analysis: Many studies have an-
alyzed the linguistic capabilities of Transformers
by tracking attention weights. This type of anal-
ysis has covered a wide range of subjects, in-
cluding syntactic and semantic relationships (Tang
et al., 2018; Raganato and Tiedemann, 2018; Clark
et al., 2019; Reif et al., 2019; Jawahar et al., 2019;
Htut et al., 2019; Kovaleva et al., 2019; Mareček
and Rosa, 2019). However, as outlined in Sec-
tion 2.3, these studies have ignored the effect of
f(x). It has been actively discussed so far whether
the attention weights can be interpreted to explain
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(a) AER in the AWI setting. (b) AER in the AWO setting. (c) Averaged ‖αf(x)‖.

Figure 8: AER scores and averaged ‖αf(x)‖ in each head on one out of five seeds. The closer the extracted word
alignment is to the reference, the lower the AER score—the lighter the color. The larger the averaged ‖αf(x)‖,
the darker the color.

the models (Jain and Wallace, 2019; Serrano and
Smith, 2019; Wiegreffe and Pinter, 2019; Pruthi
et al., 2020; Vashishth et al., 2019).

Brunner et al. (2020) have introduced “effective
attention,” which has upgraded the weight-based
analysis. Their proposal is similar to ours; they ex-
clude attention weights that do not affect the out-
put owing to the application of transformation f
and input x in the analysis. However, our proposal
differs from theirs in some aspects. Specifically,
we aim to analyze the behavior of the whole at-
tention mechanism more accurately, whereas they
aim to make the attention weights more accurate.
Furthermore, the effectiveness of their approach
depends on the length of an input sequence; how-
ever, ours approach does not have such a limita-
tion (see Appendix G). Additionally, we incorpo-
rate the scaling effects of f and x, whereas Brun-
ner et al. (2020) have considered only the binary
effect—either the weight is canceled or not.

Gradient-based analysis: In the gradient anal-
ysis, the contribution of the input with respect to
the output of the attention mechanism is calculated
using the norm of a gradient matrix between the
input and the output vector (Pascual et al., 2020).
Intuitively, such gradient-based methods measure
the change in the output vector with respect to the
perturbations in the input vector. Estimating the
contribution of a to b =

∑
ka by computing the

gradient ∂b/∂a (= k) is analogous to estimating
the contribution of x to y =

∑
αf(x) by ob-

serving only an attention weight α.17 The two ap-

17For simplicity, we consider a linear example: b =
∑
ka.

We are aware that there is a gap between the two examples
in terms of linearity. Further exploration of the connection
to the gradient-based method is needed.

proaches have the same kind of problems; that is,
both ignore the magnitude of the input, a or f(x).

7 Conclusions and future work

This paper showed that attention weights alone are
only one of two factors that determine the output
of attention. We proposed the incorporation of an-
other factor, the transformed input vectors. Us-
ing our norm-based method, we provided a more
detailed interpretation of the inner workings of
Transformers, compared to the studies using the
weight-based analysis. We hope that this paper
will inspire researchers to have a broader view of
the possible methodological choices for analyzing
the behavior of Transformer-based models.

We believe that these findings can provide in-
sights not only into the interpretation of the be-
haviors of Blackbox NLP systems but also into de-
veloping a more sophisticated Transformer-based
system. One possible direction is to design an at-
tention mechanism that can collect almost no in-
formation from an input sequence as the current
systems achieve it by exploiting the [SEP] token.

In future work, we plan to apply our norm-based
analysis to attention in other models, such as fine-
tuned BERT, RoBERTa (Liu et al., 2019), and AL-
BERT (Lan et al., 2020). Furthermore, we expect
to extend the scope of analysis from the attention
to an entire Transformer architecture to better un-
derstand the inner workings and linguistic capabil-
ities of the current powerful systems in NLP.
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A Multi-head attention and the
norm-based analysis

Our norm-based analysis is applicable to the anal-
ysis of the multi-head attention mechanism imple-
mented in Transformers. The i-th output of the
multi-head attention mechanism y

integrated
i is cal-

culated as follows:

y
integrated
i =

∑
h

yh
i (7)

yh
i =

n∑
j=1

αh
i,jf

h(xj) (8)

fh(x) :=
(
xW V,h + bV,h

)
WO,h, (9)

where αh
i,j , W

V,h, bV,h, and WO,h are the same
as αi,j , W V , bV , and WO in Equations 3 and
4 for each head h, respectively. n is the number
of tokens in the input vectors. Equation 7 can be
rewritten as follows:

y
integrated
i =

n∑
j=1

∑
h αh

i,j fh(xj) (10)

As shown in Equation 10, the multi-head atten-
tion mechanism is also linearly decomposable,
and one can analyze the flaw of the information
from the j-th vector to the i-th vector by mea-
suring ‖

∑
h α

h
i,jf

h(xj)‖. In Section 5, we actu-
ally used ‖

∑
h α

h
i,jf

h(xj)‖ to extract the align-
ment from each layer’s multi-head attention.

The output of the multi-head attention mecha-
nism is calculated via the sum of the outputs of all
the heads and a bias bO ∈ Rd. Because adding a
fixed vector is irrelevant to the token-to-token in-
teraction that we aim to investigate, we omitted bO

in our analysis.

B The source of the dispersion of ‖f(x)‖

As described in Section 4.1, ‖f(x)‖ exhibits dis-
persion; however, it remains unclear whether this
dispersion is attributed to ‖x‖ or f . Hence, we
checked the dispersion of ‖x‖ and the scaling ef-
fects of the transformation f .

Dispersion of ‖x‖: First, we checked the coeffi-
cient of variation (CV) of ‖x‖. Table 4 shows that
the average CV is 0.12, which is less than that of
‖f(x)‖ (0.22). The value of ‖x‖ typically varies

between 0.88 and 1.12 times the average value of
‖x‖. The layer normalization (Ba et al., 2016)
that applied at the end of the previous layer should
have a large impact on the variance of ‖x‖.

Scaling effects of f : Second, we investigated
the scaling effect of the transformation f on the
norm of the input. Because the affine transfor-
mation f : Rd → Rd can be considered a linear
transformation Rd+1 → Rd+1 (Appendix C), the
singular values of f can be regarded as its scal-
ing effect. Figure 9 shows the singular values of
f in randomly selected heads in BERT. The singu-
lar values are displayed in descending order from
left to right. In each head, there is a difference of
at least 1.8 times between the maximum and mini-
mum singular values. This difference is larger than
that of ‖x‖, where ‖x‖ typically varies between
0.88 and 1.12 times the average value. These re-
sults suggest that the dispersion of ‖f(x)‖ is pri-
marily attributed to the scaling effect of f .

C Affine transformation as linear
transformation

The affine transformation f : Rd → Rd in Equa-
tion 4 can be viewed as a linear transformation
f̃ : Rd+1 → Rd+1. Given x̃ :=

[
x 1

]
∈

Rd+1, where 1 is concatenated to the end of each
input vector x ∈ Rd, the affine transformation f
can be viewed as:

f̃(x̃) = x̃W̃
V
W̃

O
(11)

W̃
V
:=


0

W V ...
0

bV 1

 ∈ R(d+1)×(d′+1)

(12)

W̃
O
:=


0

WO ...
0

0 . . . 0 1

 ∈ R(d′+1)×(d+1).

(13)

D Details on Sections 4.2 and 4.3

We describe the detailed experimental setup pre-
sented in Sections 4.2 and 4.3.

D.1 Notations
The dataset consists of several sequences; Data =
(s1, · · · , s|Data|). Each sequence consists of sev-
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Layer µ σ CV Max Min

12 (max CV) 20.49 4.62 0.23 32.84 4.13
7 (min CV) 21.64 1.40 0.06 23.03 11.87

Average 19.93 2.39 0.12 - -

Table 4: Mean (μ), standard deviation (σ), coefficient
of variance (CV), and maximum and minimum values
of ‖x‖; the former three are averaged on all the layers.

Figure 9: Singular values of f at randomly selected
heads in each layer. We use 〈layer〉-〈head number〉 to
denote a particular attention head. The singular values
are

eral tokens, sp = (tp1, · · · , t
p
|sp|), where tpq is the

q-th token in the p-th sequence. For simplicity, we
define the following functions:

Weight(p, q, `, h) =
1

|sp|

|sp|∑
i=1

α`,h
p,i,q

Norm(p, q, `, h) = ‖f `,h(x`
p,q)‖

WNorm(p, q, `, h) =
1

|sp|

|sp|∑
i=1

‖α`,h
p,i,qf

`,h(x`
p,q)‖,

where α`,h
p,i,q is the attention weight assigned from

the i-th pre-update vector to the q-th input vector
in the p-th sequence. h and ` denote that the score
is obtained from the h-th head of the `-th layer.
x`
p,q denotes the input vector for token tpq in the `-

th layer. f `,h(x`
p,q) is the transformed vector for

x`
p,q in the h-th head of the `-th layer.
Next, the vocabulary V of BERT is divided into

the following four categories:

A = {[CLS]}
B = {[SEP]}
C = {“.”, “,”}
D = V \ (A ∪B ∪ C). (14)

Let T (p, Z) be a function that returns all tokens
tpq belonging to the category Z in the p-th se-
quence. To formally describe our experiments,

several functions are defined as follows. Note that
we analyzed a model with 12 heads in each layer.

MeanN(Z, `, h, p) =
1

|T (Z, p)|
∑

t
p
q∈T (Z,p)

Norm(p, q, `, h)

SumW(Z, `, h, p) =
∑

t
p
q∈T (Z,p)

Weight(p, q, `, h)

SumWN(Z, `, h, p) =
∑

t
p
q∈T (Z,p)

WNorm(p, q, `, h)

HeadN(Z, `, h) =
1

|Data|
∑

sp∈Data

MeanN(Z, `, h, p)

HeadW(Z, `, h) =
1

|Data|
∑

sp∈Data

SumW(Z, `, h, p)

HeadWN(Z, `, h) =
1

|Data|
∑

sp∈Data

SumWN(Z, `, h, p)

LayerW(Z, `) =
1

12

12∑
h=1

HeadW(Z, `, h)

LayerWN(Z, `) =
1

12

12∑
h=1

HeadWN(Z, `, h).

The LayerW(·) and LayerWN(·) functions are
used to analyze the average behavior of the heads
in a layer.

D.2 Experimental setup for Section 4.2
In Figure 3, the results of each layer are reported
for each category. In Figures 3a and 3b, the val-
ues for each category Z were calculated using
LayerW(Z, `) and LayerWN(Z, `), respectively.

In Figure 4, α and ‖f(x)‖ in the h-th
head of the `-th layer were calculated us-
ing HeadW(Z, `, h) and HeadN(Z, `, h), respec-
tively. The scores reported in Table 2 are
the Spearman rank correlation coefficient r be-
tween Weight(p, q, `, h) and WNorm(p, q, `, h).
We calculated the r using all the pairs of
Weight(p, q, `, h) and WNorm(p, q, `, h) for the
possible values of p, q, `, and h. In Figure 5, each
plot corresponds to the pair of Weight(p, q, `, h)
and WNorm(p, q, `, h), where the combination of
(p, q, `, h) was randomly determined.

D.3 Visualizations of α and ‖f(x)‖ for each
word category

As described in Section 4.2, α and ‖f(x)‖ for
the [SEP] token were canceled out in almost all
heads (Figure 4). Here, we show the trends for the
other categories—B, C, and D in Equation 14.
Figures 10, 11, and 12 show the trends of α and
‖f(x)‖ for category B (the [CLS] token), C (pe-
riods and commas), and D (other tokens), respec-
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(a) α. (b) ‖f(x)‖.

Figure 10: α and ‖f(x)‖ corresponding to [CLS] to-
ken, averaged on all the input text.

(a) α. (b) ‖f(x)‖.

Figure 11: α and ‖f(x)‖ corresponding to periods and
commas, averaged on all the input text.

tively. The values in these figures were calculated
as described in Appendix D.2. Figures 10 and 11
show that the trends for categories B and C were
analogous to those for the [SEP] token; the large α
was canceled by the small ‖f(x)‖. However, the
trends for category D do not exhibit the trends of
the negative correlation between α and ‖f(x)‖. In
each heatmap of ‖f(x)‖, the color scale is deter-
mined by the maximum value of ‖f(x)‖ in each
category.

We also reported the relationship between α and
‖f(x)‖ in Section 4.2 (Figure 5). Figure 13 shows
the results for each word category to provide a
clearer display of the results.

D.4 Experimental setup and visualizations
for Section 4.3

In Section 4.3, we analyzed the relationship be-
tween the word frequency and ‖f(x)‖. To for-
mally describe our experiments, we further define
the functions as follows:

AvgW(p, q) =
1

12 · 12

12∑
`=1

12∑
h=1

Weight(p, q, `, h)

AvgN(p, q) =
1

12 · 12

12∑
`=1

12∑
h=1

Norm(p, q, `, h).

Note that we analyzed a model comprising 12
layers; each layer has 12 attention heads. Let

(a) α. (b) ‖f(x)‖.

Figure 12: α and ‖f(x)‖ corresponding to other to-
kens, averaged on all the input text.

𝛼

𝑓
𝒙

(a) [CLS].

𝛼

𝑓
𝒙

(b) [SEP].

𝛼

𝑓
𝒙

(c) Periods and commas.

𝛼

𝑓
𝒙

(d) Other tokens.

Figure 13: Relationship between α and ‖f(x)‖ for
each category.

r(·) be a function that returns the frequency rank
of a given word. We first calculated the Spear-
man rank correlation coefficient between r(tpq) and
AvgW(p, q). The score was 0.06, which suggests
that there is no relationship between α and the fre-
quency rank of the word. Then, we calculated
the Spearman rank correlation coefficient between
r(tpq) and AvgN(p, q). The score was 0.75, which
suggests a strong correlation between ‖f(x)‖ and
the frequency rank of the word; Figure 14 shows
these results.

In addition, the results for the word frequency,
instead of the frequency rank, are shown in Fig-
ure 15. c(·) denotes a function that returns the fre-
quency of a given word in the training dataset of
BERT. We reproduced the dataset because it is not
released.

E Details on Section 5

E.1 Hyperparameters and training settings
We used the Transformer (Vaswani et al., 2017)
NMT model implemented in fairseq (Ott et al.,
2019) for the experiments. Table 5 shows the hy-
perparameters of the model, which were the same
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(a) Relationship between r(t) and AvgW.

(b) Relationship between r(t) and AvgN.

Figure 14: Relationship between frequency rank
r(tpq) and AvgW(p, q), and that between r(tpq) and
AvgN(p, q).

as those used by Ding et al. (2019). We used the
model with the highest BLEU score in the devel-
opment set for our experiments.

We conducted the data preprocessing18 follow-
ing the method by Zenkel et al. (2019) and Ding
et al. (2019). All the words in the training data
of the NMT systems were split into subword
units using byte-pair encoding (BPE, Sennrich
et al. (2016)) with 10k merge operations. Fol-
lowing Ding et al. (2019), the last 1000 instances
of the training data were used as the development
data.

E.2 Settings of the word alignment extraction
First, we applied BPE, which was used to split
the training data of the NMT systems to create
the evaluation data used for calculating the AER
scores. Next, we extracted the scores of α and
‖αf(x)‖ for each subword in the evaluation data
for the force decoding setup. The gold align-
ments are annotated at the word-level, not the
subword-level. To calculate the word-level align-
ment scores, α and ‖αf(x)‖ for the subwords
were merged along with the target token in the
gold data by averaging, then merged along with
the source tokens in the gold data by summation.
These operations were the same as Li et al. (2019).
18https://github.com/lilt/alignment-scripts

(a) Relationship between c(t) and AvgW.

(b) Relationship between c(t) and AvgN.

Figure 15: Relationship between frequency count
c(tpq) and AvgW(p, q), and that between c(tpq) and
AvgN(p, q).

In existing studies, 〈/s〉, the special token for
the end of the sentence, was probably removed in
calculating word alignments. We included 〈/s〉 as
the alignment targets and we considered the align-
ments to 〈/s〉 as no alignment. In other words, if
the model aligns a certain word with 〈/s〉, we as-
sume that the model decides that the word is not
aligned to any word.

E.3 Layer-wise analysis

We preliminarily investigated how the source-
target attentions in a Transformer-based NMT sys-
tem behave depending on the layer. Tang et al.
(2018) have reported that they behave differently
depending on the layer. The AER scores in the
AWI and AWO settings were calculated for each
layer (Figure 16). In the AWO setting, AER scores
tend to be better in the latter layers than in the
earlier layers (Figure 16a). In contrast, the AER
scores tend to be better in the earlier layers than in
the latter layers in the AWI setting (Figure 16b).

These results suggest that the earlier and lat-
ter layers focus on the source word that is aligned
with the input and output target word, respectively
(as shown in Figure 6). Furthermore, we believe
that it is a convincing result to extract cleaner word
alignments from the AWI setting than the AWO
setting (Figure 16), because the AWI setting is

https://github.com/lilt/alignment-scripts
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Fairseq model

architecture transformer iwslt de en
encoder embed dim. 512
decoder embed dim. 512
encoder ffn embed dim. 1024
decoder ffn embed dim. 1024
encoder attention heads 4
decoder attention heads 4
encoder layers 6
decoder layers 6

Activation function Relu

Loss type label smoothed cross entropy
label smoothing 0.1

Optimizer

algorithm Adam
learning rates 0.001
β1 0.9
β2 0.98
weight decay 0.0
clip norm 0.0

Learning rate scheduler
type inverse sqrt
warmup updates 4,000
warmup init lrarning rate 1e-07

Training

batch size 80
max tokens 4000
max epoch 100
update freq 8
drop out 0.1
seed 2
number of GPUs used 2

Table 5: Hyperparameters of the NMT model.

Layer

Weight-based

Norm-based

(a) AWO setting.

Layer

Weight-based

Norm-based

(b) AWI setting.

Figure 16: Layer-wise AER scores. Each value is the
average of five random seeds. The closer the extracted
word alignment is to the reference, the lower the AER
score—the lighter the color.

more advantageous. The main advantage is that
while the decoder may fail to predict the correct
output words, the input words are perfectly accu-
rate owing to the teacher forcing.

E.4 Alignments in different layers

Figures 17 to 22 show additional examples of the
extracted alignments from the different layers of

the NMT system. Note that the color scale in each
heatmap is determined by the maximum value in
each figure. One can observe that while the atten-
tion weights α are biased towards 〈/s〉, the norms
‖αf(x)‖ corresponding to the token are small.

F Word alignment experiments on
different settings

To verify whether the results obtained in the
Section 5 are reproducible in different settings,
we conducted an additional experiment using the
model with a different number of attention heads.
Specifically, we used a model with eight atten-
tion heads in both the encoder and decoder. Ta-
ble 6 shows the AER scores of the 8-head model.
As with the results obtained by the 4-head model,
word alignments extracted using the proposed
norm-based approach were more reasonable than
those extracted using the weight-based approach,
and better word alignments are extracted in the
AWI setting than in the AWO setting. Further-
more, the alignments extracted using the head or
the layer with the highest average ‖αf(x)‖ in the
AWI setting are competitive with one of the exist-
ing word aligners—fast align. With respect to the
weight-based extraction, the scores obtained using
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(a) Reference. (b) Attention-weights. (c) Vector-norms (ours).

Figure 17: Examples of the reference alignment and the extracted patterns by each method in layer 1. Word pairs
with a green frame shows the word with the highest weight or norm. The vertical axis represents the input source
word in the decoder, and the pairs with a green frame are extracted as alignments in the AWI setting. Note that
pairs that contain 〈/s〉 not extracted.

(a) Attention-weights. (b) Vector-norms.

Figure 18: Examples of the reference alignment and
the extracted patterns by each method in layer 2.

(a) Attention-weights. (b) Vector-norms.

Figure 19: Examples of the reference alignment and
the extracted patterns by each method in layer 3.

the 8-head model were worse than those obtained
using the 4-head model. This may be owing to the
increase in the number of heads that do not capture
reasonable alignments.

Figures 23a and 23b show the AER scores of
the alignments obtained by the norm-based extrac-
tion at each head on one out of five seeds. Fig-
ure 23c shows the average of ‖αf(x)‖ at each
head. As with the results obtained by the 4-head
model, the heads with the low (i.e., better) AER
score in the AWI setting tended to have the high
‖αf(x)‖ (the Spearman rank and Pearson correla-

(a) Attention-weights. (b) Vector-norms.

Figure 20: Examples of the reference alignment and
the extracted patterns by each method in layer 4.

(a) Attention-weights. (b) Vector-norms.

Figure 21: Examples of the reference alignment and
the extracted patterns by each method in layer 5.

tion coefficients between the AER scores and av-
eraged ‖αf(x)‖ among the 6×8 heads are −0.26
and −0.50). In contrast, in the AWO setting, such
a negative correlation is not observed; rather, a
positive correlation is observed (the Spearman’s ρ
is 0.40 and the Pearson’s r is 0.40).

Additionally, following Appendix E.3, the AER
scores for both the AWI and AWO settings for
each layer were calculated (Figure 24). As with
the 4-head model (Appendix E.3), the latter layers
correspond to the AWO setting and the earlier lay-
ers corresponds to the AWI setting in the 8-head
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(a) Attention-weights. (b) Vector-norms.

Figure 22: Examples of the reference alignment and
the extracted patterns by each method in layer 6.

Methods AER ±SD

Transformer – Attention-based Approach
— Alignment with output setting —

Weight-based
layer mean 70.4 0.6
best layer (layer 4 or 5) 49.3 1.2

Norm-based (ours)
layer mean 63.2 0,7
best layer (layer 5) 43.4 0.8
head with the highest average ‖αf(x)‖ 87.2 0.6
layer with the highest average ‖αf(x)‖ 83.7 2.2

— Alignment with input setting —
Weight-based

layer mean 76.6 1.7
best layer (layer 2 or 3) 38.7 8.9

Norm-based (ours)
layer mean 59.9 1.0
best layer (layer 2 or 3) 26.3 1.9
head with the highest average ‖αf(x)‖ 24.9 1.7
layer with the highest average ‖αf(x)‖ 26.5 1.9

Word Aligner
fast align from Zenkel et al. (2019) 28.4 -
GIZA++ from Zenkel et al. (2019) 21.0 -

Table 6: Results on a model trained with the same set-
tings as described in Appendix E.1 except that the num-
ber of attention heads in the encoder and decoder is 8.
Each value is the average of five random seeds.

model.

G Comparison with effective attention
(Brunner et al., 2020)

In this section, we discuss the difference between
our approach and “effective attention” (Brunner
et al., 2020), which is an enhanced version of the
weight-based analysis. The effective attention ex-
clude the components that do not affect the output
owing to the application of transformation f and
input x from the attention weight matrix A. The
output-irrelevant components are derived from the
null space of the matrix T , which is the stack of
f(x). Figure 25a shows the Pearson correlation
coefficient between the raw attention weight and
the effective attention. Since the dimension of the
null space of the matrix T depends on the length of

(a) AER in the AWO setting.

(b) AER in the AWI setting.

(c) Averaged ‖αf(x)‖.

Figure 23: AER scores and averaged ‖αf(x)‖ for each
head in a model with 8 heads.

the input sequence, as shown in Figure 25a, the ef-
fective attention and raw attention weight are iden-
tical for short input sequences. Figure 25b shows
the Pearson correlation coefficient between the
raw attention weight and our norm-based method.
Since we incorporate the scaling effects of f and
x, which contain canceling, our proposed method
‖αf(x)‖ differs from the raw attention weight,
whether the input sequence is long or short.
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Layer

Weight-based

Norm-based

(a) AWO setting.

Layer

Weight-based

Norm-based

(b) AWI setting.

Figure 24: Layer-wise AER scores. Each value is the
average of five random seeds. The closer the extracted
word alignment is to the reference, the lower the AER
score—the lighter the color.

(a) Effective attention.

(b) ‖αf(x)‖.

Figure 25: Each point represents the Pearson correla-
tion coefficient of raw attention and each method to-
ward token length.


