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Abstract

Many NLP tasks have benefited from transfer-
ring knowledge from contextualized word em-
beddings, however the picture of what type of
knowledge is transferred is incomplete. This
paper studies the types of linguistic phenom-
ena accounted for by language models in the
context of a Conversational Question Answer-
ing (CoQA) task. We identify the problematic
areas for the finetuned RoBERTa, BERT and
DistilBERT models through systematic error
analysis - basic arithmetic (counting phrases),
compositional semantics (negation and Seman-
tic Role Labeling), and lexical semantics (sur-
prisal and antonymy). When enhanced with
the relevant linguistic knowledge through mul-
titask learning, the models improve in perfor-
mance. Ensembles of the enhanced models
yield a boost between 2.2 and 2.7 points in F1
score overall, and up to 42.1 points in F1 on the
hardest question classes. The results show dif-
ferences in ability to represent compositional
and lexical information between RoBERTa,
BERT and DistilBERT.

1 Introduction

It has recently been recognized in the research com-
munity that neural network models generally do
not exploit the compositionality of language, of-
ten relying on superficial features1. Composition-
ality refers to the fact that linguistic constituents
combine into phrases hierarchically to compose
meaning. Contextualized word embeddings (BERT,
Devlin et al., 2018; RoBERTa, Liu et al., 2018; Dis-
tilBERT, Sanh et al., 2019; etc.) can be expected
to be limited in their ability to learn such complex
aspects of language, since the models are usually
trained with cloze filling and next sentence pre-

1https://2020.ieeeicassp.
org/program/plenary-speakers/
deep-representation-learning/

diction objectives, and are not directly exposed to
semantic relations between phrases.

While larger models yield higher performance,
they still lack generalization ability (Talmor et al.,
2019) and are computationally expensive, which
has led to an increasing interest in reducing model
size. For instance, DistilBERT is built using the
knowledge distillation technique (Bucilă et al.,
2006; Hinton et al., 2015) on BERT, which leads
to a lighter and faster model that does not lose
much in performance on the majority of the tested
tasks. On the other hand, state-of-the-art models
use vast amounts of training data - 16GB for BERT,
10 times more for RoBERTa.

This study tackles the question of what type of
linguistic knowledge is missing from contextual-
ized word embeddings, comparing models on the
basis of their training set size (BERT vs. RoBERTa)
as well as their model size (BERT vs. DistilBERT).

The tasks of machine reading comprehension
(MRC) and dialogue are particularly fitting for this
purpose, due to the fact that they require a sys-
tem to interpret language within a context and per-
form semantic and pragmatic inference between
sentences. The task in the Conversational Question
Answering dataset (Reddy et al., 2019, CoQA) is
MRC combined with dialogue - the input to the
system is a context document and a dialogue of
questions and answers about that text, which lead
up to the question that the system is required to
answer. An example from CoQA follows.

Background: [...] At the time, the name did not
describe a single political entity or a distinct popu-
lation of people [...]
Question n-1: Did the name describe a political
body?
Answer n-1: No
Question n: Did it describe a people group?
Answer n: No

https://2020.ieeeicassp.org/program/plenary-speakers/deep-representation-learning/
https://2020.ieeeicassp.org/program/plenary-speakers/deep-representation-learning/
https://2020.ieeeicassp.org/program/plenary-speakers/deep-representation-learning/
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In order to answer question n without relying on
superficial features, one needs to be able to inter-
pret the logical operators “and” and “or” (under-
lined), and their scopes, as well as determine that
the italicized phrases are synonymous. This study
tackles such cases with linguistically enhanced
models. Our assumption in this paper is that if
a model performs poorly on the classes of question-
answer (QA) pairs that require certain linguistic
knowledge X (e.g. negation, disjunction and syn-
onymy in the example above) for their solutions,
and if its performance boosts when it explicitly
learns X (e.g. through a multitask setting with an
auxiliary linguistic task), it can be considered ev-
idence for the original model’s lack of linguistic
representations of X. The main contributions of
this paper can be summarized as:

1. A qualitative error analysis of the models in
the BERT family on a conversational question
answering task;
2. An automatic feature extraction method
for quantitative evaluation of the lexical and
compositional semantics learnt by the models;
3. An improvement of the model performance by
injecting linguistic knowledge into the pre-trained
models through a multi-task approach.

2 Related Work

There has recently been much interest in diagnostic
analysis of BERT, studying what type of linguistic
representations it learns. Rogers et al. (2020) pro-
vide an overview of such papers under the name
of BERTology, showing what types of linguistic
phenomena cause difficulty for BERT.

Some such studies focus on compositional se-
mantics in the form of negation, Negative Polarity
Items (NPIs) and Semantic Role Labeling (SRL).
In testing NPI licensing, Warstadt et al. (2019) per-
form a cloze task and compare whether BERT pre-
dicts a higher probability for an NPI in a licensed
context or outside of such a span. They show that
while BERT is capable of detecting NPI licensors
(e.g. “don’t”) and NPIs themselves (e.g. “ever”), it
only does so successfully in cases where the span
of the NPI appears in the canonical position with
regard to its licensor. This suggests that the model
relies on word order instead of parsing the syntactic
dependencies.

When it comes to interpreting negation, Ettinger
(2020) analyzes whether BERT predicts a higher

probability for sentences such as “Robin is not a
tree” and “Robin is a bird” than “Robin is a tree”
and “Robin is not a bird”, and conclude that BERT
is not very sensitive to negation. This test, how-
ever, relies strongly on BERT’s ability to represent
lexical semantics of the nouns and the lack of in-
tersection of their typical meanings. It could be
argued that it therefore is not a reliable test to tell
whether BERT can make logical deductions based
on negation. Instead, we argue that it should be
tested in a context where “Robin” can be anything,
including a name of a tree, so that it can be deter-
mined whether BERT can infer that in such a case
“Robin” would not be a bird.

Similarly, Ettinger (2020) has also addressed
the question of whether BERT has the knowledge
required to infer semantic roles from a text. For
example, she tests BERT’s ability to assign a higher
probability to the word “served” in a statement such
as “the restaurant owner forgot which customer the
waitress had served” than in “the restaurant owner
forgot which waitress the customer had served”.
This test is analogous to the previous example with
a Robin, in the sense that it tests the model’s abil-
ity to learn biases of common semantic roles that
certain nouns manifest. The model can simply rely
on the fact that one of these two word orders is
more likely than the other, however this does not
provide evidence that BERT can make inferences
about semantic roles. Thus, it remains to be veri-
fied whether BERT can abstract the semantic roles
from any range of naturally occurring sentences,
some of which exhibit uncommon semantic role
occurrences (e.g. customers serving waiters).

In a similar vein, previous research has shown
that the embeddings of antonyms in models such
as BERT are not clearly distinguishable (Talmor
et al., 2019). This, similarly to issues with negation,
shows that BERT is not good at representing non-
intersecting denotations.

What is more, Richardson et al. (2019) show that
BERT performs poorly on artificially constructed
diagnostic items which test the model’s ability
to perform logical inference. Nonetheless, they
demonstrate that it is possible for BERT to extrap-
olate the relevant linguistic phenomena quickly by
finetuning the model on the same artificial data.

Pragmatics also plays a role in determining re-
lations between sentences, however this field has
been less explored with regard to contextualized
word embeddings. Some research has probed
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BERT on its capabilities to infer pragmatic phe-
nomena related to negation, such as factives, con-
ditionals and questions (Jiang and de Marneffe,
2019). For instance, one has to make the pragmatic
inference that a speaker would only utter “not a
one of them realized I was not human” if their lack
of humanity was already established as common
knowledge. Jiang and de Marneffe (2019) show
that BERT takes longer to learn such complex rea-
soning than negation.

In contrast, some studies research what com-
mon sense knowledge and abstract reasoning that
BERT and other language models learn. Talmor
et al. (2019) show that there is a large gap between
BERT and RoBERTa with regard to their inference
abilities. For instance, since RoBERTa is trained
on significantly more data, it can determine which
person is older based on their ages or dates of birth,
while BERT cannot. Interestingly, however, even
RoBERTa is shown to rely on the range of examples
seen at training time, as it is not able to generalize
to the ages of people who are not born between
1920s and 2000s. This suggests that there is a need
for a more abstract reasoning ability in models
such as BERT, which does not seem to be solved
by an increased size of the training set. Finally, Ju
et al. (2019) show that even for the RoBERTa-based
abstractive model, which reached state-of-the-art
results on CoQA at the time, questions with numer-
ical answers account for a disproportionately large
fraction of errors.

Based on the studies conducted so far, one gen-
eral trend appears to be pertinent. That is, while
many studies have explored the linguistic knowl-
edge of BERT, it is still not clear whether BERT
is able to infer compositional structures from text
as opposed to relying on biases. In addition, to the
best of our knowledge, no probing tasks have been
performed on BERT in the conversational ques-
tion domain, which is fitting for analyzing BERT’s
behaviour in complex reasoning and inference. Fi-
nally, while larger models such as RoBERTa yield
gains in performance, they still lack in generaliza-
tion ability. Thus, this paper aims to shed light on
the less scrutinized aspects of BERT’s linguistic
capabilities.

3 Dataset

The CoQA dataset2 is used as a case study in this
paper. It covers several domains and amounts to

2https://stanfordnlp.github.io/coqa/

127,000+ samples including a story, a QA pair and
the dialogue history. The answers to the questions
are based on the context document, however they
can be paraphrases. The training data also contains
rationales, which are the spans of the background
text containing both the answer and the context re-
quired to determine the answer. The test set is com-
posed of the Reddit and Science domains, while
the rest of the domains are split between train, de-
velopment and test (see Table 1). Covering various
domains makes CoQA diverse with regard to style
and content of the dataset, whereas the addition of
the dialogue history makes the dataset interesting in
that it combines different language modes - a writ-
ten paragraph and a conversation. Such diversity
allows for a robust analysis of linguistic relations
since it gives access to negation in questions as
well as statements, fictional settings of unusually
flipped semantic roles, counting of any abstract or
concrete objects, etc. The state-of-the-art models
on this dataset (Ju et al., 2019) use RoBERTa, while
the dataset has not received much attention with
smaller or distilled models such as DistilBERT.

#Passages #QA Passage #Turns
Domain pairs Length per passage

Childrens Stories 750 10.5k 211 14.0
Literature 1,815 25.5k 284 15.6
School exams 1,911 28.6k 306 15.0
News 1,902 28.7k 268 15.1
Wikipedia 1,821 28.0k 245 15.4

Reddit 100 1.7k 361 16.6
Science 100 1.5k 251 15.3

Total 8,399 127k 271 15.2

Table 1: CoQA dataset details (Reddy et al., 2019).

4 Baseline Models

The input to the model is a concatenation of the
background story, the latest dialogue history of 64
tokens, and the current question. The length of
the input is limited to 512 tokens. We build the
baseline RoBERTa, BERT and DistilBERT base
models for CoQA as extractive models, within the
framework of Wolf et al. (2019) and following Wu
et al. (2019), who produce the highest results with
a BERT-based extractive model on CoQA. An ex-
tractive model does not generate the answer as an
abstractive model would, but selects the span in the
document that best matches the gold answer. In
order to train our extractive models, the substrings

https://stanfordnlp.github.io/coqa/
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of the rationales which are most similar to the gold
answers (as measured by F1) are selected as the
training labels.

Following a standard procedure, a linear classi-
fier head is added on top of BERT with ReLU acti-
vation which classifies every token in the input se-
quence as start or end of the answer span. Another
linear classifier predicts whether each token in the
input span falls within the rationale span or outside
of it. Finally, one more classifier predicts whether
the example is FREEFORM, has a YES/NO answer or
is UNANSWERABLE. YES/NO/UNANSWERABLE

answers are used instead of the predicted span if
the model predicts the latter classes with higher
confidence than the start and end tokens of the an-
swer. Models are trained for 4 epochs (taking a
few hours on a single GeForce GTX 1080 Ti GPU)
with a learning rate of 3e−5 and AdamW opti-
mizer (Loshchilov and Hutter, 2017). The same
hyperparameters are used for all models trained in
this work.

5 Baseline Results and Error Analysis

On the development set3, the RoBERTa model gets
81.2 points F1 4, BERT scores 76.9 F1 and falls two
points short of the Wu et al. (2019) implementation,
and DistilBERT scores 66.6 F1, which establishes
a baseline as this is the first work using DistilBERT
on CoQA (see Table 2).

To resolve what types of linguistic inference are
the hardest for the baseline models, several poten-
tially difficult QA classes are analyzed. They are
defined based on the findings of previous research
as well as the observations of a qualitative evalua-
tion of the errors made by the BERT model. Then, a
quantitative evaluation of how the baseline models
perform on each class is performed. There is ample
variation in how the models score on various exam-
ple classes (see Table 2). Nonetheless, a noticeable
trend appears across the three models which are
failing in similar classes, with DistilBERT lagging
behind BERT in most of the classes, by up to 15
points in F1 in some, and RoBERTa beating BERT
by a smaller margin.

The first expected source of error for the base-

3Due to a limitation of at most 2 submissions per week for
official evaluation on CoQA, the experiments on the test set
are not included.

4The results do not compare to the 89.5 F1 score of the
extractive model of Ju et al. (2019), who do not report which
RoBERTa model they use. The difference would be accounted
for if they use RoBERTa large.

line models is the inability to count listed phrases.
Since the models are extractive, counting cannot
fall within their capabilities. For example, the ra-
tionale below lists the characters in the background
story:

Rationale: a poor man Ti, his son Dicky and their
alien dog CJ7
Question: How many characters were there?
Answer: Three

In the current setting the models cannot chunk
the text into noun phrases and then count the
chunks to answer the question, as they are lim-
ited to extracting the answer from the background
text. While the model performance is satisfactory
on a wide range of questions with numerical an-
swers (NUM), they fail consistently on questions
with answers in the integer set between 1 and 5
(1-5). The NUM class is defined using a state-of-
the-art rule-based question classification system
from Madabushi and Lee (2016), which evaluates
each QA based on the question alone. The contrast
between the scores on the two classes can be ex-
plained by the fact that while extracting numerical
answers such as dates is easy for the models, they
struggle on the task of counting linguistic objects,
which are usually manifested in low value integers.

The second expected problematic area is nega-
tion. Negation cues are words (“not”, “without”)
or morphemes (“dis-”, “un-”, “ab-”), which negate
the context that they span over. The example below
illustrates two ways that the model can fail in face
of negation cues.

Rationale: Something looked like a bird’s belly
[...] it was not a bird’s belly [...] a bottle floated
there
Question: What looked like a bird’s belly?
Answer: A bottle
Wrong answer 1: A bird’s belly
Wrong answer 2: Not a bird’s belly

The most general type of error is neglecting the
negation cue altogether and answering the ques-
tion with Wrong answer 1. This reflects on the
model’s inability to determine that the noun phrase
“a bird’s belly” falls under the scope of the negation
cue “not”. Wrong answer 1 would be the correct
answer if the phrase was not negated. The second
and more rarely observed type of error reflects a
lack of pragmatic knowledge as opposed to seman-
tic or syntactic. In Wrong answer 2 the model
could be argued to have answered correctly as it
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PPPPPPModel
class overall NUM 1-5 NEG YES NO SENT ANT ORD SRL- SRL+ HUM LOC ENT SURP

size 7983 972 128 436 790 682 2443 185 6817 3175 1242 1418 624 1089 433

RoBERTa 81.2 76.4 40.1 72.9 89.5 85.9 83.0 82.3 81.8 80.7 83.5 83.2 83.6 83.1 78.6
BERT 76.9 77.2 41.9 68.9 85.3 77.3 79.0 74.8 77.2 76.4 78.5 77.4 80.8 79.4 74.1
DistilBERT 66.6 69.6 36.8 56.7 82.1 71.4 69.0 71.3 67.2 65.8 70.0 64.2 65.4 70.0 58.9

Table 2: The results of the baseline models on the CoQA development set (F1 scores). The grayscale colors reflect
the variation within models between QA classes.

is technically true that what looked like a bird’s
belly was not a bird’s belly. However assuming
Grice’s maxim of quantity, which states that one
should be as informative as required (Grice, 1989),
the answer is not satisfactory. Wrong answer 2 is
not informative at all as it has already been implied
by the question. We define the NEG QA class as
containing answers that are embedded under nega-
tion. For recognizing such answers, negation cues
and their spans are detected with a BERT-based
model following Khandelwal and Sawant (2020)
and trained on the Sherlock dataset (Morante and
Blanco, 2012). We reproduce the results on that
dataset before using the model for detecting the
negated spans in the background documents in the
CoQA dataset to find the NEG type answers. Our
baseline models perform worse on the NEG QA

class than overall, and score much higher on ques-
tions with YES answers than NO answers, which
suggests that the models do not interpret negation
correctly. The effect of negation on performance is
particularly stark in the case of DistilBERT.

Furthermore, the ANT class is composed of ex-
amples in which the rationale contains antonyms
of the words in the question, using WordNet (Fell-
baum, 1998). Here explicit negation is not necessar-
ily involved, however the model’s ability to reason
over semantic polarity is tested in this QA class.
Our baseline results on class ANT are in line with
previous conclusions stating that BERT is not good
at representing antonymy, as it scores lower on this
class than overall. Yet interestingly, DistilBERT as
well as RoBERTa perform better on this subclass of
questions than overall. We conjecture that lexical
semantics is the strongest feat of BERT, therefore it
is likely that DistilBERT retains most of the lexical
information such as antonymy through the process
of distillation. On the other hand, RoBERTa learns
more about lexical features such as antonymy from
the huge size of the training set.

In addition, SENT is a QA class in which the sen-

timent of the sentence containing the rationale is
different from the sentiment of the question. The
class items are determined by sentence splitting
(Honnibal and Montani, 2017) and sentence-level
sentiment classification (Wolf et al., 2019). This
class is intended to capture examples where the
polarity between the question and the answer can
be expressed not only by negation or antonymy
but also any other means, for example pragmatics.
However, a qualitative analysis of the examples of
the SENT class shows that the examples which con-
tain contradictory sentiments between the question
and the answer mostly do not require one to deter-
mine the sentiment in order to answer the question
correctly. For instance, the question below has a
slightly negative connotation about a long job hunt:

Rationale: Nearly four years later, as Obama seeks
reelection, Casillas has finally landed his first full-
time job, emerging out of the group known as the
long-term unemployed.
Question: How much later did he get his next job?
Answer: Nearly four years later

In contrast, the rationale takes a more positive
outlook. Nonetheless, the answer is “four years”,
regardless of whether that is considered too long or
not. There generally does not appear to be a rela-
tion between the sentiment values of the rationale
and question and the model predictions. Accord-
ingly, neither of the baseline models struggle to
answer SENT questions.

Moreover, as stated in Reddy et al. (2019), the
order of questions on the CoQA dataset follows the
natural order of text. That is, later questions refer,
generally, to information presented towards the end
of the background story. Hence, the one answering
the questions ought to make inferences about what
has already been discussed and where in the story
they are when a given question is posed. In some
cases this knowledge can be crucial for reaching
the correct answer. For instance, in the example
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below, one has to determine what time within the
story the question refers to.

Background: [...] The hospital had been bombed
and Hans had made his way back into Western
Germany on foot. [...]
Question: Was he in the Eastern or Western part?
Answer: East Germany

That is, the answer differs depending whether
the question refers to Hans’s location prior or post
his journey, which is also reflected in the different
answers that the human annotators provide to this
question. In this case the answer is “East Germany”
even though that part of the country is never men-
tioned in the text, which makes the example very
challenging with regard to pragmatic inference. In
order to evaluate how our models perform with
regard to following the dialogue flow, they are eval-
uated on items which do in fact follow the order
of the document, so that the answer to question n
in the text is subsequent to the answer to question
n−1 (ORD). It appears that all baseline models are
able to infer this order to some extent and perform
better on such questions than those that jump to
previous passages in the text.

Furthermore, examples are classified with regard
to whether the order of the semantic roles men-
tioned in the question is the same (SRL+) or differ-
ent (SRL-) to the semantic role order in the sentence
containing the rationale. SRL is performed employ-
ing an AllenNLP (Shi and Lin, 2019) model. To il-
lustrate, Figure 1 shows an example where the roles
of agent (Arg0) and patient (Arg1) are reversed in
the question by means of a passive voice. All three
models fail more on such examples with different
word order between the question and the rationale,
scoring lower on the SRL- class than overall or
SRL+. The results of the experiments show that
the models find the correct answer more frequently
when they can rely on the word order, avoiding the
need to reason over semantic roles.

Finally, some of the observed issues are induced
by the model choosing prominent entities as an-
swers regardless of their actual relation to the ques-
tion at hand. For instance, a document tells a fic-
tional children’s story wherein foods and utensils
are anthropomorphised, as in the example below:

Rationale: cereal is winning the race in a bowl of
milk
Question: Who is a good swimmer?
Answer: cereal

The baseline BERT model chooses a human en-
tity that is mentioned by name at the beginning of
the text instead of the inanimate entity that takes
up the agent position in the rationale. In contrast, if
“cereal” is substituted with a common name such
as “Mark” in the background document, the model
correctly chooses it as the answer. This suggests
that the model relies on lexical semantics and bi-
ases about types of entities denoted by nouns more
than analyze the semantic relations in the relevant
sentence. Therefore, we define a QA class where
the rationale contains entities that have high en-
tropy and are thus surprising given the rest of the
sentence (Hale, 2001; Levy, 2008; Smith and Levy,
2008), like “cereal” in the above example. In or-
der to detect such entities, proper nouns (as tagged
by spaCy, from Honnibal and Montani, 2017) are
masked and BERT is used to evaluate the likelihood
of the original word being the filler for that mask.
Words that fall below the likelihood threshold of
5e−5 are then deemed to be surprising entities5.
All three models perform worse on questions about
surprising entities (SURP) than overall, with Distil-
BERT exhibiting the largest margin.

Moreover, the classes of human (HUM), location
(LOC) or general entities (ENT), as classified by
Madabushi and Lee (2016), test the models’ ability
to answer questions about entity roles. RoBERTa
and BERT’s performance on these classes is higher
than their overall performance. On the other hand,
DistilBERT fails on HUM and LOC entity questions
more than other QA types. For many HUM and LOC

questions there are multiple entities in the text that
fit the entity type. Together with the results on the
SURP class, this is an indication that DistilBERT
relies on entity type more than the larger models.

The baseline results on the various classes cor-
roborate most of the results of previous research on
BERT’s shortcomings. Moreover, the results show
that DistilBERT mostly repeats the same mistakes
and often more gravely, except for some cases of
lexical semantics. DistilBERT appears to lose more
of BERT’s already limited representations of the
formal aspects of language and have stronger bi-
ases. Finally, RoBERTa also exhibits a lack of abil-
ity to perform compositional reasoning and reaches
the highest scores on the more lexical QA types.

5The threshold is selected after finetuning the model aug-
mented with surprising word substitution, as discussed in
Section 6.
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Figure 1: Illustration of the order of semantic roles in a CoQA example.

6 Model Enhancement

6.1 Auxiliary tasks

The methods for defining QA classes are also used
as sources of linguistic knowledge which are in-
corporated in the baseline models to enhance their
performance with regard to the respective classes.
Firstly, besides the existing FREEFORM, YES/NO

and UNKNOWN, five additional classifiers of inte-
ger answers between 1 and 5 are defined within the
model, as it would be impossible for the models
to answer counting questions extractively. This re-
sults in the base# model6. Then, four additional
enhanced multitask models are built in order to
tackle the issues observed in the previous section.

For every enhanced model (negation#, order#,
sentiment#, srl#), the training data is tagged with
annotations of the relevant linguistic information
that was also used for defining the problematic
classes. For negation#, tokens are labelled as under
the scope of negation (1) or not (0); for order#
they are labelled as occurring after the answer to
question n− 1 (1) or not (0); for sentiment# they
are labelled as part of a sentence with a negative
sentiment (1) or not (0); while for srl# a multi-
label setup is used where every token is labelled as
either taking a particular semantic role (1) or not
(0). Each of these sets of labels are then used as an
additional training goal for the model. The loss of
a given additional goal is added to the main loss in
a weighted sum. Namely, the sum is calculated as:

loss = start of answer loss / 2 +

end of answer loss / 2 +

rationale loss +

alpha ∗ additional goal loss

with alpha values from [0.01, 0.1, 0.2].
In addition to the multitask approach, other ar-

chitectures were explored for adjoining the infor-
mation from the four knowledge sources. These
approaches include supplying the information as
an additional input feature added or concatenated

6The # sign next to the model name marks that the model
includes a classifier for low-valued integer answers.

to the BERT model at the level of BERT inputs
themselves or the BERT model outputs. However,
experiments with the latter methods showed no
considerable increase in the model performance.
Thus, the multitask approach was finally adopted
for enhancing models. The multitask approach is
also beneficial as the model can be applied to other
test sets without the overhead of extracting the lin-
guistic knowledge from the new set.

6.2 Surprising Word Substitution

One more enhanced model is produced by augment-
ing the training data by means of surprising word
substitution (surprisal#). Supplementary data sam-
ples are produced by substituting surprising entities
in the CoQA training set with entities that would be
very likely to take their place, according to BERT.
In order to ensure that the sentence structure is not
affected and an entity is substituted with another
entity, the substituting word was only selected if
the new word was also tagged as a proper noun in
the newly produced sentence. This procedure leads
to 5880 additional samples for training. The reason
behind adding these items on top of the training
set instead of substituting the surprising examples
is the intention to provide rare entities with better
context instead of ignoring them. Many models in
NLP suffer from strong social biases and therefore
this approach attempts to level the playing field
for rare entities by introducing them in the same
contexts as the common entities. Such a method
could potentially also be applied to larger datasets
and more early stages such as pretraining.

Finally, the enhanced models are combined into
an ensemble in order to combine the strongest
points of each model. In order to use the spe-
cialized knowledge from each model where it is
relevant, the ensemble is created by selecting the
model with the highest confidence for each predic-
tion from all the models, including base#.

7 Enhanced Model Results

The results of all the enhanced models on all QA

classes on the development set are presented in
Table 3. BERT and RoBERTa gain most in terms of
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class overall NUM 1-5 NEG YES NO SENT ANT ORD SRL- SRL+ HUM LOC ENT SURP

model RoBERTa

base 81.2 76.4 40.1 72.9 89.5 85.9 83.0 82.3 81.8 80.7 83.5 83.2 83.6 83.1 78.6
base# 82.1 81.4 68.8 73.5 89.6 86.3 83.8 82.4 82.5 81.6 83.9 83.0 85.0 84.2 80.5
negation# 81.7 81.2 69.4 73.0 89.5 85.0 83.9 86.0 82.2 81.0 83.2 82.4 83.1 83.2 79.8
sentiment# 81.7 81.2 71.5 71.8 90.3 84.1 83.6 83.5 82.1 81.3 83.2 82.1 85.4 83.2 80.7
order# 82.3 82.7 76.0 74.3 90.0 85.1 84.2 85.8 82.8 82.3 84.4 83.6 85.4 83.8 80.3
srl# 82.2 82.6 73.3 72.9 88.6 85.7 84.5 83.5 82.6 81.6 83.6 83.4 85.2 83.6 80.4
surprisal# 82.1 81.7 73.2 72.7 89.3 86.0 83.6 84.5 82.4 81.8 83.9 82.3 84.2 83.7 79.4
ensemble 83.9 82.7 82.2 81.7 81.7 82.1 83.0 82.9 82.6 82.1 82.3 82.4 83.0 82.6 83.3

model BERT

base 76.9 77.2 41.9 68.9 85.3 77.3 79.0 74.8 77.2 76.4 78.5 77.4 80.8 79.4 74.1
base# 76.9 79.6 63.5 69.7 86.3 80.2 79.5 79.6 77.4 75.7 79.6 77.1 79.6 77.9 72.6
negation# 77.0 79.5 63.2 79.7 84.5 81.0 79.0 79.7 77.4 76.1 79.5 76.3 81.0 78.4 76.5
sentiment# 75.2 76.9 45.6 66.2 81.4 79.1 76.7 76.2 75.6 75.1 76.8 74.8 78.9 76.9 71.6
order# 76.3 76.6 45.2 69.0 83.2 81.1 78.0 78.3 76.9 75.9 78.9 77.3 80.4 78.5 72.8
srl# 77.2 80.8 67.0 68.5 84.4 81.2 79.5 86.1 77.5 78.6 75.8 76.0 81.5 79.2 74.6
surprisal# 76.7 80.5 70.4 68.5 84.1 81.6 78.6 82.7 77.0 75.9 78.8 76.2 78.8 77.1 73.7
ensemble 79.2 80.8 62.2 70.8 86.2 82.8 81.1 81.5 79.6 78.7 81.3 79.8 82.7 80.7 76.2

model DistilBERT

base 66.6 69.6 36.8 56.7 82.1 71.4 69.0 71.3 67.2 65.8 70.0 64.2 65.4 70.0 58.9
base# 66.9 69.5 37.0 58.0 82.8 72.4 69.5 70.9 67.4 65.9 69.7 65.0 66.2 70.2 60.0
negation# 65.3 70.1 45.4 58.3 80.2 73.2 68.4 68.9 66.0 64.6 69.6 62.2 63.3 67.2 58.7
sentiment# 64.9 68.6 35.4 54.9 80.7 72.4 68.1 66.8 65.4 64.6 67.5 62.0 61.5 67.6 60.9
order# 64.5 69.3 34.9 53.5 81.4 72.5 67.1 69.2 65.3 64.3 66.8 60.2 62.3 66.5 59.9
srl# 65.8 69.0 39.1 56.4 83.4 72.0 68.4 72.2 66.5 65.3 68.1 62.9 62.8 68.7 57.9
surprisal# 66.8 70.3 35.6 59.2 82.9 72.0 69.0 72.0 67.1 65.9 69.2 63.8 65.8 70.2 60.4
ensemble 68.8 65.7 65.8 65.3 64.9 66.8 67.4 66.1 65.7 66.9 64.5 67.2 67.8 67.3 67.5

Table 3: The results of the baseline and enhanced models on the CoQA development set (F1 scores). The heatmap
colors reflect the variation within QA classes between models. The results of the base# models should be compared
to the base results in gray to see the effect of adding the numerical answer classifier, whereas the remaining models
should be compared to the base# results in gray in order to see the effects of the additional linguistic knowledge.

F1 with the counting model on counting questions
(base# on 1-5), while DistilBERT only improves
on these questions remarkably with the ensemble
model, requiring more auxiliary resources than the
larger models for this level of abstraction.

Moreover, BERT appears to learn formal aspects
of semantics in the multitask setting. The srl#
model improves on the QA class with semantic
roles in a different order in the question and the an-
swer (SRL-), while the negation# model improves
the results on the answers that require interpreting
negation (NEG and NO). To illustrate, while the
base# model fails to take into account the negative
morpheme “dis-” and answers “yes” to the question
below, the negation# model avoids such errors.

Rationale: Some refer to Tolstoy’s disagreement
with state-backed religion.
Question: Did he agree with the states view on
Religion?
Answer: No

This shows that the negation# model has learnt
to recognize the negation spanning over the “agree”
root, which plays a deciding role for determining
the correct answer to the question.

In the meantime, RoBERTa does not improve on
the QAs in the negation or Semantic Role classes.
One might say that RoBERTa has learnt the ab-
stract linguistic representations already, however
its base results show that it makes many of the
same mistakes as BERT and DistilBERT on NEG

and SRL-. In fact, BERT outperforms RoBERTa
on the NEG class when enhanced with the explicit
information about negation (the negation# model).
This, combined with the fact that RoBERTa gets
a big improvement on NEG only when various lin-
guistic features are combined into an ensemble,
suggests that RoBERTa mostly relies on better lex-
ical representations for its higher scores, which is
only outweighed when many compositional seman-
tic cues are provided. Similarly, DistilBERT only
gains a small boost over the baseline on NEG and
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NO QA classes with negation# and also requires an
ensemble to improve on SRL-.

On the other hand, BERT and DistilBERT im-
prove on the HUM and LOC classes with the ensem-
ble models, demonstrating an ability to improve its
lexical representations. RoBERTa does not yield
an improvement in this case, however even its base
model performs relatively well on these classes.

Furthermore, BERT and DistilBERT do not get
a boost in the cases of pragmatics, namely senti-
ment# and order#. In contrast, RoBERTa gets a
boost over the ANT class from the sentiment#, and
gains the largest increases across almost all classes
from order#. It appears that RoBERTa can im-
prove on its already high score on items containing
antonymy relying on more pragmatic aspects of
lexical semantics, and also is the most receptive to
the pragmatic aspects of dialogue in CoQA.

Moreover, the model trained on the dataset
which was augmented through surprising word sub-
stitution (surprisal#) improves over base# on the
class with surprising entities (SURP) with BERT
and DistilBERT. This shows that the method helps
the models generalize better to cover new exam-
ples with surprising entities and get rid of some of
the biases about entities. For example, while the
base# BERT model answers the question below
incorrectly, the model enhanced with surprisal#
selects the name of the relevant character.

Background: [...] When Link Merwell went down
again Dave looked at Nat Poole, thinking that lad
might possibly attack him. [...] Merwell brought
this on himself–you know that as well as I do. He’s
pretty badly hurt, I fear. [...]
Question: Who is badly injured?
base# Answer: Nat Poole
surprisal# Answer: Link Merwell

The base# model simply selects the name that
is more common. In contrast, the enhanced model
detects the correct name of the person who is per-
forming the role in the question. Substituting the
name in the original background document with
a mask token shows that BERT assigns a larger
probability to the name “Nat Poole” than “Link
Merwell”. Such examples stand to show that a
BERT model is biased towards more common en-
tity names. Nonetheless, the models are able to
learn to abstract away from the biases of the conno-
tations and lexical semantics of entity names and
find the entities with the right semantic roles even

for rare entities, given that the model has been ex-
posed to both rare and common entities in the same
contexts during training.

Interestingly, in the case of BERT the largest
boosts in the SURP class are produced by the nega-
tion# and srl# models, showing that focusing on
compositional information such as semantic roles
and negation helps the model to be less biased to-
wards very prominent lexical information of stereo-
typical entities as discussed in Section 5. In con-
trast, in the case of RoBERTa, surprisal# does not
yield an improvement on the SURP class. RoBERTa
requires all of the enhanced models to be combined
into an ensemble in order to get rid of the biases,
suggesting that its focus on (biased) lexical repre-
sentations is even stronger than BERT or Distil-
BERT’s.

Finally, the ensemble models perform better on
virtually all classes and provide a better overall
score. This is to be expected as the enhanced mod-
els, while performing at a similar level, make dif-
ferent errors and complement each other with their
respective specializations.

8 Conclusion

By and large, this paper provides additional evi-
dence that models like BERT lack linguistic ab-
straction abilities, often relying on superficial fea-
tures such as entity name biases or word order to
answer questions in the conversational question an-
swering task. More precisely, we show that BERT,
RoBERTa and DistilBERT models mostly fail on
questions that require inference over the composi-
tional aspects of language, such as semantic roles
and negation. Furthermore, we find that while
RoBERTa improves over BERT’s performance, a
large portion of its gain comes from better lexical
representations and it appears to fall short of solv-
ing the compositional semantic problems. What is
more, we provide the first evaluation and analysis
of DistilBERT on CoQA, showing that DistilBERT,
more so than BERT, relies on lexical information
most and lacks capacity to learn compositional rep-
resentations. Finally, we show that all the BERT-
like models tested can be enhanced to a varying ex-
tent by feeding them linguistic knowledge through
a multitask approach. Even a small amount of train-
ing data for linguistic information such as negation
can provide a very large boost to the model per-
formance on the QA classes which rely on that
information.
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