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Abstract
Due to the lack of labeled data, previous re-
search on text-to-SQL parsing mainly focuses
on English. Representative English datasets in-
clude ATIS, WikiSQL, Spider, etc. This paper
presents DuSQL, a larges-scale and pragmatic
Chinese dataset for the cross-domain text-to-
SQL task, containing 200 databases, 813 ta-
bles, and 23,797 question/SQL pairs. Our new
dataset has three major characteristics. First,
by manually analyzing questions from several
representative applications, we try to figure out
the true distribution of SQL queries in real-life
needs. Second, DuSQL contains a consider-
able proportion of SQL queries involving row
or column calculations, motivated by our analy-
sis on the SQL query distributions. Finally, we
adopt an effective data construction framework
via human-computer collaboration. The basic
idea is automatically generating SQL queries
based on the SQL grammar and constrained
by the given database. This paper describes in
detail the construction process and data statis-
tics of DuSQL. Moreover, we present and com-
pare performance of several open-source text-
to-SQL parsers with minor modification to ac-
commodate Chinese, including a simple yet ef-
fective extension to IRNet for handling calcula-
tion SQL queries.

1 Introduction
In the past few decades, a large amount of research
has focused on searching answers from unstruc-
tured texts given natural questions, which is also
known as the question answering (QA) task (Burke
et al., 1997; Kwok et al., 2001; Allam and Hag-
gag, 2012; Nguyen et al., 2016). However, a lot of
high-quality knowledge or data are actually stored
in databases in the real world. It is thus extremely
useful to allow ordinary users to directly inter-
act with databases via natural questions. To meet
this need, researchers have proposed the text-to-
SQL task with released English datasets for model

Figure 1: Illustration of the text-to-SQL task.

training and evaluation, such as ATIS (Iyer et al.,
2017), GeoQuery (Popescu et al., 2003), WikiSQL
(Zhong et al., 2017), and Spider (Yu et al., 2018b).

Formally, given a natural language (NL) ques-
tion and a relational database, the text-to-SQL task
aims to produce a legal and executable SQL query
that leads directly to the correct answer, as depicted
in Figure 1. A database is composed of multiple
tables and denoted as DB = {T1, T2, ..., Tn}. A ta-
ble is composed of multiple columns and denoted
as Ti = {col1, col2, ..., colm}. Tables are usually
linked with each other by foreign keys.
The earliest datasets include ATIS (Iyer et al.,

2017) , GeoQuery (Popescu et al., 2003), Restau-
rants (Tang and Mooney, 2001), Academic (Li and
Jagadish, 2014), etc. Each dataset only has a sin-
gle database containing a certain number of ta-
bles. All question/SQL pairs of train/dev/test sets
are generated against the same database. Many in-
teresting approaches are proposed to handle those
datasets (Iyer et al., 2017; Yaghmazadeh et al.,
2017; Finegan-Dollak et al., 2018).
However, real-world applications usually in-
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volve more than one database, and require the
model to be able to generalize to and handle unseen
databases during evaluation. To accommodate this
need, the WikiSQL dataset is then released by
Zhong et al. (2017). It consists of 80,654 ques-
tion/SQL pairs for 24,241 single-table databases.
They propose a new data split setting to ensure that
databases in train/dev/test do not overlap. However,
they focus on very simple SQL queries containing
one SELECT statement with one WHERE clause.
In addition, Sun et al. (2020) released TableQA, a
Chinese dataset similar to the WikiSQL dataset.
Yu et al. (2018b) released a more challenging

Spider dataset, consisting of 10,181 question/SQL
pairs against 200 multi-table databases. Compared
with WikiSQL and TableQA, Spider is much more
complex due to two reasons: 1) the need of select-
ing relevant tables; 2) many nested queries and ad-
vanced SQL clauses like GROUP BY and ORDER
BY.
As far as we know, most existing datasets are

constructed for English. Another issue is that they
do not refer to the question distribution in real-
world applications during data construction. Tak-
ing Spider as an example. Given a database, anno-
tators are asked to write many SQL queries from
scratch. The only requirement is that SQL queries
have to cover a list of SQL clauses and nested
queries. Meanwhile, the annotators write NL ques-
tions corresponding to SQL queries. In particular,
all these datasets contain very few questions involv-
ing calculations between rows or columns, which
we find are very common in real applications.

This paper presents DuSQL, a large-scale and
pragmatic Chinese text-to-SQL dataset, contain-
ing 200 databases, 813 tables, and 23,797 ques-
tion/SQL pairs. Specifically, our contributions are
summarized as follows.

• In order to determine amore realistic distribution
of SQL queries, we collect user questions from
three representative database-oriented applica-
tions and perform manual analysis. In particular,
we find that a considerable proportion of ques-
tions require row/column calculations, which are
not included in existing datasets.

• We adopt an effective data construction frame-
work via human-computer collaboration. The ba-
sic idea is automatically generating SQL queries
based on the SQL grammar and constrained by
the given database. For each SQL query, we first

Figure 2: The SQL query distributions of the three ap-
plications. Please kindly note that a query may belong
to multiple types.

generate a pseudo question by traversing it in the
execution order and then ask annotators to para-
phrase it into a NL question.

• We conduct experiments on DuSQL using
three open-source parsing models. In par-
ticular, we extend the state-of-the-art IRNet
(Guo et al., 2019) model to accommodate
the characteristics of DuSQL. Results and
analysis show that DuSQL is a very chal-
lenging dataset. We will release our data at
https://github.com/luge-ai/luge-ai/

tree/master/semantic-parsing.

2 SQL Query Distribution

As far as we know, existing text-to-SQL datasets
mainly consider the complexity of SQL syntax
when creating SQL queries. For example, Wik-
iSQL has only simple SQL queries containing SE-
LECT andWHERE clauses. Spider covers 15 SQL
clauses including SELECT,WHERE, ORDERBY,
GROUP BY, etc, and allows nested queries.
However, to build a pragmatic text-to-SQL sys-

tem that allows ordinary users to directly interact
with databases via NL questions, it is very impor-
tant to know the SQL query distribution in real-
world applications, from the aspect of user need
rather than SQL syntax. Our analysis shows that
Spider mainly covers three types of SQL queries,
i.e., matching, sorting, and clustering, whereas
WikiSQL only has matching queries. Neither of
them contains the calculation type, which we find
composes a large portion of questions in certain
real-world applications.
To find out the SQL query distribution in real-

life applications, we consider the following three

https://github.com/luge-ai/luge-ai/tree/master/semantic-parsing
https://github.com/luge-ai/luge-ai/tree/master/semantic-parsing
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representative types of database-oriented applica-
tions, and conduct manual analysis against user
questions. We ask annotators to divide user ques-
tions into five categories (see Appendix B for de-
tails), i.e., matching, sorting, clustering, calcula-
tion, and others.

Information retrieval applications. We use
Baidu, the Chinese search engine, as a typical in-
formation retrieval application. Nowadays, search
engines are still the most important way for web
users to acquire answers. Thanks to the progress in
knowledge graph research, search engines can re-
turn structured tables or even direct answers from
infobox websites such as Wikipedia and Baidu En-
cyclopedia. From one-day Baidu search logs, we
randomly select 1,000 questions for which one of
returned top-10 relevant web sites is from infobox
websites. Then, we manually classify each ques-
tion into the above five types.

Customer service robots. Big companies build
AI robots to answer questions of customers, which
usually require the access to industrial databases.
We provide a free trial API1 to create customer
service robots for developers. With the permis-
sion of the developers, we randomly select 1,500
questions and corresponding databases from their
created robots. These questions cover multiple do-
mains such as banks, airlines, and communication
carriers, etc.
Data analysis robots. Every day, innumerous

tables are generated, such as financial statements,
business orders, etc. To perform data analysis over
such data, companies hire professionals to write
SQL queries. Obviously, it is extremely useful to
build robots that allow financial experts to directly
perform data analysis using NL questions. We col-
lect 500 questions from our data analysis robot.

Figure 2 shows the query distributions of the
three applications. It is obvious that calculation
questions occupy a considerable proportion in all
three applications. For customer service robots,
users mainly try to search information, and there-
fore most questions belong to the matching type.
Yet, 8% questions require calculation SQL queries
to be answered. For data analysis robots, calcu-
lation questions dominate the distribution, since
users try to figure out useful clues behind the data.
To gain more insights, we further divide calcu-

lation questions into three subtypes according to

1The API is publicly available at https://ai.baidu.
com/unit/v2#/innovationtec/home.

Row Calculation
How much bigger is Guangzhou than Shenzhen?

SELECT a.area(km2) - b.area(km2) FROM

(SELECT area(km2) FROM T1 WHERE name = ‘Guangzhou’) a,

(SELECT area(km2) FROM T1 WHERE name = ‘Shenzhen’) b

Column Calculation
What is the population density of Hefei?

SELECT population / area(km2) FROM T1 WHERE name = ‘Hefei’

Calculation with a Constant
How old is Jenny?

SELECT curdate - birthday FROM student WHERE name = ‘Jenny’

How far is Beijing’s population from 23 million?

SELECT 23000000 - population FROM T1 WHERE name = ‘Beijing’

Figure 3: Examples in the calculation type, including
questions and SQL queries. The first example of calcu-
lation with a constant is based on a database that has
a “student” table with the schema of {name, birthday,
height, age}. Other examples are based on the database
in Figure 1.

Figure 4: The construction workflow of DuSQL.

the SQL syntax, i.e., row calculation, column cal-
culation, and calculation with a constant. Figure 3
shows some examples.

3 Corpus Construction

Building a large-scale text-to-SQL dataset with
multi-table databases is extremely challenging.
First, though there are a large amount of indepen-
dent tables on the Internet, connections among the
tables are usually unavailable. Therefore, great
efforts are needed to create multi-table databases.
Second, it is usually difficult to obtain NL ques-
tions against certain databases. Third, given a ques-
tion and the corresponding database, we need profi-
cient annotators to write a SQL query for the ques-
tion who understand both the database schema and
the SQL syntax.

Different from previous works, which usually
rely on human to create both NL questions and
SQL queries (Yu et al., 2018b), we build our
dataset via a human-computer collaboration way,

https://ai.baidu.com/unit/v2#/innovationtec/home
https://ai.baidu.com/unit/v2#/innovationtec/home
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as illustrated in Figure 4. The key idea is to auto-
matically generate SQL queries pairedwith pseudo
questions given a database. Then pseudo ques-
tions are paraphrased to NL questions by humans.
Finally, to guarantee data quality, low-confidence
SQL queries and NL questions detected according
to their overlapping and similarity metrics, and are
further checked by humans.

3.1 Database Creation
Most of mature databases used in industry are not
publicly available. So we collect our databases
mainly from the Internet. However, databases
available on the Internet are in the form of inde-
pendent tables, which need to be linked with other
tables. We create databases in three steps: table ac-
quisition, table merging, and foreign key creation.
We collect websites to crawl tables, ensuring

that they cover multiple domains. As the largest
Chinese encyclopedia, Baidu Baike contains more
than 17 million entries across more than 200 do-
mains. We start with all the entries in Baike as the
initial sites, and extend the collection based on the
reference sites in each entry page. We keep sites
where tables are crawled. The final collection con-
tains entries of Baike, annual report websites2, ver-
tical domain websites3, and other websites such as
community forums4. Table 1 shows the data distri-
bution regarding database sources.
To make a domain correspond to a database, we

merge tables with the same schema to a new ta-
ble with a new schema, e.g., tables about China
cities with the schema of {population, area, ...}
are merged to a new table with the schema
of {termid, name, population, area, ...}, where
termid is randomly generated as primary key and
name is the name of the city. Meanwhile, we add
a type for each column according to the form of
its value, where the column type consists of text,
number and date.
We create foreign keys between two tables via

entity linking, e.g., a table named “Livable cities
in 2019” with the schema of {city_name, ranker,
...} joins to a table named “China cities” with the
schema of {term_id, name, area, ...} through the
links of entities in “city_name” and “name”. Ac-
cording to foreign keys, all tables are split into
separate graphs, each of which consists of several

2QuestMobile, 199it, tianyancha, etc.
3State Statistical Bureau, China Industrial Information

Network, Shopping websites, Booking websites, etc.
4Baidu Tieba, Newsmth, Hupu, etc.

Source Proportion
Baike 40.3
Vertical domain websites 31.3
Annual report 23.4
Others 5.0

Table 1: The distribution of database sources.

joined tables. We choose 200 graphs to create
databases, and manually check and correct foreign
keys for each database.
Overall, we create 200 databases with 813 ta-

bles, covering about 70% of Baike entries from
more than 160 domains such as movies, actors,
cities, animals, foods, etc. Since some tables are
sensitive, we use the column header of each table,
and populate it with randomly selected values from
the original table.

3.2 Automatic Generation of SQL Queries

Given a database, we want to generate as many
common SQL queries as possible. Both manu-
ally writing SQL queries and quality-checking take
a significant amount of time. Obviously, SQL
queries can be automatically generated from the
grammar. We utilize production rules from the
grammar to automatically generate SQL queries,
instead of asking annotators to write them. Accord-
ing to the difficulty5 and semantic correctness of a
SQL query, we prune the rule paths in the genera-
tion. Then, we sample the generated SQL queries
according to the distribution in Figure 2 and carry
out the follow-up work based on them.
As illustrated in Figure 5, the SQL query can

be represented as a tree using the rule sequence
of {SQLs = SQL, SQL = Select Where, Select
= SELECT A, Where = WHERE Conditions, ...},
all of which are production rules of the grammar.
Guided by the SQL query distributions in real ap-
plications, we design production rules to ensure
that all common SQL queries can be generated,
e.g., the rule of {C = table.column mathop ta-
ble.column} allows calculations between columns
or rows. By exercising every rule of the grammar,
we can generate SQL queries covering patterns of
different complexity.
We consider two aspects in the automatic SQL

generation: the difficulty and semantic correct-

5We observe that very complex queries are rare in search
logs. Since our SQL queries are automatically gener-
ated, without complexity control, the proportion of complex
queries would dominate the space, thus deviating from the
real query distribution.
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Figure 5: An example of SQL query generation from the grammar. We show a part of production rules (all rules
are shown in Appendix A). The leaf nodes in red are from the database.

ness of a SQL query. To control the difficulty of
the generated queries, we make some restrictions
based on our analysis on real-life questions: first,
a SQL query contains only one nested query; sec-
ond, there are no more than three conditions in a
where clause and nomore than four answers in a se-
lect statement; third, a SQL query has at most one
math operation; forth, most text values are from
databases6. To ensure the semantics correctness
of the generated query, we abide by preconditions
of each clause and expression in the generation,
e.g., the expression of {A > SQL} requires that the
nested SQL returns a number value. The full list of
preconditions is shown in Appendix C.
Under these requirements, we generate a large

amount of candidate SQL queries against 200
databases. Among them, only a tiny proportion of
SQL queries are of the calculation type, since only
few columns support calculation operations. We
keep all queries in the calculation type, randomly
select ones with sorting and clustering types of the
same size, and select ones with the matching type7
of three times the size. We make sure that these se-
lected queries are spread across all 200 databases.
Then these queries are used as input for the follow-
up work.

6The text values in a SQL query are from the database to
reduce the difficulty of SQL prediction. We plan to remove
this restriction in the next release version of DuSQL.

7Including combinations of matching type and other types,
e.g., the SQL query of {SELECT ... WHERE ... ORDER
BY ... } represents the combination of matching and sorting
types.

Figure 6: An example of the pseudo question generation
according to the execution order of the SQL query. The
numbers in circles represent the order of execution.

3.3 Semi-automatic Generation of Questions

For each SQL query, we automatically generate a
pseudo question to explain it. Then pseudo ques-
tions are shown to annotators who can understand
them and paraphrase them to NL questions without
looking at databases and SQL queries.
We generate a pseudo question for a SQL query

according to its execution order. As shown in Fig-
ure 6, the entire pseudo question of the SQL query
consists of pseudo descriptions of all clauses ac-
cording to their execution orders. The pseudo de-
scription of a clause consists of pseudo descrip-
tions of all its components. We give a description



6928

for each component, e.g., list for SELECT, average
for the aggregator of avg. Appendix D shows the
descriptions for all components. To ensure that the
pseudo question is clear and reflects the meaning
of the SQL query, intermediate variables are intro-
duced to express sub-SQL queries, e.g., “v1” in
the example of Figure 6 represents the result of the
nested query and is used as a value in other expres-
sions.
We ask two annotators8 to reformulate pseudo

questions into NL questions9, and filter two kinds
of questions: 1) incomprehensible ones which are
semantically unclear; 2) unnatural ones which are
not the focus of humans10. During the process of
paraphrasing, 6.7% of question/SQL pairs are fil-
tered, among which 76.5% are complex queries.
Then we ask other annotators to check the correct-
ness of reformulated questions, and find 8% of
questions are inaccurate.

3.4 Review and Checking
To guarantee data quality, we automatically detect
low-quality question/SQL pairs according to the
following evaluation metrics.

• Overlap. To ensure the naturalness of our
questions, we calculate the overlap between the
pseudo question and the corresponding NL ques-
tion. The question with an overlap higher than
0.6 is considered to be of low quality.

• Similarity. To ensure that the question contains
enough information for the SQL query, we train
a similarity model based on question/SQL pairs.
The question with a similarity score less than 0.8
is considered to be of low quality.

In the first round, about 18% of question/SQL
pairs are of low quality. We ask annotators to check
these pairs and correct the error pairs. This process
iterates through the collaboration of human and
computer until the above metrics no longer chang-
ing. It iterates twice in the construction of DuSQL.

3.5 Dataset Statistics
We summarize the statistics of DuSQL and other
cross-domain datasets in Table 2, and give some

8They are full-time employees and familiar with SQL lan-
guage. Meanwhile, they have lots of experience in annotating
QA data.

9Some values in SQL queries are rewritten as synonyms.
10E.g., “When province is Sichuan, list the total rank of

these cities.” for the SQL query {SELECT sum(rank) From
T2 WHERE province = ‘Sichuan’} is considered as an unnat-
ural question, as the total rank would not be asked by humans.

Figure 7: SQL query examples.

examples in Figure 7. DuSQL contains enough
question/SQL pairs for all common types. Wik-
iSQL and TableQA are simple datasets, only con-
taining matching questions. Spider and CSpider
(Min et al., 2019) mainly cover matching, sort-
ing, clustering and their combinations. There are
very few questions in the calculation type, and
all of them only need column calculations. Spi-
der does not focus on questions that require the
common knowledge and math operation. Accord-
ing to our analysis in Figure 2, the calculation
type is very common, accounting for 8% to 65%
in different applications. DuSQL, a pragmatic
industry-oriented dataset, conforms to the distribu-
tion of SQL queries in real applications. Mean-
while, DuSQL is larger, twice the size of other
complex datasets. DuSQL contains 200 databases,
covering about 70% of entries in Baike and more
than 160 domains, e.g., cities, singers, movies, an-
imals, etc. We provide content for each database.
All the values of a SQL query can be found in the
database, except for numeric values. All table and
column names in the database are clear and self-
contained. In addition, we provide English schema
for each database, including table names and col-
umn headers.

4 Benchmark Approaches

All existing text-to-SQL works focus on English
datasets. Considering that DuSQL is the most sim-
ilar with Spider, we choose the following three rep-
resentative publicly available parsers as our bench-
mark approaches, to understand the performance
of existing approaches on our new Chinese dataset.
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Dataset Size DB Table/DB Matching Sorting Clustering Calculation OthersColumn Row Constant
WikiSQL 80,654 26,251 1 80,654 0 0 0 0 0 0
TableQA 49,974 5,291 1 49,974 0 0 0 0 0 0
Spider 9,693 200 5.1 6,450 863 1,059 13 0 0 1,308
CSpider 9,691 166 5.3 6,448 862 1,048 13 0 0 1,318
Ours 23,797 200 4.1 6,440 2,276 3,768 1,760 1,385 1,097 7,071

Table 2: Statistics and comparisons of all existing cross-domain text-to-SQL datasets. The statistics of Spider are
based on published data, only containing train and development sets. Others consists of combinations between
matching, sorting and clustering types.

We also extend the state-of-the-art IRNet model of
Guo et al. (2019) to accommodate the two charac-
teristics of our data, i.e., calculation questions and
the need of value prediction.

Seq2Seq+Copying (Zhong et al., 2017) incor-
porates the database schemas into the model input
and uses a copying mechanism in the decoder.

SyntaxSQLNet (Yu et al., 2018a) proposes a
SQL syntax tree-based network to generate SQL
structures, and uses generation path history and
table-aware column attention in the decoder.

IRNet (Guo et al., 2019) designs an interme-
diate representation called SemQL for encoding
higher-level abstraction structures than SQL, and
then uses a grammar-based decoder (Yin and Neu-
big, 2017) to synthesize a SemQL query. At
present, IRNet reports the state-of-the-art results
on Spider dataset.
Both SyntaxSQLNet and IRNet utilize a gram-

mar to guide SQL generation and conduct experi-
ments on Spider dataset. However, neither of their
grammars can handle calculation questions. An-
other major difference between our dataset and Spi-
der is that our evaluation metric (see Section §5)
also considers value prediction, since values in a
SQL query are from the corresponding question
or database both of which are available inputs to
the model. Please refer to our discussion in Sec-
tion §3 for details. Due to the characteristics of
our dataset, all the three models perform poorly on
DuSQL. Therefore, we extend the IRNet model to
accommodate DuSQL as follows.

Firstly, we extend the grammar of SemQL to ac-
commodate the two characteristics of our dataset,
as shown in Figure 8. The production rules in bold
are added to parse calculation questions. Other pro-
duction rules are modified based on original rules
to support value prediction (Due to space limita-
tion, we attach the full list of extended grammar
in Appendix F.). Then we use all the n-grams of
length 1-6 in the question to match database cells

Z ::= + R R | − R R | × R R | ÷ R R
Filter ::= = A V | != A V | > A V | < A V

| >= A V | <= A V | like A V
Superlative ::= des A V | asc A V

A ::= max MathA | min MathA | count MathA
| sum MathA | avg MathA | none MathA

MathA ::= + A A | − A A | × A A | ÷ A A
V ::= value

Figure 8: The extended grammar for SemQL.

or number/date to determine candidate values for
the predicated SQL query. The values are used in
the same way as the columns and tables in the IR-
Net model.

5 Experiments

Data Settings Following WikiSQL, we split our
dataset into train/dev/test in a way so that databases
are non-overlapping among the three subsets. In
other words, all question/SQL pairs for the same
database are in the same subset. This is also re-
ferred to as cross-domain parsing problem, since
some database schemes in dev/test do not appear
in train. At last, 200 databases are split into
160/17/23, and 23,979 question/SQL pairs are split
into 18,602/2,039/3,156.

Evaluation Metrics Evaluation metrics for the
text-to-SQL task include component matching, ex-
act matching, and execution accuracy. Component
matching (Yu et al., 2018b) uses F1 score to evalu-
ate the performance of the model on each clause.
Exact matching, namely the percentage of ques-
tions whose predicted SQL query is equivalent to
the gold SQL query, is widely used in text-to-SQL
tasks. Execution accuracy, namely the percentage
of questions whose predicted SQL query obtains
the correct answer, assumes that each SQL query
has an answer.
We use exact matching as the main metric, and

follow Xu et al. (2017) and Yu et al. (2018b) to
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Methods Calculation Matching Sorting Clustering OthersColumn Row Constant All
IRNet 0 0 0 0 25.0 32.8 34.2 8.7
IRNetExt 22.0 34.3 37.9 29.7 52.1 68.7 60.8 52.5

Table 3: Performances of different SQL query types.

Methods w/o values w/ values
Dev Test Dev Test

Seq2SeqCopying 6.6 3.9 2.6 1.9
SyntaxSQLNet 14.6 8.6 7.1 5.2
IRNet 38.4 34.2 18.4 15.4
IRNetExt 59.8 54.3 56.2 50.1

w/o calculation 50.2 48.2 46.6 45.6
w/o value 50.1 43.5 19.4 17.9

Table 4: Performance of the benchmark approaches.

handle the “ordering issue”. Finally, we give the
model performance with (w) and without (w/o)
value evaluation.

Main results. Table 4 shows performance of
the benchmark approaches. The performance of
Seq2SeqCopying is the lowest. It uses the copy-
ing mechanism to reduce errors posed by out-of-
domain words in the databases of test set. But it
predicts lots of invalid SQL queries with grammat-
ical errors, since its decoder does not consider SQL
structures at all.
SyntaxSQLNet and IRNet outperform

Seq2SeqCopying by utilizing a grammar from
SQL structures to guide SQL generation. In
particular, IRNet utilize SemQL as an abstraction
representation of SQL queries. However, neither
of the two vanilla models handles calculation
questions and value directions properly. The basic
IRNet achieves only 34.2/15.4 accuracy on the test
set w/o and w/ value evaluation.
We can see that by simply extending IRNet to

parse calculation questions and predict values, the
IRNetExt model achieves much higher accuracy
(54.3/50.1).

Ablation study. We perform ablation study to
gain more insights on the contribution of our ex-
tensions. As shown in table 4, the accuracy on test
set drops 4.5 by excluding production rules from
the grammar of SemQL. The accuracy of calcula-
tion type is 0, which composes 20.7% of the ques-
tions in the test set. After excluding the prediction
of values, the test performance drops significantly
for two reasons. First, there are a large number of
questions that contain values, accounting for about
75% in the dev set and 70% in the test set. Second,

the generation of where clauses can be improved
by leveraging the column-cell relationship.

Analysis. Table 3 shows performance of differ-
ent SQL query types. Firstly, the grammar ex-
tension is effective, the accuracy of all types is
significantly improved. Second, the accuracy of
calculation type is lower than that of other types,
as many calculation questions require incorporat-
ing common knowledge, e.g., age = dateOfDeath
- dateOfBirth. How to represent and incorporate
such knowledge into the model is very challeng-
ing. Third, questions requiring common knowl-
edge perform poorly, as they need understanding
rather than matching, such as the matching issue
of “the oldest” and “age”.

6 Related Work

Semantic parsing. Semantic parsing aims to map
NL utterances into semantic representations, such
as logical forms (Liang, 2013), SQL queries (Tang
and Mooney, 2001), Python code (Ling et al.,
2016), etc. In order to facilitate model training and
evaluation, researchers release a variety of datasets.
ATIS and GeoQuery are two popular early datasets
originally in logical forms, and are converted into
SQL queries (Iyer et al., 2017; Popescu et al.,
2003). As two recently released datasets,WikiSQL
(Zhong et al., 2017) and Spider (Yu et al., 2018b)
have attracted extensive research attention. It is
also noteworthy that Min et al. (2019) propose the
CSpider dataset by translating English questions of
Spider into Chinese.
Data construction methods. As discussed in

Section §3, creating a large-scale semantic parsing
dataset is extremely challenging. To construct Spi-
der, Yu et al. (2018b) ask annotators to write both
questions and SQL queries given a database. Both
Iyer et al. (2017) and Herzig and Berant (2019) as-
sume that the database and questions are given and
try to reduce the effort of creating semantic repre-
sentations. Our data construction is most closely
related to Overnight (Wang et al., 2015), who
proposes to automatically generate logical forms
based on a hand-crafted grammar and ask annota-
tors to paraphrase pseudo questions into NL ques-
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tions. Overnight focuses on logic form (LF) based
semantic representation, while our work on SQL
representation. The differences are two-fold. First,
databases of Overnight are much simpler, com-
posed of a set of entity-property-entity triples. Sec-
ond, LF operations of Overnight are much simpler,
consisting of only matching and aggregation opera-
tions, such as count, min, max. Our dataset is more
complex and thus imposes more challenges on the
data construction.
Text-to-SQL parsing approaches. Seq2Seq

models achieve the state-of-the-art results on
single-database datasets such as ATIS and Geo-
Query (Dong and Lapata, 2016). With the release
of WikiSQL dataset, researchers make efforts to
handle unseen databases by using database schema
as inputs. Two mainstream approaches are the
Seq2Seq model with copy mechanism (Sun et al.,
2018) and the Seq2Set model (Xu et al., 2017).
With BERT representations (Devlin et al., 2019),
the execution accuracy exceeds 90% (He et al.,
2019; Guo and Gao, 2019).
For the more challenging Spider dataset with

multi-table databases, Guo et al. (2019) introduces
an intermediate representation (SemQL) for SQL
queries, and uses a grammar-based decoder to
generate SemQL, reporting state-of-the-art perfor-
mance. Bogin et al. (2019) proposes to encode the
database schema with graph neural network. Re-
cently, Wang et al. (2019) proposes RATSQL to
use relation-aware self-attention to better encode
the question and database schema simultaneously.

7 Conclusion

We present the first large-scale and pragmatic Chi-
nese dataset for cross-domain text-to-SQL parsing.
Based on the analysis on questions from real-world
applications, our dataset contains a considerable
proportion of questions that require row/column
calculations. We extend the state-of-the-art IR-
Net model on Spider to accommodate DuSQL, and
obtain substantial performance boost. Yet, there
is still a large room for improvement, especially
on calculation questions which usually require in-
corporation of common-sense knowledege into the
model. For future work, we will continually im-
prove the scale and quality of our dataset, to fa-
cilitate future research and to meet the need of
database-oriented applications.
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SQLs ::= SQL intersect SQLs | SQL union SQLs
| SQL except SQLs | SQL

SQL ::= Select | Select Where
| Select GroupC | Select Where GroupC
| Select OrderC | Select Where OrderC
| Select from SQL, SQL

Select ::= select A | select A A
| select A A A | select A A A A

Where ::= where Conditions
GroupC ::= group by C

| group by C having Conditions
| group by C OrderC

OrderC ::= order by C Dir | order by C Dir limit value
| order A Dir limit value

Dir ::= asc / desc
Conditions ::= Condition | Condition and Conditions

| Condition or Conditions
Condition ::= A op value | A op SQL

A ::= min C | max C | count C | sum C | avg C | C
C ::= table.column

| table.column1 mathop table.column2
| table1.column mathop table2.column

mathop ::= + | - | * | /
op ::= = | != | > | >= | < | <= | like | in | not in

Figure 9: The production rules for SQL generation.

A The Grammar for SQL Generation

Figure 9 shows production rules used for SQL gen-
eration. All kinds of SQL queries can be generated
by exercising each rule, e.g., the rule of {Condition
= A op SQL} for nested query generation, the rule
of {C= table.column1mathop table.column2} and
{C = table1.column mathop table2.column}for cal-
culation query generation.

B Query Type Definition

Question classification is mostly based on the oper-
ations used in corresponding SQL queries. Match-
ingmeans the answer can be directly obtained from
the database. Sorting means we need to sort the re-
turned results or only return top-k results. Cluster-
ing means we have to perform aggregations (count,
min/max, etc.) on each cluster. Calculation means
we need to calculate between columns or rows to
get the answer. Other usually corresponds to ques-
tions requiring reasoning or subjective questions,
e.g., “Is Beijing bigger than Shanghai?", and “Is
the ticket expensive?". Figure 10 shows some ex-
amples for types in Figure 2, except for the calcula-
tion type (shown in Figure 3) and other type which

Matching
List cities with a population less than 10 million.

SELECT name FROM T1 WHERE population < 10000000

Sorting
Give the top 5 cities with the largest population.

SELECT name FROM T1 ORDER BY population DESC LIMIT 5

Clustering
Give the total population of each province.

SELECT province, sum(population) FROM T1 GROUP BY province

Figure 10: Examples of types in Figure 2. All of them
are based on the database in Figure 1.

do not have corresponding SQL queries.

C Preconditions in SQL Generation

To ensure the semantic correctness of the gener-
ated SQL query, we define the preconditions for
each production rule, and abide by these precondi-
tions in the SQL query generation.

• For the generation of SQL query with multiple
SQLs, e.g., {SQLs ::=SQL union SQLs}: the
columns in the select clause of the previous SQL
match the columns in the select clause of the
subsequent SQL, i.e., the columns of the two se-
lect clauses are the same or connected by foreign
keys.

• For the rule of generating GroupC: the C is gen-
erated from the rule of {C ::= table.column},
where the column can perform the clustering op-
eration, that is to say, the table can be divided
into several sub-tables according to the values of
this column.

• For the rule of {Condition ::= A op value}: op ∈
{<, <=, >, >=, =, !=, like}. If op ∈ {<, <=, >,
>=}, A and value must be in the type of number
or date. If op is like, A must be in text type.

• For the rule of {Condition ::= A op SQL}: op
∈ {<, <=, >, >=, =, !=, in, not in}. If op ∈
{<, <=, >, >=, =, !=}, A and SQL must be in
the type of number, and {>= min, <= max} are
invalid. If op ∈ {in, not in}, SQL must return a
set.

• For the rule of generating A: {avg C | sum C}
require the C is in number type, {min C | max
C} require the C is in number or date type, and
{count C} requires the C is in text type.
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Dataset Size DB Table/DB Order Group Having Nest Calculation
Column Row Constant

WikiSQL 80,654 26,251 1 0 0 0 0 0 0 0
TableQA 49,974 5,291 1 0 0 0 0 0 0 0
Spider 10,181 200 5.1 1,335 1,491 388 844 13 0 0
CSpider 9,691 166 5.3 1,052 1,123 505 913 13 0 0
Ours 23,797 200 4.1 4,959 3,029 3,432 2,208 1,760 1,385 1,097

Table 5: Comparisons of cross-domain text-to-SQL datasets. The statistics of Spider are from Yu et al. (2018b).
The statistics of CSpider are based on the released data.

• For the rule of {C ::= t1.column mathop
t2.column}: the two columns are of the same
type, either number or date. Then we have
to make sure that the columns are comparable
based on rules built by search log analysis.

• For the rule of {C ::= t1.column1 mathop
t1.column2}: the numerical units of these two
columns can perform corresponding mathemati-
cal operations, e.g., CNY/per × person = CNY.

D Descriptions of SQL Components

Weprovide a description for each basic component,
as follows:

• The descriptions for aggregators of {min, max,
count, sum, avg} are {minimum, maximum, the
number of, total, average}.

• The descriptions for operators of {=, !=, >, >=,
<, <=, like, in, not in} are based on the column
type. The descriptions for {=, !=, like, in, not in}
with the text type are {is, is not, contain, in, not
in}, descriptions for {=, !=, >, >=, <, <=} with
the number type are {is equal to, is not equal to,
more than, no less than, less than, no more than},
and descriptions for {=, !=, >, >=, <, <=} with
the date type are {in, not in, after, in or after, be-
fore, in or before}.

• The descriptions for math operators of {+, -, *,
/} are {sum, difference, product, times}.

• The descriptions for the condition relations {and,
or} are {and, or}.

• The descriptions for {asc, desc} are {in the as-
cending, in the descending}.

• The descriptions for columns, tables, and values
are equal to themselves.

Meanwhile, we provide the description for each
production rule, as shown in Figure 12.

Z ::= intersect R R | union R R | except R R | R
| + R R | − R R | × R R | ÷ R R

R ::= Select | Select Filter
| Select Order | Select Order Filter
| Select Superlative | Select Superlative Filter

Select ::= A | A A | A A A | A... A
Filter ::= and Filter Filter | or Filter Filter

| = A V | != A V | > A V | < A V
| >= A V | <= A V | like A V | not_like A V
| = A R | != A R | > A R | < A R
| >= A R | <= A R | in A VR | not_in A R

Order ::= des A | asc A
Superlative ::= des A V | asc A V

A ::= max C T | min C T | count C T
| sum C T | avg C T | none C T
| max MathA | min MathA | count MathA
| sum MathA | avg MathA | none MathA

MathA ::= + A A |− A A |× A A |÷ A A
C ::= column
T ::= table
V ::= value

Figure 11: The extended grammar for SemQL.

E Dataset Statistics From Spider

Table 5 shows the statistics of our dataset and other
cross-domain datasets in the way of Spider. We
provide enough examples for both advanced SQL
clauses and the calculation type.

F The extended grammar of SemQL

We extend the grammar used in IRNet model to
accommodate DuSQL, as shown in Figure 11. The
Figure 8 shows the main changes.
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Components Pseudo Descriptions
SQL intersect SQLs SQL, as set1, SQLs, as set2,

belong to set1 and set2
SQL union SQLs SQL, as set1, SQLs, as set2,

belong to set1 or set2
SQL except SQLs SQL, as set1, SQLs, as set2,

belong to set1 but not belong to set2
select A ... A list A, ... and A

where Conditions when Conditions
group by C for each C

group by C having Conditions the C that Conditions
group by C OrderC the C with OrderC

order by C Dir sorted by C Dir
order by C Dir limit value the top value sorted by C Dir
order by A Dir limit value the top value sorted by A Dir

A op value A op value
A op SQL SQL as v1, A op v1

agg C agg C
count * the number of table

T1.C + T2.C the sum of T1.C and T2.C
T1.C − T2.C the difference between T1.C and T2.C
T1.C ∗ T2.C the product of T1.C and T2.C
T1.C / T2.C T1.C is times of T2.C

Figure 12: The pseudo descriptions for all production rules.


