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Abstract

In Natural Language Interfaces to Databases
systems, the text-to-SQL technique allows
users to query databases by using natural lan-
guage questions. Though significant progress
in this area has been made recently, most
parsers may fall short when they are deployed
in real systems. One main reason stems from
the difficulty of fully understanding the users’
natural language questions. In this paper,
we include human in the loop and present a
novel parser-independent interactive approach
(PIIA) that interacts with users using multi-
choice questions and can easily work with arbi-
trary parsers. Experiments were conducted on
two cross-domain datasets, the WikiSQL and
the more complex Spider, with five state-of-
the-art parsers. These demonstrated that PIIA
is capable of enhancing the text-to-SQL perfor-
mance with limited interaction turns by using
both simulation and human evaluation.

1 Introduction

The past few years have witnessed a burgeoning in-
terest in the study of text-to-SQL, the essential tech-
nique for Natural Language Interfaces to Databases
(NLIDB) systems (Guo et al., 2019; Hwang et al.,
2019; He et al., 2019a; Bogin et al., 2019a,b). By
converting natural language (NL) questions into
executable forms (i.e., Structured Query Language
or SQL), text-to-SQL parsers relieve users from
the burden of learning about techniques behind
the queries. Though significant progress has been
made in this field, most parsers are still less than de-
sirable when deployed in real NLIDB systems. As
users are not experts in database querying, a central
challenge for the parsers is to fully understand the
users’ NL questions.

Since users are who know the questions best, in-
teracting with them has been seen as a promising

∗Work done during an internship at Microsoft Research.

way to tackle the above challenge in real NLIDB
systems. Early works tried to get users involved
in checking SQL queries (Li and Jagadish, 2014;
Iyer et al., 2017; Yaghmazadeh et al., 2017), which
are impracticable in real systems, as they can only
succeed if users have a very good knowledge of
SQL. In another attempt to involves users, Gur
et al. (2018) proposed to interact with non-expert
users by multi-choice questions. However, this ap-
proach is designed for relatively simple scenarios
and cannot be easily applied to more complex ones.
More recently, Yao et al. (2019) took an important
step forward by measuring uncertainty of neural-
based parsers and altering the behavior of them.
However, as far as we know, most parsers in real
systems are equipped with elaborate rules instead
of using fully neural methods (Dhamdhere et al.,
2017; Gliozzo et al., 2013; Lai et al., 2014). More-
over, in some situations, parsers are supplied by
third parties, making it impossible to alter them.
Therefore, assuming parsers are a black box, it is
indispensable to conduct research on an interactive
approach for enhancing the text-to-SQL technique
in complex scenarios.

In this paper, we propose a Parser-Independent
Interactive Approach (PIIA) to interact with hu-
man users and help parsers better understand NL
questions. To achieve this goal, we devised three
modules: (1) Error Locator employs an alignment
method to help parsers locate uncertain tokens in
the NL questions. (2) Question Generator de-
signs multi-choice questions in natural language
for users, which offers a pleasant interactive expe-
rience. (3) NL Modifier rewrites the NL questions
according to the users’ feedback and produces more
legible questions to facilitate downstream parsing.
Our major contributions are:

• We propose a novel interactive approach, named
PIIA, to enhance the text-to-SQL for complex
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Figure 1: The schema of PIIA, consisting of Error Lo-
cator, Question Generator and NL Modifier.

SQL queries in a cross-domain scenario.
• The interaction process in PIIA is user-friendly

that asks multi-choice questions and reduces the
number of questions as much as possible.

• PIIA is designed as a parser-independent ap-
proach that can easily collaborate with arbitrary
base parsers and be deployed in real systems.

• We conduct a series of experiments with five base
parsers on two large cross-domain datasets that
demonstrate the effectiveness of PIIA by using
both simulation and human evaluation.

2 Methodology Overview

While querying databases in an NLIDB system,
users pose a natural language question that is de-
noted as x. The text-to-SQL parser takes x as input
and predicts a SQL query, which is denoted as y.
The system then executes the predicted SQL and
returns the result. As mentioned, users are not
experts in database querying, so they may pose nat-
ural language questions with inexplicit expressions.
To better understand the difficulties caused by inex-
plicit expressions, we carefully analyzed 300 mis-
takes made by IRNet (Guo et al., 2019), one of the
state-of-the-art parsers on the Spider dataset (Yu
et al., 2018b). We found that in 47.3% of the cases
the parser couldn’t understand database-related in-
formation, such as table and column names as well
as values. Thus, we build PIIA upon parsers that
can interactively revise inexplicit expressions in x
with the help of users’ feedback, thus enhancing
the performance of text-to-SQL.

Our proposed PIIA, shown schematically in Fig-
ure 1, works between the user and the text-to-SQL
parser and it consists of three modules, Error Lo-
cator, Question Generator and NL Modifier. Af-
ter receiving x and y, the Error Locator helps the
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Figure 2: The grammar of the intermediate language.
In a specific database, column refers to distinct column
names while table comprises several table names and
value indicates the value tokens expressed by the user.

parser find a set of uncertain tokens in x. For each
uncertain token, the Question Generator creates
a natural language multi-choice question. After
interactively asking the user all the multi-choice
questions, the PIIA agent collects all the answers
(i.e., the user’s selections). Then, the NL Modifier
corrects x based on the answers and obtains a more
legible question x̂. Finally, by feeding modified
question x̂ into the text-to-SQL parser, we can get
a new predicted SQL query ŷ. Compared to x, x̂
combines user’s feedback and contains clearer se-
mantics. Hence ŷ is likely more accurate than y.
Note that, our PIIA agent will not read the contents
of the databases (i.e., values) due to privacy con-
cerns. Details of the three modules are presented
in Sections 3, 4 and 5.

3 Error Locator

The goal of Error Locator is to detect the tokens in
x that are hardly understood by the parser. These
are called Uncertain Tokens, and in most cases are
related to database information, such as table and
column names as well as values. When the parser
fails to understand them, the uncertain tokens will
be mistranslated or ignored. Since the parser is a
black box, the only information we can get from it
is the predicted SQL. Hence, we devise a method to
compare the NL question x with the predicted SQL
y. All the informative tokens in x may align with
the corresponding tokens in y, while the unaligned
tokens in x are extracted as uncertain tokens. To
this end, we firstly restate the predicted SQL y to
an NL question x′ through SQL-to-Text Restate-
ment, and then perform Token-to-Token Alignment
between x and x′.
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Figure 3: Illustration of Error Locator with a real case from IRNet on the Spider dataset. The NL question x is
parsed to SQL y, and then converted to restated NL question x′ via SQL-to-text restatement. Then, a token-to-
token alignment similarity matrix between x and x′ is computed to detect uncertain tokens (i.e., cat and aged).

3.1 SQL-to-Text Restatement

Compared to aligning an NL question with a SQL
query, the alignment of two NL questions is more
reasonable because it utilizes a similar linguistic
structure and can make better use of pre-trained
models (e.g., BERT). Thus, before the alignment,
we restate the predicted SQL y into a natural lan-
guage question x′. Previous work has proposed
sequence-to-sequence based methods (Guo et al.,
2018) that cannot ensure the restatement correct-
ness. In contrast, we carefully design a template-
based SQL-to-text method that solves this problem
because the restatement correctness and integrality
are critical for the alignment process.

Since SQL is execution-oriented, its clauses are
about database operations. Some of the clauses
may not be expressed in the users’ NL questions,
such as GROUPBY and JOIN. To bridge the gap
between natural language and SQL, we design an
intermediate language that is inspired by Guo et al.
(2019) and whose grammar is shown in Figure 2.
The predicted SQL can be easily converted into the
intermediate language, which can be naturally rep-
resented by a hierarchical tree structure. Each tree
node corresponds to a grammar rule. For each kind
of grammar rule, we design a few natural language
templates to describe it. Thus, we can recursively
convert the tree into a natural language question.
As for nested SQL queries, we utilize subordinate
clauses with “that/which” to handle the subqueries.
The SQL-to-text restatement is depicted on the left
of Figure 3, along with a concrete example. We
also give some examples of templates in the fig-
ure. Finally, the restated x′ has the same semantics

of SQL y and is independent of database internal
operations.

3.2 Token-to-Token Alignment
Given the user NL question x and the restated
NL question x′, we perform the token-to-token
alignment between them and find out the uncer-
tain tokens in x. As shown on the right of Figure
3, we adopt BERT (Devlin et al., 2019) as the en-
coder. BERT is pre-trained on a large corpus and
equipped with the ability to encode sentences on
the basis of contextual information. The input of
BERT is the concatenation of the two questions
with “[CLS]” and “[SEP]”. Each token obtains an
output vector from BERT, which is fed into a train-
able Multi-Layer Perceptron (MLP) layer to further
distill useful information. Assuming that x has N
tokens and x′ has M tokens, we can denote that
x = (x1, x2, . . . , xN ) and x′ = (x′1, x

′
2, . . . , x

′
M ).

The output embeddings of tokens in x and x′ can
respectively be denoted by

H = (h1,h2, . . . ,hN ) ∈ Rd×N ,

U = (u1,u2, . . . ,uM ) ∈ Rd×M ,
(1)

where d is the output embedding size.
Based on H and U , we employ the cosine sim-

ilarity to derive a token-level similarity matrix
A ∈ RN×M , where each entry Anm indicates the
similarity between xn and x′m:

Anm =
h>n · um

||hn|| · ||um||
. (2)

The alignment between x and x′ can be obtained
using the similarity scores in A. After removing
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stop words and words from SQL-to-text restate-
ment templates, we regard the similarity scores as
the weights of a bipartite graph and apply the Hun-
garian maximum matching algorithm to find an op-
timized token-level one-to-one alignment. Finally,
the tokens in x with alignment scores less than the
threshold p are extracted as uncertain tokens. It is
also important to note that a schema-aware post-
processing is operated on these scores. Since the
tokens that appear more than once in the database
schema may confuse the alignment process, the
post-processing aims to give addition bias and help
Error Locator detect potential uncertain tokens1.

3.3 Training Process

Since the annotations of token-to-token alignment
are not available, fully supervised learning is in-
feasible. Inspired by the work of Legrand et al.
(2016), we solve this problem by leveraging nega-
tive sampling to generate training data and adopt
a weakly supervised training strategy. Concretely,
we collect several pairs (x,x′pos). x is the user NL
question and x′pos is the corresponding positive re-
stated NL question restated from the ground truth
SQL of x. For each (x,x′pos) pair, we generate
negative restated NL questions x′neg in two ways:
random sampling, where we randomly pick an x′

from other pairs as x′neg; and perturbed sampling,
where we generate an x′neg by replacing column
names or/and value tokens in x′pos. The random
samples are vastly different from x′pos, and the com-
mon tokens in positive and negative samples are
uninformative (e.g., stop words). This kind of x′neg
helps distinguish the informative and uninforma-
tive tokens. The perturbed samples have the same
uninformative tokens with x′pos, and help model
to focus on the alignment of informative tokens.
We generate 50 random samples and 50 perturbed
samples for each (x,x′pos) pair.

By generating negative samples, we obtain the
training data composed of triples (x,x′pos,x

′
neg).

The intuition behind the weakly supervised training
is that x is more similar to x′pos than x′neg. We
measure the sentence-level similarity by averaging
the token-level similarities:

s(x,x′) =
1

N

N∑
n=1

M
max
m=1

Anm. (3)

1We lower the alignment score of a token (denoted as S) by
the number of its occurrences (denoted as C) in the database
schema (the score is lowered to S/C).

Question Generator

1. What do you mean by ‘cat’?
A. Col: pet type  B. Col: pet id
C. Col: pet age    D. Value
E. None (Don’t modify it)

2. What do you mean by ‘aged’?
A. Col: age of student  B. Col: pet age
C. Col: sex of student   D. Value
E. None (Don’t modify it)

Uncertain Tokens

Find the last name of the student who has a cat that is aged 3.

Natural Language Question 𝐱

Find the last name of the student who has a ‘cat’ whose pet_age is 3.

NL Modifier

Corrected Natural Language Question ො𝐱

1. cat → ‘cat’                              Rule: [Noun; V] → ‘[V]’  
(add single quotes to indicate it is a value)

2. aged → whose pet age is    Rule: [Adj; C] → whose [C] is 
(directly tell the column of the adjective token)

Figure 4: Question Generator and NL Modifier: an ex-
ample. Shaded options in the multi-choice questions
are selected by the user.

Then, our goal is to increase s(x,x′pos) and de-
crease s(x,x′neg). We employ hinge loss to max-
imize the margin of the two scores, which is also
accompanied by L1-norm on two corresponding
similarity matrices to make them sparse. The loss
function is:

L =max
(
0,m− (s(x,x′pos)− s(x,x′neg))

)
+ λ (|Apos|1 + |Aneg|1) ,

(4)

Where m is the margin and λ balances the hinge
loss and the L1-norm.

4 Question Generator

For each uncertain token detected by the Error Lo-
cator, the PIIA agent interacts with the user to get
a more explicit explanation. Instead of asking the
user to explain the uncertain token directly, we
provide an NL multi-choice question. As users
are non-expert and unfamiliar with database opera-
tions, simply picking an option is more natural and
friendly. Thus, the Question Generator is designed
to generate a multi-choice question for each uncer-
tain token2, i.e., “What do you mean by that?” as
shown in Figure 4.

To make a multi-choice question, a set of can-
didate options are generated. As analyzed in Sec-
tion 2, most of the uncertain tokens are related to
database information. Thus, for each uncertain
token in an NL question, we find out the corre-
sponding database and add all the column and table

2During interaction, after getting an answer to a multi-
choice question, we check the remaining uncertain tokens. If
an uncertain token exists in the answer, we delete the corre-
sponding multi-choice question to avoid repeating.
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names into the candidate set. Additionally, we ob-
serve that some uncertain tokens are about aggre-
gation operations, so we also add the aggregation
operations into the candidate set, such as min, max
and sum. As a result, the set is quite large, espe-
cially for complex databases. For example, the set
size can be larger than 40 in the Spider dataset.

Hence, we devise a ranking method to find out
the options with the highest correlations to the un-
certain token. Concretely, for each candidate op-
tion (denoted by w), we calculate its similarity
score with the uncertain token (denoted by z). As
each candidate option is a span with one or more
tokens, we adopt both lexical and semantic simi-
larities. w and z are pre-processed with lemmati-
zation. Then the Jaccard distance between them is
computed for lexical similarity, which is the num-
ber of common tokens divided by the number of
unique tokens in them. For semantic similarity, we
present each token as an embedding vector (i.e.,
GloVe (Pennington et al., 2014)) and employ the
Euclidean distance between w and z. The embed-
ding vector of a span is the average embedding over
tokens in the span. All the candidate options are
ranked by the summation of these two similarity
scores, and three of them are picked as options.
Additionally, we add two more options, Value and
None, to each multi-choice question. Value indi-
cates that z is related to a value in the database.
None means that either the token does not need
modification or all the other options are not related.
The None option is essential as it prevents uncer-
tain tokens from being modified unexpectedly. This
alleviates the need for Error Locator to make ex-
act error detection and ensures a higher recall rate.
Following the example in Figure 3, we show the
question generation process in Figure 4. As we can
observe, the multi-choice questions are easy to be
understood by non-expert users, and the provided
options are reasonable. After interacting with users,
the PIIA agent gets the information that “cat” is a
value, and “aged” indicates the column “pet age”.

5 NL Modifier

The last module of PIIA is the NL Modifier, which
corrects NL questions with the users’ feedback, i.e.,
how users answer the multi-choice questions. The
most straightforward way is to directly replace the
uncertain tokens with the selected options. How-
ever, it is not always reasonable. Since the uncer-
tain tokens can be not only nouns but also verbs

or adjectives, directly replacing verbs or adjectives
may cause incoherence. To avoid this problem, we
carefully design several modifier rules according to
different POS tags, option types, and user NL ques-
tion contexts. As mentioned in Section 4, there are
four option types: column name, table name, ag-
gregation, and value. A concrete example is shown
in Figure 4, where we also list the modifier rules
that are applied. Since the noun “cat” is selected
as a value, the single quotes are added. It is easier
for the parser to recognize it as a value because val-
ues are always equipped with single quotes in the
dataset. Moreover, as there are multiple columns
about age in the database, the adjective “aged” is
modified to “whose pet age is” to make the column
name easier to identify. Finally, the corrected NL
question x̂ is fed into the text-to-SQL parser. More
modifier rules and examples are shown in Table 3.

PIIA is designed to modify the user NL ques-
tions instead of the predicted SQLs. Modifying the
predicted SQLs is more straightforward but imprac-
ticable. We conducted several surveys and found
non-expert users had difficulty giving high-quality
responses to modify SQLs directly, even for simple
SQLs. Note that, the uncertain tokens found by
PIIA are the unaligned tokens in NL questions, so
the users’ feedback to uncertain tokens cannot be
used to modify the corresponding SQLs.

6 Experiments

In this section, we firstly introduce the experimen-
tal setup. Then we assess PIIA by using both sim-
ulation and human evaluation, and finally we per-
form a closer analysis of PIIA.

6.1 Experimental Setup

We conduct experiments on two cross-domain text-
to-SQL datasets with five base parsers.

The WikiSQL dataset (Zhong et al., 2017) col-
lects 24,241 cross-domain single-table databases
from Wikipedia and contains 80,654 hand-
annotated pairs of NL questions and SQL queries.
The SQL queries are relatively simple with only
SELECT and WHERE clauses. Two parsers are se-
lected: (1) SQLova (Hwang et al., 2019), currently
the best open-sourced parser on WikiSQL, uses
table-aware and context-aware representations of
questions to generate SQL queries. (2) SQLNet
(Xu et al., 2017) applies sequence-to-set prediction
and employs a sketch-based approach to predict
SQL queries. We report our PIIA results on the test
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set, which contains 15,878 samples.
The Spider dataset (Yu et al., 2018b) is a human-

labeled text-to-SQL dataset that consists of 10,181
NL questions and 5,693 unique complex SQL
queries on 200 databases with multiple tables. It
covers 138 different domains and is much more
complex than the WikiSQL dataset because it has
a greater number of complex questions and nested
SQL queries. Three parsers are selected: (1) IR-
Net (Guo et al., 2019), currently the state-of-the-art
open-sourced parser on Spider, employs the coarse-
to-fine framework (Dong and Lapata, 2018) and de-
signs an intermediate language. (2) IRNet+BERT
takes BERT as NL encoder to enhance the perfor-
mance of basic IRNet. (3) SyntaxSQLNet (Yu
et al., 2018a) employs a SQL specific syntax tree
based decoder and table-aware column attention
encoders. The test set is not publicly available, so
we evaluate PIIA on the development set, which
contains 1,034 samples.

In Error Locator, the similarity threshold is set
to be the average score of all the (x,x′) pairs in the
training triples X = {(x,x′pos,x′neg)} as follows:

p =
1

2|X |
∑

(x,x′pos,x
′
neg)∈X

(
s(x,x′pos) + s(x,x′neg)

)
.

This threshold score is generally lower than align-
ment scores of certain tokens and higher than that
of uncertain tokens, which can help to distinguish
certain and uncertain token alignment. For hyper-
parameters, we set m = 1 and λ = 0.5. As for the
NL Modifier, the NLTK pos tagging model (Loper
and Bird, 2002) is employed for pre-processing.

6.2 Simulation Evaluation

We build a simulator to interact with the PIIA agent,
which aims to give ideal selections for multi-choice
questions. We report the results achieved by five
base parsers.

Simulator The simulator chooses options on be-
half of the real user. Given an NL question with T
uncertain tokens, PIIA asks a multi-choice question
with K options for each token. The simulator enu-
merates all KT possible combinations of options
and feeds them into the NL Modifier and the parser
to get SQL queries. If one of these SQL queries
is the same as the ground truth SQL, the simula-
tor obtains the ideal selection. Otherwise, the PIIA
fails to correct the NL question. Since it is too time-
consuming to enumerate all KT combinations, we

Models SQLAcc ExeAcc Avg.#T

W
ik

iS
Q

L SQLova 80.7 86.2 N/A

+PIIA 84.9 88.9 1.3
SQLNet 61.7 68.0 N/A

+PIIA 68.4 73.2 1.7

Sp
id

er

IRNet 53.2 N/A N/A

+PIIA 59.3 N/A 2.9
IRNet+BERT 61.9 N/A N/A

+PIIA 63.4 N/A 2.4
SyntaxSQLNet 27.2 N/A N/A

+PIIA 34.2 N/A 3.4

Table 1: Simulation results of PIIA on the WikiSQL
test set and the Spider development set.

only rank and simulate the top 100. Concretely,
we firstly filter out options whose tokens do not
appear in the ground truth SQL. Then we provide
a score to each left option, as Question Generator
does in Section 4. Finally, the overall score for a
combination is computed by summing up all the
option scores in the combination.

Model Comparison We evaluate PIIA with the
simulator on both WikiSQL and Spider datasets.
The results are shown in Table 1. For the Wik-
iSQL dataset, we report the accuracy of SQL exact
matching (SQLAcc) and the accuracy of execution
(ExeAcc). We can observe that PIIA boosts the per-
formance for both base parsers with fewer than two
average interaction turns (Avg.#T). The absolute
SQLAcc improvements for SQLova and SQLNet
are 4.2% and 6.7% respectively, while the absolute
ExeAcc improvements are 2.7% and 5.2%. The
results on SQLNet are competitive with those of
DailSQL (Gur et al., 2018), a parser-independent
method designed for simple SQL. However, on av-
erage, PIIA interacts with users by 1.7 turns, while
DialSQL needs about 4.8. This indicates that PIIA
is quite efficient and able to enhance text-to-SQL
with only a few interaction turns.

Similar performance boosts can be observed on
the Spider dataset, which has more complex multi-
table SQL queries. As execution results are not
available, we only report the results of SQLAcc.
The improvements on IRNet, IRNet+BERT and
SyntaxSQLNet again demonstrate the effective-
ness of PIIA. PIIA can also enhance the parser
integrated with BERT, which further proves the ne-
cessity of PIIA. After interacting with users, PIIA
provides the revised NL questions in a form that
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Models w/o PIIA PIIA(H) PIIA(S) Avg.#T

IRNet 49.0 52.7 54.7 2.8
IRNet+BERT 60.7 62.2 62.7 2.4

Table 2: SQL Accuracy of human evaluation (H) and
simulation (S) on 300 samples.

is easier for parsers to understand. The average
interaction turns are about three, a number users
find acceptable. Fewer interaction turns are re-
quired by better parsers. Additionally, a smaller
improvement is obtained with a better parser, as
better parsers know NL questions better. PIIA is
effective because it utilizes the feedback provided
by users, who know the questions best, thus leading
to a further narrowing of the gap between parsers
and users.

6.3 Human Evaluation

We carry out the evaluation of PIIA with real users.
The human evaluation is performed on the more
complex Spider dataset and with two state-of-the-
art parsers, i.e., IRNet and IRNet+BERT. We ran-
domly sample 300 NL questions from the Spider
development set and invite 30 volunteers majoring
in liberal arts to interact with the PIIA agent. Each
NL question is evaluated by three volunteers, all
of whom are non-expert without any background
knowledge of SQL queries. We provide them with
the NL questions and the corresponding databases,
and they interact with PIIA by answering the multi-
choice questions.

The SQLAcc results of the human evaluation are
shown in Table 2. By interacting with real users,
PIIA boosts the overall SQLAcc of both IRNet
and IRNet+BERT by an absolute improvement of
3.7% and 1.5%, respectively. This indicates that
PIIA provides a friendly way to interact with non-
expert users, who are therefore able to understand
the multi-choice questions and give proper answers.
The average numbers of interaction turns are 2.8
and 2.4, respectively, which the users find accept-
able. We also analyze the gap between human
evaluation and simulation and find that some of the
NL questions are ambiguous, making it hard for
real users to distinguish similar options.

6.4 Closer Analysis

We use the IRNet parser on the Spider dataset to
provide a closer analysis of PIIA. Similar observa-
tions can be obtained with other parsers.

(a) (b)

Figure 5: (a) Turn distribution and (b) SQLAcc w.r.t
number of options by IRNet+PIIA on the Spider de-
velopment set. Orange line in (b) indicates the result
without PIIA.

Number of Turns In interactive systems, the
number of interaction turns mostly determines
whether users have a positive experience as too
many turns may tire them out. With that in mind,
we figure out the distribution of the number of
turns (i.e., the number of multi-choice questions)
over the Spider development set. The distribution
is shown in Figure 5(a) with the average number
being 2.9. As observed, the interaction process
finishes in four turns in nearly 90% of the cases.
Only 10 out of 1,034 cases require an interaction
process with more than five turns, which indicates
PIIA is able to process such a complex dataset with
high efficiency. We also analyze the cases correctly
modified by the simulation and find that about 40%
of the multi-choice questions get the None answer,
which is an acceptable percentage. Additionally,
the performance of our Error Locator is adequate.
Though there are an average of 12.4 tokens in each
NL question on the Spider development set, the
Error Locator is able to find about three uncertain
tokens out of them effectively.

Number of Options Providing a greater number
of options in multi-choice questions increases the
chances of including the correct one, thus enhanc-
ing the performance of the system. With more
options, however, users have to make more effort.
Therefore, we conduct experiments to analyze the
influence of the number of options on the SQLAcc
under simulation, as shown in Figure 5(b). The
curve tends to be smooth after five options, mean-
ing that this number is reasonable and able to bal-
ance the number of options and the need for correct
ones. It’s worth mentioning that each question con-
tains two necessary options, i.e., None and Value,
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Figure 6: The similarity matrix of a real case.

so that the least number of options is three.

Similarity Matrix The Error Locator module is
responsible for calculating a similarity matrix A
between a user’s NL question x and a restated NL
question x′. Following the example in Figure 3,
we show the similarity matrix in Figure 6. “last
name” is evidently more similar to the column
name “lname” than to the others, which meets our
expectations. Two uncertain tokens are extracted,
namely “cat” and “age”. They are not stop words,
and their scores don’t reach the threshold. Since
the token “cat” is not expressed in the restated NL
question, it has a low similarity score. Although
“age” appears in the restated NL question, it exists
in two column names in the database, i.e., “age”
from the table “student” and “pet age” from the
table “pet”. Thus the score of “age” is reduced and
falls below the threshold.

Modifier Rules We carefully design the modifier
rules for the NL Modifier based on the uncertain to-
kens and the selected options. Concretely, we take
into consideration the types of options (column,
table, value, or aggregation), the POS taggings of
the uncertain tokens, and the contexts of the un-
certain tokens. As shown in Table 1, PIIA with
the NL Modifier improves the efficacy of IRNet
SQLAcc from 53.2% to 59.3%. Instead of using
the NL Modifier, we try a straightforward way to
modify the NL questions that involves directly re-
placing the uncertain tokens with selected options.
With this approach, the simulated SQLAcc stands
at 54.8%, a result that is much worse than what
PIIA can achieve with the NL Modifier, thus prov-
ing that our module is indispensable.

Case Study Table 3 shows more real cases of
users’ NL questions and corrected NL questions

along with the corresponding modifier rules. The
words in bold are uncertain tokens and their cor-
rections. Though IRNet wrongly parses these six
cases, PIIA manages to solve them correctly. The
first five cases are modified by rules for nouns,
verbs, and adjectives that are related to the column
names in the databases. Different rules are applied
to add the column names into NL questions, mak-
ing it more explicit for the parser to understand
them. Case 6 shows an example of how to mod-
ify the aggregation operator and the value-related
tokens. PIIA revises the inexplicit NL questions
by interacting with users. Equipped with the PIIA
agent, the performance of the base parser is im-
proved.

7 Related Works

The works most related to ours are those investi-
gating interactive semantic parsing. For instance,
DailSQL, proposed by Gur et al. (2018), aims to
detect error spans and their categories based on an
encoder-decoder architecture. But it is designed
for relatively simple scenarios. In this research
area, another impressive work involves a model-
based interaction system, which detects uncertain
tokens and asks questions relying on inner parser
states (Yao et al., 2019). Unlike these studies, how-
ever, we design a parser-independent interactive
approach that can also perform cross-domain com-
plex SQL queries. In the field of applied systems,
Gao et al. (2015) focused on user interface design-
ing and proposed an interactive semantic parsing
system called Datatone. In contrast to them, our
main contribution lies in the realm of technology.
Another topic our method related to is query re-
formulation. The idea of query reformulation is
explored by Ray et al. (2018) and Rastogi et al.
(2019), while they apply this idea in other domains
with different scenarios. Our work is also related to
semantic parsing, the process of converting natural
language utterances into logical forms. Sequence-
to-sequence methods are widely applied to solve
this task (Berant et al., 2013; Dong and Lapata,
2016; Finegan-Dollak et al., 2018; Su et al., 2018).
To reduce search space for decoding, several works
employed intermediate representations to gener-
ate abstract representations (Cheng et al., 2017;
Goldman et al., 2018; Dong and Lapata, 2018). Al-
though these methods have achieved an impressive
performance in experimental studies, there is still
a long way to go before they can be successfully
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1
User NL question: List the creation year, name and budget of each department.

Corrected NL question: List the creation year, name and budget in billions of each department.

Modifier Rule: [Noun; C] → [C]  (replace the token with the whole column name)

2
User NL question: What are the first names of all the different drivers in alphabetical order?

Corrected NL question: What are the forename of all the different drivers in alphabetical order?

Modifier Rule: [Noun; C] → [C]  (detect the phrase and replace it with the whole column name)

3
User NL question: What is the type of the document named "David CV"?

Corrected NL question: What is the document type code of the document whose name is "David CV"?

Modifier Rule: [Verb; C] → whose [C] is  (directly tell the column name of the verb token)

4
User NL question: Where is the club "Hopkins Student Enterprises" located?

Corrected NL question: Where is the club "Hopkins Student Enterprises" ‘s location?

Modifier Rule: [Verb; C] → ‘s [C]  (directly tell the column name of the verb token, when the token is in the end of the sentence)

5
User NL question: Show the enrollment and primary_conference of the oldest college.

Corrected NL question: Show the enrollment and primary_conference of the oldest founded college.

Modifier Rule: [Adj; C] → [Adj] [C]  (directly add the column name of the adjective token)  

6

User NL question: Give the mean GNP and total population of nations which are considered US territory.

Corrected NL question: Give the average GNP and total population of nations which are considered ‘US territory’.

Modifier Rule:
[Agg] → [Agg]  (replace the aggregation token with the most similar aggregation word)     
[Noun; V] → ‘[V]’ (add single quotes to indicate it is a value)

Table 3: Cases by IRNet+PIIA on Spider. Texts highlighted in gray indicate column names in the databases.

applied in real systems.
Works dealing with the task of weakly super-

vised word alignment are also related to our re-
search because our Error Locator module performs
the same task. Some examples include the work of
Liu and Sun (2015), who proposed a latent-variable
log-linear model for word alignment, the research
of Legrand et al. (2016), who used pairwise train-
ing with negative sampling to train the alignment
model, and a study that introduced a gradient-
based alignment method for machine translation
(He et al., 2019b).

8 Conclusion and Future Work

We propose a parser-independent interactive ap-
proach, PIIA, to enhance the text-to-SQL process
in NLIDB systems. PIIA interacts with users via
multi-choice questions and can be built on arbi-
trary parsers. Experimental results show this ap-
proach leads to significant performance boosts on
two cross-domain datasets with five different base
parsers. In the future, we are interested in distilling
and reusing the common knowledge from users’
selections.
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