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Abstract

Context-dependent text-to-SQL task has
drawn much attention in recent years. Previ-
ous models on context-dependent text-to-SQL
task only concentrate on utilizing historical
user inputs. In this work, in addition to
using encoders to capture historical informa-
tion of user inputs, we propose a database
schema interaction graph encoder to utilize
historicalal information of database schema
items. In decoding phase, we introduce a
gate mechanism to weigh the importance
of different vocabularies and then make
the prediction of SQL tokens. We evaluate
our model on the benchmark SParC and
CoSQL datasets, which are two large complex
context-dependent cross-domain text-to-SQL
datasets. Our model outperforms previous
state-of-the-art model by a large margin and
achieves new state-of-the-art results on the
two datasets. The comparison and ablation
results demonstrate the efficacy of our model
and the usefulness of the database schema
interaction graph encoder.

1 Introduction

The Text-to-SQL task aims to translate natural lan-
guage texts into SQL queries. Users who do not
understand SQL grammars can benefit from this
task and acquire information from databases by just
inputting natural language texts. Previous works
(Li and Jagadish, 2014; Xu et al., 2017; Yu et al.,
2018a; Bogin et al., 2019b; Huo et al., 2019) fo-
cus on context-independent text-to-SQL genera-
tion. However, in practice, users usually inter-
act with systems for several turns to acquire in-
formation, which extends the text-to-SQL task to
the context-dependent text-to-SQL task in a con-
versational scenario. Throughout the interaction,
user inputs may omit some information that ap-
peared before. This phenomenon brings difficulty
for context-dependent text-to-SQL task.

Recently, context-dependent text-to-SQL task
has attracted more attention. Suhr et al. (2018)
conduct experiments on ATIS dataset (Dahl et al.,
1994). Besides, two cross-domain context-
dependent datasets SParC (Yu et al., 2019b) and
CoSQL (Yu et al., 2019a) are released. Cross-
domain means databases in test set differ from that
in training set, which is more challenging.

EditSQL (Zhang et al., 2019) is the previ-
ous state-of-the-art model on SParC and CoSQL
datasets and it focuses on taking advantages of
previous utterance texts and previously predicted
query to predict the query for current turn. Table
1 shows the user inputs, ground truth queries and
predicted queries of EditSQL for an interaction. In
the second turn, EditSQL views “Kacey” as the
name of a dog owner. However, since the context
of the interaction is about dogs, “Kacey” should
be the name of a dog. This example shows that
a model using only historical information of user
inputs may fail to keep context consistency and
maintain thematic relations.

According to (Yu et al., 2019b) and (Yu et al.,
2019a), to maintain thematic relations, users may
change constraints, ask for different attributes for
the same topic when they ask the next questions.
Thus, database schema items (i.e., table.column)
in current turn should have relation with items in
previous turn. For example, in Table 1, the second
question x2 adds a constraint of the name and asks
for the age of a dog instead of the numbers of all
dogs. The corresponding database schema items
Dogs.age and Dogs.name in y2 belong to the same
table as Dogs.* in previous query y1. Therefore,
we propose to take historical information about
database schema items into consideration.

In particular, we first construct a graph based
on corresponding database, where graph nodes
are database schema items and graph edges are
primary-foreign keys and column affiliation. Short
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x1 how many dogs on the table

ỹ1 SELECT count ( * ) FROM Dogs
y1 SELECT count ( * ) FROM Dogs

x2 what is the age of Kacey

ỹ2 SELECT T2.age FROM owners as T1 JOIN Dogs
AS T2 ON T1.owner id = T2.owner id WHERE
T1.first name = 1

y2 SELECT age FROM dogs WHERE name =
“Kacey”

x3 which dog is highest weight on table
– Do you want the name of the dog with the
highest weight?
– exactly

ỹ3 SELECT name FROM dogs ORDER BY weight
DESC limit 1

y3 SELECT name FROM dogs ORDER BY weight
DESC limit 1

x4 What is the size code of BUL
– Did you mean the size code of dogs with a breed

code BUL?
– exactly

ỹ4 SELECT size code FROM dogs WHERE
breed code = 1

y4 SELECT size code FROM dogs WHERE
breed code = “BUL”

Table 1: An example interaction. xi is the input se-
quence in i-th turn and yi is the corresponding ground
truth query. ỹi means that query is predicted by a
model, which is EditSQL here.

distance between graph nodes appearing in previ-
ous query and current query can reveal the context
consistency since there is usually an edge between
the different attributes of the same topic. We then
propose a database schema interaction graph en-
coder to model database schema items together
with historical items. Empirical results on two
large cross-domain context-dependent text-to-SQL
datasets - SParC and CoSQL show that our schema
interaction graph encoder contributes to modeling
context consistency and our proposed model with
database schema interaction graph encoder substan-
tially outperforms the state-of-the-art model.

Our main contributions are summarized as fol-
lows:

• Previous models failed to keep context con-
sistency and predict queries in a conversa-
tion scenario. To remedy this, we propose
a database schema interaction graph encoder
for database schema encoding and it can keep
context consistency for the context-dependent
text-to-SQL task. Our implementations are

public available 1.

• Our model with the database schema inter-
action graph encoder achieves new state-of-
the-art performances on development and test
sets of two cross-domain context-dependent
text-to-SQL datasets, SparC and CoSQL.

2 Related Work

Many studies have focused on context-independent
text-to-SQL task. Zhong et al. (2017) split the vo-
cabulary and use reinforcement learning. Xu et al.
(2017) propose a sketched-based model, which
decomposes the token prediction process into
SELECT-clause prediction and WHERE-clause
prediction, aiming at taking previous predictions
into consideration. Yu et al. (2018a) further em-
ploy a tree-based SQL decoder so as to decode SQL
queries with the help of SQL grammar. In order
to encode database schemas, schemas are regarded
as graphs and graph neural networks have been ap-
plied (Bogin et al., 2019a,b). Guo et al. (2019)
design an intermediate representation to bridge
the gap between natural language texts and SQL
queries. Choi et al. (2020) utilize a sketch-based
slot filling approach to synthesize SQL queries.
Wang et al. (2019) attempt to align the database
columns and their mentions in user inputs by using
a relation-aware self attention.

Recently, context-dependent text-to-SQL task
has drawn people’s attention. In-domain context-
dependent benchmarks ATIS (Suhr et al., 2018)
have been proposed. For ATIS, Suhr et al. (2018)
utilize a sequence to sequence framework. Besides,
they introduce an interaction-level encoder for in-
corporating historical user inputs and a segment
copy mechanism to reduce the length of genera-
tion. Later, two large and complex cross-domain
context-dependent dataset SParC (Yu et al., 2019b)
and CoSQL (Yu et al., 2019a) are proposed. In
order to tackle cross-domain context-dependent
text-to-SQL task, Zhang et al. (2019) propose the
EditSQL model in order to capture features from
historical user inputs, variant database schemas and
previously predicted SQL query. EditSQL achieves
the state-of-the-art performance on the two cross-
domain datasets. Compared to EditSQL, our work
further explore a new way to employ historical in-
formation of database schemas.

1https://github.com/headacheboy/IGSQL
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Figure 1: Overview of our IGSQL model. Modules with the same color share the same parameters.

3 Problem Setup

We define X as a series of natural language ut-
terances of an interaction (i.e., user inputs), Y as
corresponding ground-truth SQL queries, S as the
set of database schema items (table.column) and
R as the set of relations between schema items
(primary-foreign keys and column affiliation). Let
X = {x1, x2, ..., x|X|}, where |X| is the number
of utterances. xi is the i-th utterance and xij is the
j-th token of it. yi is the i-th SQL query corre-
sponding to xi and yij is the j-th token of yi. S
consists of schema items {S1, ..., S|S|}, where |S|
is the number of database schema items. At turn i,
the model should make use of current and previous
utterances {x1, x2, ..., xi}, database schema items
S and their relations R to predict a SQL query
ỹi. The objective of the model is to maximize the
probability of

∏|I|
i=1 P (y

i|x1, x2, ..., xi).

4 IGSQL Model

Our model adopts an encoder-decoder framework
with attention mechanism. Figure 1 shows the ar-
chitecture of our model. The model have four
main components: (1) a database schema inter-
action graph encoder, which consists of cross-
turn schema interaction graph layers and intra-turn
schema graph layers, (2) a text encoder that cap-
tures historical information of user inputs, (3) a
co-attention module that updates outputs of text
encoder and database schema interaction graph en-
coder, and (4) a decoder with a gated mechanism
to weight the importance of different vocabularies.
In addition, the model also uses BERT embedding.

We will first introduce the BERT embedding

in Section 4.1, and then introduce our database
schema interaction graph encoder in Section 4.2,
text encoder and co-attention module in Section
4.3 and decoder in Section 4.4.

4.1 BERT Embedding
BERT (Devlin et al., 2019) is a pre-trained lan-
guage model. Employing BERT output as embed-
dings of user inputs and database schema items has
proved effective in context-dependent text-to-SQL
task (Hwang et al., 2019; Guo et al., 2019; Wang
et al., 2019; Choi et al., 2020). Therefore, we lever-
age BERT to get the embeddings of user inputs and
database schema items as other context-dependent
text-to-SQL models do. We concatenate user inputs
and database schema items by separating with a
“[SEP]” token following (Hwang et al., 2019). The
output of BERT model is used as the embeddings
of user inputs and schema items.

4.2 Database Schema Interaction Graph
Encoder

As shown in Table 1, previous model mistakes
“Kacey” as the name of a dog owner. However, the
interaction is all about dogs and “Kacey” should
be the name of a dog. It shows that previous model
does not perform well in modeling context consis-
tency of an interaction.

For two database schema items appearing in two
adjacent turns, short distance of items in the graph
can reveal the context consistency. For example,
the distance between Dogs.* 2 and correct item
Dogs.name is 1. Distance between Dogs.* and
wrong item owners.name is 3.

2table.* is considered a special column in table.
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Figure 2: Database Schema Interaction Graph. We add
black edges into the graph when we want to update the
representation of the blue node (Dogs.dog id) at turn i.

Therefore, we propose a database schema inter-
action graph encoder based on the database schema
graph, attempting to model context consistency
by using historical schema representations. The
database schema interaction graph encoder con-
sists of L1 cross-turn schema interaction graph
layers and L2 intra-turn schema graph layers (L1

and L2 are hyper-parameters). Cross-turn schema
interaction graph layers update schema item rep-
resentations by using that in previous turn. Intra-
turn schema graph layers further aggregate adjacent
item representations in the same turn.

4.2.1 Graph Construction and Schema Items
Encoding

We first introduce how we construct a graph based
on database schema. We use database schema items
as nodes. Each node has an edge linking to itself.
There is an undirected edge between node t and
node j according to relation set R if one of the
following condition is satisfied: 1) node t and node
j are the foreign-primary key pair; 2) node t and
node j belong to the same table. We define the
edge set as E.

A schema item table.column is divided into “ta-
ble”, “.” and “column”. We use a BiLSTM with
BERT embedding to encode tokens and average
hidden state vectors of BiLSTM as the embedding
of the schema item. The embedding of the j-th
schema item at i-th turn is noted as rij .

4.2.2 Cross-turn Schema Interaction Graph
Layer

Figure 2 shows an example of the database schema
interaction graph. The graph only allows node t in
previous turn to update node j in current turn, when
the distance between node t and node j in the orig-

inal graph constructed in Section 4.2.1 is less than
or equal to 1. For example, if we want to update
the representation of Dogs.dog id at turn i, we add
edges linking Dogs.*, Dogs.name, Dogs.owner id
and Dogs.dog id at turn i − 1 to Dogs.dog id at
turn i.

Note that we have L1 cross-turn schema inter-
action graph layers for turn i. At the l-th layer,
we obtain updated representation zi,lt of the t-th
schema item by using attention on outputs of the
L2 intra-turn schema graph layers at previous turn
{gi−1,L2

t }|S|t=1 (which will be introduced in next
subsection) and representations of previous layer
{zi,l−1t }|S|t=1. We use item embedding rit as the ini-
tial representation zi,0t . For simplicity, we omit
turn index i and layer index l in the formulas of at-
tention mechanism except the input zi,l−1t , gi−1,L2

t

and output zi,lt .
At the l-th layer, we first use a feed-forward neu-

ral network with leakyReLU activation function for
non-linear transformation. We use FFN to denote
the feed-forward neural network with leakyReLU
activation function.

ut = FFN(zi,lt )

ût = FFN(gi−1,L2
t )

(1)

We then apply attention mechanism as follows.

ξt,j =

{
(ut)

TW1uj/
√
d1, [t, j] ∈ E

−∞, [t, j] /∈ E

ξ̂t,j =

{
(ut)

TW2ûj/
√
d1, [t, j] ∈ E

−∞, [t, j] /∈ E

αt,j =
exp(ξt,j)∑

v exp(ξt,v) +
∑

k exp(ξ̂t,k)

α̂t,j =
exp(ξ̂t,j)∑

v exp(ξt,v) +
∑

k exp(ξ̂t,k)

ũt =
∑
j

αt,juj +
∑
j

α̂t,j ûj

(2)

where d1 is the dimension of ut. W1 and W2 are
weight matrices. αt,j and α̂t,j are the attention
scores. ũt is the t-th output vector of attention.

Following (Vaswani et al., 2017; Veličković
et al., 2017), we extend attention mechanism to
multi-head attention. We also add a sub-layer of
feed-forward neural network with residual connec-
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tion as in Transformer.

zi,lt = zi,l−1t + FFN(zi,l−1t + ũt) (3)

where zi,lt is the final output of layer l. There are
L1 cross-turn schema interaction graph layers and
thus zi,L1

t is the final output of cross-turn schema
interaction graph layers for the t-th schema item.

4.2.3 Intra-turn Schema Graph Layer
There are L2 intra-turn schema graph layers fol-
lowing cross-turn schema interaction graph layers.
In each intra-turn schema graph layer, we use al-
most the same attention mechanism as in the cross-
turn schema interaction graph layer, except that we
use the original graph constructed in Section 4.2.1.
Since the original graph does not contain nodes
in previous turn, the intra-turn schema graph layer
can only update node representation by aggregating
adjacent node representations in the same turn.

At each intra-turn schema graph layer layer l
of turn i, it takes output vectors in previous layer
gi,l−1t as inputs and its output is gi,lt . gi,0t is zi,L1

t .
We then use attention mechanism to aggregate in-
formation. We also add a sub-layer of FFN and
residual connection. For simplicity, we omit the
turn index i and layer index l in attention except
input gi,l−1t and output gi,lt .

µt = FFN(gi,l−1t )

τt,j =

{
(µt)

TW3µj/
√
d2, [t, j] ∈ E

−∞, [t, j] /∈ E

βt,j =
exp(τt,j)∑
k exp(τt,k)

µ̃t =
∑
j

βt,jµj

gi,lt = gi,l−1t + FFN(gi,l−1t + µ̃t)

(4)

where W3 is a weight matrix and d2 is the dimen-
sion of µt. βt,j is the attention score of the j-th
node to the t-th node. µ̃t is the attention output.
gi,lt is the output of t-th schema item at layer l of
turn i. Besides, We also extend attention to multi-
head attention.

The final output of intra-turn schema graph lay-
ers for the t-th schema item is gi,L2

t .

4.3 Text Encoder and Co-Attention Module
We use a BiLSTM to encode tokens of an utterance
text with BERT embedding. In order to capture

interaction history, we add an LSTM as interaction
encoder and utilize turn-level attention, following
(Zhang et al., 2019). The final representation of the
t-th token in utterance i is denoted as hit.

We also add a co-attention module between text
tokens and schema items following (Zhang et al.,
2019). The schema item vector g̃it used in decoding
phase is the concatenation of gi,L2

t and its corre-
sponding attention vector over text. The representa-
tion of input text tokens h̃it used in decoding phase
is the concatenation of hit and its corresponding
attention vector over schema items. Due to page
limit, we omit the details here, which can be found
in (Zhang et al., 2019).

4.4 Decoder

In decoding phase, we first encode previously pre-
dicted query with a BiLSTM. We then exploit a
LSTM decoder with attention (Bahdanau et al.,
2015) to capture features from input text’s token
vectors, schema item vectors and previously pre-
dicted SQL query vectors. At j-th time step, We
use attention on text token’s vector h̃it, database
schema vector g̃it and previously predicted SQL
token’s vector qt. We thus get three context vectors.
The final context vector cj is the concatenation of
these three context vectors.

We follow (Suhr et al., 2018) to make predic-
tion of SQL tokens based on SQL reserved words,
database schema items and previous predicted SQL
tokens. We also add a gate mechanism to introduce
the importance of these three vocabularies. For
simplicity, we omit turn index i in decoder step
except ỹij .

The gate mechanism is introduced to measure
the importance of three vocabularies.

õj = tanh(Wo([oj ; cj ] + bo)

ζm = σ(Wmõj + bm)

m ∈ {res, sch, que}
(5)

where oj is the j-th hidden vector of the LSTM
decoder. cj is the context vector. [; ] is the
concatenation operator and õj is the non-linear
transformation of [oj ; cj ]. σ is the sigmoid func-
tion. res, sch, que represent SQL reserved words,
database schema items and previously predicted
SQL tokens respectively and ζres, ζsch, ζque repre-
sent the importance of these three kinds of tokens.
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SParC CoSQL

cross-domain X X
Interaction 4298 3007

Train 3034 2164
Dev 422 292
Test 842 551

User Questions 12726 15598
Databases 200 200

Tables 1020 1020
Vocab 3794 9585

Avg Turn 3.0 5.2

Table 2: Statistics of SParC, CoSQL

We then predict SQL tokens as follows.

p1(ỹ
i
j = w) =

1

Z
exp(ζres · wT (Wresõj + bres))

p2(ỹ
i
j = St) =

1

Z
exp(ζsch · (g̃itWschõj)

p3(ỹ
i
j = ỹi−1t ) =

1

Z
exp(ζque · (qtWqueõj))

(6)

where w is the one-hot vector of word w. qt and g̃it
are query vector and schema item vector that are
mentioned before. The final generation probability
p(ỹij) is p1(ỹij)+p2(ỹ

i
j)+p3(ỹ

i
j). Z is the normal-

ization factor that ensures
∑

v∈V p(v) is 1, where
V is the whole vocabulary. The loss function is∑

i

∑
j −log(p(yij))

5 Implementation Details

We use Adam optimizer (Kingma and Ba, 2015)
to optimize the loss function. The initial learning
rate except BERT model is 1e-3, while the initial
learning rate of BERT model is 1e-5. We use learn-
ing rate warmup over the first 1000 steps. The
learning rate will be multiplied by 0.8 if the loss
on development set increases and the token accu-
racy on development set decreases. The number of
cross-turn schema interaction graph layer L1 is 2,
while the number of intra-turn schema graph layer
L2 is 1. The dimensions d1 and d2 are both 300.
For encoder and decoder, the hidden size of the one
layer LSTM and BiLSTM are 300. Besides, we use
batch re-weighting to reweigh the loss function fol-
lowing (Suhr et al., 2018). For BERT embedding,
following EditSQL, we use the pre-trained BERT
base model in order to make fair comparison.

6 Experiments

6.1 Experiment Setup
Datasets. We conduct experiments on two large-
scale cross-domain context-dependent SQL genera-
tion datasets, SParC (Yu et al., 2019b) and CoSQL
(Yu et al., 2019a). In comparison with previous
context-dependent dataset ATIS (Dahl et al., 1994),
SParC and CoSQL are more complex since they
contain more databases and adopt a cross-domain
task setting, where the databases of training set
differ from that of development set and test set.
Statistics of SParC and CoSQL are shown in Table
2.

Evaluation Metrics. Yu et al. (2018b) introduce
exact set match accuracy to replace string match
accuracy by taking queries with same constraints
but different orders as the same query. In SParC
and CoSQL, we use question match accuracy and
interaction match accuracy as evaluation metrics.
Question match accuracy is the average exact set
match accuracy over all questions, while interac-
tion match accuracy is the average exact set match
accuracy over all interactions.
Baseline Models. We compare our model with
following baseline models.

• Context dependent Seq2Seq (CD S2S).
This model is originated in (Suhr et al., 2018)
for ATIS dataset. Yu et al. (2019b) adapt this
model to cross-domain setting by adding a
BiLSTM to encode schema items and modify-
ing the decoder to generate different schema
items according to databases.

• SyntaxSQL-con. This model is originated in
(Yu et al., 2018a), which utilizes SQL gram-
mars for decoder. Yu et al. (2019b) adapt this
model to context-dependent setting by adding
LSTM encoders to encode historical user in-
puts and historical SQL queries.

• EditSQL. The model is proposed by (Zhang
et al., 2019). In addition to modules for encod-
ing historical user inputs and corresponding
SQL queries, it also contains a copy mech-
anism to copy tokens from previous SQL
queries.

6.2 Experiment Results
Results of these baseline models and our proposed
IGSQL model are shown in Table 3. Our model sur-
passes the previous state-of-the-art model EditSQL.
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Method SParC Dev SParC Test CoSQL Dev CoSQL Test

Ques Int Ques Int Ques Int Ques Int

CD S2S 21.9 8.1 23.2 7.5 13.8 2.1 13.9 2.6
SyntaxSQL-con 18.5 4.3 20.2 5.2 15.1 2.7 14.1 2.2

EditSQL* 47.2 29.5 47.9 25.3 39.9 12.3 40.8 13.7
IGSQL* 50.7 32.5 51.2 29.5 44.1 15.8 42.5 15.0

Table 3: Results of models in SParC and CoSQL datasets. Ques means question match accuracy. Int means
interaction match accuracy. * means that results are enhanced by BERT embedding.

Turns SParC CoSQL

EditSQL IGSQL EditSQL IGSQL

1 62.2 63.2 50.0 53.1
2 45.1 50.8 36.7 42.6
3 36.1 39.0 34.8 39.3
4 19.3 26.1 43.0 43.0
>4 0 0 23.9 31.0

Table 4: Exact match accuracy w.r.t. turn number on
development sets.

Hardness SParC CoSQL

EditSQL IGSQL EditSQL IGSQL

Easy 68.8 70.9 62.7 66.3
Medium 40.6 45.4 29.4 35.6

Hard 26.9 29.0 22.8 26.4
Extra 12.8 18.8 9.3 10.3

Table 5: Exact match accuracy w.r.t. different hardness
level on development sets.

IGSQL achieves substantial improvement on ques-
tion match accuracy by 3.5, 3.3 points on SParC
development and test sets and 4.2, 1.7 points on
CoSQL development and test sets, respectively. As
for interaction match accuracy, IGSQL improves
by 3, 4.2 points on SParC development and test
sets, and 3.5, 1.3 points on CoSQL development
and test sets. Results demonstrate the effectiveness
of our model.

Table 4 shows the exact match accuracy of in-
teraction with respect to different turn number. In
both datasets, performances on interactions with
one turn improve less. In SParC, performances
on interactions with two turns and four turns im-
prove the most, while in CoSQL, performances
on interaction with two turns and larger than four
turns improve the most. These results demonstrate
that our database schema interaction graph encoder
contributes to modeling schema items in conversa-
tional scenarios.

Table 5 lists the exact match accuracy with re-
spect to different hardness level. Results in the

table show that performance at each hardness level
improves. The results indicate that capturing his-
torical database schema information can not only
improve the accuracy of easy questions, but also
answer harder questions more accurately.

6.3 Ablation Study

In order to verify the usefulness of our database
schema interaction graph encoder, we conduct sev-
eral ablation experiments as follows.
w/o cross-turn schema interaction graph layer.
In this experiment, we discard cross-turn schema
interaction graph layers. In this setting, our model
cannot encode historical database schema informa-
tion.
w/o intra-turn schema graph layer. In this exper-
iment, we discard intra-turn schema graph layers
to examine whether these layers are useful.
GRU interaction layer. One of the most common
way to employ historical information of database
schema items is to update node representation di-
rectly from historical vector of the same node. For
example, in Figure 2, we can use a GRU by taking
representation of Dogs.dog id at turn i− 1 and its
BERT embedding at turn i as input. The output of
GRU is the vector of Dogs.dog id at turn i. In this
experiment, we use a GRU to replace cross-turn
schema interaction graph layers.
Fully-connected interaction layer. To examine
the effectiveness of our design of schema inter-
action graph, we make experiment that replaces
the schema interaction graph with fully connected
graph. Taking Figure 2 as an example, to update
representation of blue node at turn i, there are edges
connecting blue node at turn i to all nodes at turn
i− 1.

Since the test sets of SParC and CoSQL are not
public, we carry out the ablation experiments only
on development sets of these two datasets. Table 6
shows the results of ablation experiments. Our full
model achieves about 2 points improvement com-
pared with the model without cross-turn schema in-
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Method SParC CoSQL

Ques Match Int Match Ques Match Int Match

IGSQL 50.7 32.5 44.1 15.8
w/o cross-turn schema interaction graph layer 47.6(-3.1) 29.5(-3.0) 41.9(-2.2) 14.0(-1.8)

w/o intra-turn schema graph layer 50.2(-0.5) 31.1(-1.4) 42.9(-1.2) 14.0(-1.8)
GRU interaction layer 48.2(-2.5) 29.2(-3.3) 41.0(-3.1) 14.1(-1.7)

Fully-connected interaction layer 48.2(-2.5) 29.0(-3.5) 42.0(-2.1) 13.0(-2.8)

Table 6: Ablation study on development sets. Numbers in brackets are performance differences compared to
IGSQL.

x1 Which cartoon aired first?

EditSQL SELECT title FROM cartoon ORDER BY original air date LIMIT 1
IGSQL SELECT title FROM cartoon ORDER BY original air date LIMIT 1
y1 SELECT title FROM cartoon ORDER BY original air date LIMIT 1

x2 What was the last cartoon to air?

EditSQL SELECT T1.title FROM cartoon AS T1 JOIN tv channel AS T2 ON T1.channel = T2.id JOIN tv series
AS T3 ON T2.id = T3.channel ORDER BY T3.air date LIMIT 1

IGSQL SELECT title FROM cartoon ORDER BY original air date DESC LIMIT 1
y2 SELECT title FROM cartoon ORDER BY original air date DESC LIMIT 1

x3 What channel was it on?

EditSQL SELECT channel FROM tv series ORDER BY air date LIMIT 1
IGSQL SELECT channel FROM cartoon ORDER BY original air date DESC LIMIT 1
y3 SELECT channel FROM cartoon ORDER BY original air date DESC LIMIT 1

x4 What is the production code?

EditSQL select T1.production code FROM cartoon AS T1 JOIN tv channel AS T2 ON T1.channel = T2.id JOIN
tv series AS T3 ON T2.id = T3.channel ORDER BY T3.air date LIMIT 1

IGSQL SELECT production code FROM cartoon ORDER BY original air date DESC LIMIT 1
y4 SELECT production code FROM cartoon ORDER BY original air date DESC LIMIT 1

Table 7: An example of an interaction in CoSQL. xi is the input sequence at i-th turn and yi is the corresponding
ground truth query. We show the predictions of EditSQL and IGSQL and mark the differences with red color.

teraction graph layers and the model with GRU in-
teraction layer. Besides, our model achieves about 1
point improvement compared with the model with-
out intra-turn schema graph layers. These results
indicate that our cross-turn and intra-turn schema
graph layers are very helpful.

The difference between cross-turn schema inter-
action graph layer and fully-connected interaction
layer is how we add edges between nodes at turn
i − 1 and turn i. Compared to fully-connected
interaction layer, the schema interaction graph in-
troduces a distance restriction when adding edges.
Our model with schema interaction graph performs
substantially better, which shows that our design of
schema interaction graph can significantly help our
model to keep context consistency.

6.4 Case Study

In Table 7, we show an interaction with four
turns. We also provide the predictions of Edit-
SQL and IGSQL and mark the differences with

red color. After the first turn, EditSQL confuses
cartoon.original air date with tv series.air date.
Our proposed IGSQL model successfully obtains
answers in the correct order by taking historical in-
formation of database schema items into account.

7 Conclusion and Future work

In this paper, we focus on context-dependent cross-
domain SQL generation task. We find that previ-
ous state-of-the-art model only takes historical user
inputs and previously predicted query into consid-
eration, but ignores the historical information of
database schema items. Thus we propose a model
named IGSQL to model database schema items in
a conversational scenario. Empirical results demon-
strate the efficacy of our model. We also conduct
ablation experiments to reveal the significance of
our database schema interaction graph encoder. For
future work, we will explore methods attempting
to solve hard and extra hard questions.
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