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Abstract

Recent works show that pre-trained language
models (PTLMs), such as BERT, possess
certain commonsense and factual knowledge.
They suggest that it is promising to use PTLMs
as “neural knowledge bases” via predicting
masked words. Surprisingly, we find that this
may not work for numerical commonsense
knowledge (e.g., a bird usually has two legs).
In this paper, we investigate whether and to
what extent we can induce numerical com-
monsense knowledge from PTLMs as well as
the robustness of this process. To study this,
we introduce a novel probing task with a di-
agnostic dataset, NUMERSENSE1, containing
13.6k masked-word-prediction probes (10.5k
for fine-tuning and 3.1k for testing). Our anal-
ysis reveals that: (1) BERT and its stronger
variant RoBERTa perform poorly on the diag-
nostic dataset prior to any fine-tuning; (2) fine-
tuning with distant supervision brings some
improvement; (3) the best supervised model
still performs poorly as compared to human
performance (54.06% vs. 96.3% in accuracy).

1 Introduction

Pre-trained language models (PTLMs), such as
BERT (Devlin et al., 2019), have yielded state-
of-the-art performance on many natural language
processing tasks. Given PTLMs’ cited ability
to create general, yet useful text representations,
an investigation of their ability to encode com-
monsense knowledge into representations is war-
ranted––commonsense knowledge is often required
to have a full understanding of language.

Recently there have been a few recent works
that do investigate the inquiry of whether PTLMs
possess commonsense knowledge (Petroni et al.,
2019; Davison et al., 2019; Bouraoui et al., 2020).
Overall, these prior studies suggest that PTLMs are

1https://inklab.usc.edu/NumerSense/
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Figure 1: Top: PTLMs often cannot solve masked language
modeling tasks needing numerical commonsense knowledge,
hence our title. Bottom: Even when PTLMs seemingly suc-
ceed, they fail to stay consistent under small perturbations.

creating text representations that often have com-
monsense knowledge encoded in them. We, how-
ever, find it surprising that when posed with a simi-
lar reasoning-based masked-word-prediction task,
PTLMs perform poorly in recalling the required
numerical commonsense knowledge (see Figure 1).

Therefore, in this paper, our goal is to study
whether PTLMs capture numerical commonsense
knowledge, i.e., commonsense knowledge that pro-
vides an understanding of the numeric relation be-
tween entities. We propose measuring this capa-
bility via a masked-word-prediction based probing
task, where, the ranking of numeric words by what
the model believes most probably fills the mask
would expose the capabilities of PTLMs to capture
numeric commonsense knowledge. For example,
the masked position in the sentence “A bird usually
has [MASK] legs.” is best filled by the number
“two” when considering only numerical words.

Around this concept, we built a carefully crafted
dataset, NUMERSENSE, of 3,145 probes that covers
questions from 8 different categories such as every-
day objects, biology, geometry, etc. In our initial
experiments, we find PTLMs to be brittle against
adversarial attacks. As shown in the bottom sec-
tion of Figure 1, BERT initially correctly predicts
the masked word to be “four”, but it changes its
top result to “two” in the slightly perturbed second
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6863

sentence (a simple insertion of the word ‘round’).
Thus, we intentionally included adversarial exam-
ples in the probes to test the robustness.

We evaluate PTLMs in two settings (Section 3):
(1) a zero-shot setting, meaning no probes from our
dataset were used to fine-tune the models before
evaluation; (2) a distant supervision setting, where
models were fine-tuned on examples from related
commonsense reasoning datasets before being eval-
uated on ours. Our findings reveal that PTLMs are
still much worse than humans on the task, although
fine-tuning with distant supervision can help. We
also provide some cursory analysis on why PTLMs
perhaps perform so poorly, pointing to interesting
future research. We also hope our work can benefit
future works in: 1) improving PTLMs’ abilities
to faithfully capture (numerical) commonsense, 2)
populating numerical facts in current commonsense
knowledge bases, and 3) open-domain QA ––“Q:
How many legs do ants have?” “A: Six!”

2 The NUMERSENSE Probing Task

We introduce our numerical commonsense reason-
ing probing task, as well as the creation process of
the namesake dataset, NUMERSENSE. Then, we
provide a breakdown of what types of knowledge
are covered by the probes and finally include ad-
ditional high-quality distant supervision to test if
fine-tuning can improve performance.

2.1 Task Formulation

We essentially probe PTLMs with the distribution
of words a PTLM thinks could fill the masked po-
sition, by ranking their softmax scores (greatest to
least). If the ranking demonstrates numerical com-
monsense knowledge––the highest ranked number
word (e.g., “one”, “two”, and so on) is the correct
answer––then that probe is successfully completed
by the PTLM. The masked position in each probe
is chosen such that a number word is an extremely
probable way of filling in the blank.

2.2 Probing Data Collection

To build a suitable dataset for the proposed probing
task, we make use of an existing corpus consisting
of commonsense assertions, named Open Mind
Common Sense (OMCS) (Singh et al., 2002). We
first extracted the sentences from OMCS that had
at least one of the following 12 number words:

Category Example
Objects(35.2%) A bicycle has two tires. 

Biology(13.5%) Ants have six legs.

Geometry(11.7%) A cube has six faces.

Unit(6.3%) There are seven days in a week.

Math(7.3%) I will be ten next year, as I am nine now.

Physics(5.7%) Water will freeze at zero degrees centigrade.

Geography(2.9%) The world contains seven continents.

Misc.(17.5%) There are no princes in the United States.

Table 1: NUMERSENSE examples of each category.

{“no”2, “zero”, “one”, “two”, ..., “ten” }.
However, as to be expected, there were many

noisy statements which were either 1) incorrect, 2)
containing typos, or 3) having no numerical com-
monsense logic. We thus manually and pragmati-
cally refined these sentences and did two rounds of
vetting by different graduate students, from which
we only kept the statements that were accepted by
all annotators. After this strict filtration process,
we ended up 1,131 cleaned statements for probing.

We did an initial test and observed that PTLMs
can be brittle under a simple perturbation of insert-
ing an adjective near the masked number word.
Thus, in order to study the robustness of mod-
els in our proposed task, we also added adver-
sarial examples to our dataset by adding adjec-
tives before the noun involved in the numerical
reasoning in each probe. The candidate adjec-
tives are generated by querying relevant triples (e.g.
<wheel, HasProperty, round> for the ex-
ample in Fig. 1) in the commonsense knowledge
graph, ConceptNet (Speer et al., 2017), and fur-
ther selected or modified by human annotators to
assure adversarial examples are still valid and nat-
ural. We finally have 3,145 testing probes for NU-
MERSENSE as the diagnostic dataset.

We also manually annotated the category label
for each instance so that we can better understand
the covered topics and their percentage. We found 8
types of numerical commonsense knowledge rang-
ing from tangible everyday objects (e.g., car, guitar,
and table) to geometry (e.g., cube). Table 1 lists
some concrete examples of each category.

2.3 Supervision for Fine-Tuning PTLMs

One may wonder if fine-tuning towards this task
could improve the performance. In order to an-

2We include “no”, as there exists statements involving
numerical commonsense knowledge, where “no” is used in
place of zero, “There are no princes in the United States.”
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Core Probes + Adversarial Examples
Models hit@1 hit@2 hit@3 hit@1 hit@2 hit@3

GPT-2 29.86 50.88 67.49 24.73 44.21 62.30

BERT-Base 31.98 55.92 70.58 25.24 48.66 64.81
RoBERTa-Base 36.04 60.42 72.08 28.39 51.91 67.29

BERT-Large 37.63 62.01 76.77 27.18 52.89 70.22
RoBERTa-Large 45.85 66.70 80.04 35.66 58.52 74.44

Ft. BERT-L. 50.00 66.34 74.91 43.58 62.27 72.92
Ft. RoBERTa-L. 54.06 69.61 79.15 47.52 66.43 76.76

Human Bound 89.7(α) / 96.3(β) 88.3 (α) / 93.7 (β)

Table 2: Results (%) of PTLMs on NUMERSENSE. ‘Ft.’
stands for ‘Fine-tuned.’ The human performance is
shown by closed testing (α=‘no external information’)
/ open testing (β=‘Wikipedia is allowed’).

swer this question, we further collected training
sentences from the GenericsKB corpus (Bhaktha-
vatsalam et al., 2020). The sentences in Generic-
sKB are generic commonsense statements that are
extracted from Simple Wikipedia, Common Crawl
within educational domains, ARC corpus, etc.

We collected these sentences by first obtaining a
list of frequent nouns from various caption cor-
pora such as MSCOCO (Lin et al., 2014) and
VATEX (Wang et al., 2019). Then, we selected
collected sentences contained at least one number
word of interest and finally go through the same hu-
man annotator verification process as the test data.
We ended up collecting 10,492 sentences for fine-
tuning and believe these sentences, if used properly,
can improve PTLMs’ ability to recall the numerical
commonsense knowledge.

2.4 Statistics of NUMERSENSE

We show the distribution of the truth number words
in the test data in Fig. 2. The average length of the
sentence in training data is 11.1 and it is 8.9 in test
data.

Figure 2: Truth number distribution of the test set.

3 Empirical Analysis

We introduce the set-up of the experiments and
then present results from different PTLMs in both
a zero-shot setting and a distantly supervised fine-
tuned one. We will also provide some analysis on
the robustness and biases in the various models,
and finally a study of the performance of a state-of-
the-art open-domain question-answering model.

3.1 Experiment Set-up

We run our experiments in two settings, zero-
shot inference and additional supervision via fine-
tuning. In the first setting, we probe PTLMs
without any modifications, specifically we use
BERT and RoBERTa with pre-trained masked-
word-prediction heads.

In our second setting, we use our collected addi-
tional supervision dataset (Sec. 2.3) and mask the
number words in each sentence. We then proceed
to fine tune the models above on these masked sen-
tences, before evaluating them on NUMERSENSE.

3.2 Evaluation Metric and Human Bound

A masked-word-prediction head (either fine-tuned
or not) produces a probability distribution over its
whole vocabulary via a softax layer. As mentioned
in Sec. 2.1, NUMERSENSE is the task of using this
probability distribution to rank all number words,
and evaluating this ranking. To evaluate, we use
hit@1/2/3 accuracy, which calculates the percent-
age of predictions where the correct number word
is ranked in the top k number words.3

To estimate human performance on the task, we
sampled 300 examples and asked two groups of
three people to fill in the masked word, where one
group had access to external information (open-
book test) from the Web such as Wikipedia and
the other did not (closed-book test). We take the
majority label as the final human label.

3.3 Experimental results

We show our experimental results in Table 2. The
first four lines are results from PTLMs in the zero-
shot inference setting. We see that size matters, as
there is a clear performance gain when the model
sizes increases. Also, RoBERTa’s results are con-
sistently better than BERT’s, which is probably
because RoBERTa uses a larger training corpora

3We also report the performance of GPT-2 by iteratively
filling the masked word and rank with their perplexity.
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Table 1

Category RoBERTa-L Human (closed-
book)

Objects 46.78 93.88

Biology 41.06 85.71

Geometry 33.08 97.14

Unit 26.39 88.89

Math 43.37 94.44

Physics 27.69 73.68

Geography 36.36 60.00

Misc. 44.72 81.82
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Figure 3: Performance of RoBERTa-Large V.S. human
performance (closed-book tests) on different categories
of numerical commonsense knowledge.

and focuses more on masked language modeling in
its pre-training stage.

We see that our fine-tuning efforts do help im-
prove model performance: “37.63 → 50.00” for
BERT-large and “45.85 → 54.06” for RoBERTa-
large. However, both are still far from the human’s
closed-book evaluation. Figure 3 shows PTLMs
performance is poor across all categories within the
core set of NUMERSENSE.

Comparing the performance of a PTLM on the
“Core Probes” set (#=1,131) versus the “+ Adver-
sarial Examples” set (#=3,145), we can measure
their robustness. We found all models incur a sig-
nificant performance drop when being evaluated
on the adversarial set. This suggests that PTLMs
(even when fine-tuned) can be brittle towards adver-
sarial attacks, and future direction in pre-training
language models should consider more structured
inductive biases such as dependencies and semantic
roles when learning contextual representations.

4 Case Studies

Object bias. Recall the example “a bird usually
has [MASK] legs,” which BERT-Large predicts to
be “four”. Does BERT-Large always predict “four”
as long as the adjacent word after the [MASK] is
‘legs’? To investigate if the bias exists, we show
some case studies in Table 3. As 1,000 different
randomly generated words fill the ‘[x]’s we see
that both BERT and RoBERTa have a bias towards
a certain answer, evidenced by the existence of a
dominant answer in the softmax distribution. How-
ever, it seems that RoBERTa’s (Liu et al., 2019)
modified pre-training strategy helps it have less
bias. We argue that future studies should further
control the bias in masked language modeling.
Attention distribution. Following the prior prob-
ing work (Clark et al., 2019) on the relationship

between attention weights and syntactic structures,
we plot the attention distribution of the sentence
“A bird usually has two legs.” with respect to the
word ‘two’ in Figure 4. We find that the root word
‘has’ enjoys the maximum attention at in the first
few and middle layers, while the word ‘two’ gets
the maximum attention to itself in the end. The
important words for querying the numerical com-
monsense, namely ‘birds’ and ‘legs’, always have
low attention weights. This suggests that the BERT
(and RoBERTa) may inherently lose the relation-
ship between subject/object and number words.

5 Open-Domain ‘How-Many’ Questions

The examples in the NUMERSENSE can be also
seen as open-domain questions targeting ‘how-
many’ commonsense––“how many legs does a
fly usually have?” Answering these open-domain
numerical commonsense questions is a practical
downstream application of models that are success-
ful in the NUMERSENSE. Thus, as a side note, we
also report the performance of the state-of-the-art
open-domain QA model (Asai et al., 2020).

We use the model that is trained on the Natural
Question (NQ) dataset (Kwiatkowski et al., 2019),
where we replace the ‘[MASK]’s in our examples
with ‘how many’, so that our probes are in a sim-
ilar format to NQ examples. For example “a fly
usually has [MASK] legs” is converted to “how
many legs a fly usually has?”4 The accuracy of the
state-of-the-art model is only 15.4%, which is even
lower than using BERT-base without fine-tuning.
This indicates that improving performance on NU-
MERSENSE can help improve the performance on
answering open-domain “how-many” questions.

6 Related Work

Probing Tasks for PTLMs. Prior work in probing
language models have primarily focused on anal-
ysis of linguistic phenomena. Clark et al. (2019)
investigated the relationship between BERT’s atten-
tion weights and syntactic structures, while such as
dependency (e.g. direct objects, noun modifiers),
coreference, and sentence segmentation. Tenney
et al. (2019) was able to display where certain
types of linguistic information is captured within
BERT––they in fact find the layers in a PTLM rep-
resent the steps of a classical NLP pipeline: POS

4We also manually test some queries such as “how many
legs does a fly usually have?”, which have similar results.
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Figure 4: The attention distribution of the sentence “A bird usually has two legs.” on RoBERTa-base. We plot the attention
weights (y) between each word and the number word ‘two’ at different position (x), e.g., x = 13 means (Layer 2, Head 1).

Template: a [x] usually has [MASK] legs.
BERT-L four: 39.3%, two: 18.3%, three: 10.1% 

RoBERTa-L four: 20.8%, two: 9.0%, three: 8.1%

Template: most [x] have [MASK] wheels.
BERT-L four: 25.3%, two: 14.1%, three: 5.1%

RoBERTa-L four: 9.2%, two: 7.8%, three: 4.6%

Template: all [x] have [MASK] sides.
BERT-L two: 28.3%, three: 12.9%, four: 12.9%

RoBERTa-L two: 16.6%, no: 2.9%, three: 2.3%

Table 3: The average Softmax of top 3 predictions in
templates where ‘[x]’ is filled with 1k random words.
tagging, parsing, NER, semantic roles, and coref-
erence. This line of work has indeed helped us
understand the ability of PTLMs to capture linguis-
tic knowledge via self-supervised learning from
unlabeled data. We are interested in the numerical
commonsense knowledge of PTLMs.

Probing Commonsense Knowledge. Besides the
works that we have discussed in Section 1, Zhou
et al. (2020) and Talmor et al. (2019a) also pro-
posed to probe the commonsense knowledge of pre-
trained language models, following the prior work
by Trinh and Le (2018a and 2018b). They both
utilized various existing language understanding
datasets targeting commonsense knowledge to test
if PTLMs can capture certain commonsense knowl-
edge. Lin et al. (2019a) also show that PTLMs
can retrieve paths from ConceptNet that aid in in-
terpreting the decision made by the PTLMs on the
CommonsenseQA dataset (Talmor et al., 2019b).
Lin et al. (2019b) probe the commonsense knowl-
edge in pre-trained language generation models via
a constrained text generation task. However, they
do not consider numerical commonsense knowl-
edge, which is relatively under-explored area.

Numerical Commonsense Knowledge. Forbes
and Choi (2017) and Goel et al. (2019) studied
commonsense comparisons between two physi-
cal objects (e.g., a house is usually bigger than

a person) in pre-trained word embeddings. Elazar
et al. (2019) and Yamane et al. (2020) propose to
induce the commonsense distribution of quantita-
tive attributes (e.g., mass, length, and currency) of
objects. Their goal is to extract or crowd-source
such numerical attributes, and then obtain distribu-
tions that reflect commonsense knowledge. NU-
MERSENSE, however, mainly focuses on exact nu-
merical commonsense facts (e.g., a bird has two
legs) instead of a range of values (e.g., a tiger
weighs around 120kg), and have a larger number
of arguments besides physical attributes.

Encoding Numerics for Computation. Wallace
et al. (2019) probe PTLMs in terms of the abil-
ity to represent numeracy tokens by a regression
task (e.g., “71” → 71.0), and also find that BERT
is not good at encoding numerical tokens. Some
works focus on incorporate algebra computation
ability in PTLMs (Zou and Lu, 2019; Geva et al.,
2020), thus making them able to answer math rea-
soning tasks such as MAWPS (Koncel-Kedziorski
et al., 2016) and DROP (Dua et al., 2019). Note
that these models and tasks are not targeting nu-
merical commonsense knowledge but mainly the
numerical-related computation within text.

7 Conclusion

We present a probing task, NUMERSENSE, to in-
duce numerical commonsense knowledge from pre-
trained language models. We collect a new diag-
nostic dataset carefully verified by human anno-
tators, which covers 8 different topics. Powerful
pre-trained models such as BERT and RoBERTa
perform surprisingly poorly, even after fine-tuning
with high-quality distant supervision. We hope our
findings and probing dataset will provide a basis
for improving pre-trained masked language mod-
els’ numerical and other concrete types of com-
monsense knowledge.
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