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Abstract
The success of pretrained contextual encoders,
such as ELMo and BERT, has brought a great
deal of interest in what these models learn:
do they, without explicit supervision, learn to
encode meaningful notions of linguistic struc-
ture? If so, how is this structure encoded? To
investigate this, we introduce latent subclass
learning (LSL): a modification to classifier-
based probing that induces a latent categoriza-
tion (or ontology) of the probe’s inputs. With-
out access to fine-grained gold labels, LSL
extracts emergent structure from input repre-
sentations in an interpretable and quantifiable
form. In experiments, we find strong evi-
dence of familiar categories, such as a notion
of personhood in ELMo, as well as novel on-
tological distinctions, such as a preference for
fine-grained semantic roles on core arguments.
Our results provide unique new evidence of
emergent structure in pretrained encoders, in-
cluding departures from existing annotations
which are inaccessible to earlier methods.

1 Introduction

The success of self-supervised pretrained models in
NLP (Devlin et al., 2019; Peters et al., 2018a; Rad-
ford et al., 2019; Lan et al., 2020) on many tasks
(Wang et al., 2018, 2019b) has stimulated interest
in how these models work, and what they learn
about language. Recent work on model analysis
(Belinkov and Glass, 2019) indicates that they may
learn a lot about linguistic structure, including part
of speech (Belinkov et al., 2017a), syntax (Blevins
et al., 2018; Marvin and Linzen, 2018), word sense
(Peters et al., 2018a; Reif et al., 2019), and more
(Rogers et al., 2020).

Many of these results are based on predictive
methods, such as probing, which measure how well
a linguistic variable can be predicted from inter-
mediate representations. However, the ability of
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Figure 1: LSL overview. A probing classifier over con-
textual embeddings produces multi-class latent logits,
which are marginalized into a single logit trained on
binary classification. In this example, “Pierre Vinken”
is identified as a named entity and assigned to latent
class 2, which aligns well with the PERSON label. We
treat the classes as clusters representing a latent ontol-
ogy that describes the underlying representation space.
Figure 2 visualizes latent logits in more detail.

supervised probes to fit weak features makes it
difficult to produce unbiased answers about how
those representations are structured (Saphra and
Lopez, 2019; Voita et al., 2019). Descriptive meth-
ods like clustering and visualization explore this
structure directly, but provide limited control and
often regress to dominant categories such as lexical
features (Singh et al., 2019) or word sense (Reif
et al., 2019). This leaves open many questions:
how are linguistic features like entity types, syn-
tactic dependencies, or semantic roles represented
by an encoder like ELMo (Peters et al., 2018a) or
BERT (Devlin et al., 2019)? To what extent do fa-
miliar categories like PropBank roles or Universal
Dependencies appear naturally? Do these unsuper-
vised encoders learn their own categorization of
language?
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To tackle these questions, we propose a system-
atic way to extract latent ontologies, or discrete
categorizations of a representation space, which we
call latent subclass learning (LSL); see Figure 1 for
an overview. In LSL, we use a binary classification
task (such as detecting entity mentions or syntactic
dependency arcs) as weak supervision to induce a
set of latent clusters relevant to that task (i.e., entity
or dependency types). As with predictive methods,
the choice of task allows us to explore varied phe-
nomena, and induced clusters can be quantified and
compared to gold annotations. But also, as with
descriptive methods, our clusters can be inspected
and qualified directly, and observations have high
specificity: agreement with external (e.g., gold)
categories provides strong evidence that those cate-
gories are salient in the representation space.

We describe the LSL classifier in Section 3, and
apply it to the edge probing paradigm (Tenney et al.,
2019b) in Section 4. In Section 5 we evaluate LSL
on multiple encoders, including ELMo and BERT.
We find that LSL induces stable and consistent on-
tologies, which include both striking rediscoveries
of gold categories—for example, ELMo discovers
personhood of named entities and BERT has a no-
tion of dates—and novel ontological distinctions—
such as fine-grained core argument semantic roles—
which are not easily observed by fully supervised
probes. Overall, we find unique new evidence of
emergent latent structure in our encoders, while
also revealing new properties of their representa-
tions which are inaccessible to earlier methods.

2 Background

Predictive analysis A common form of model
analysis is predictive: assessing how well a linguis-
tic variable can be predicted from a model, whether
in intrinsic behavioral tests (Goldberg, 2019; Mar-
vin and Linzen, 2018; Petroni et al., 2019) or ex-
trinsic probing tasks.

Probing involves training lightweight classifiers
over features produced by a pretrained model, and
assessing the model’s knowledge by the probe’s
performance. Probing has been used for low-level
properties such as word order and sentence length
(Adi et al., 2017; Conneau et al., 2018), as well
as phenomena at the level of syntax (Hewitt and
Manning, 2019), semantics (Tenney et al., 2019b;
Liu et al., 2019b; Clark et al., 2019), and discourse
structure (Chen et al., 2019). Error analysis on
probes has been used to argue that BERT may sim-

ulate sequential decision making across layers (Ten-
ney et al., 2019a), or that it encodes its own, soft
notion of syntactic distance (Reif et al., 2019).

Predictive methods such as probing are flexible:
Any task with data can be assessed. However, they
only track predictability of pre-defined categories,
limiting their descriptive power. In addition, a pow-
erful enough probe, given enough data, may be
insensitive to differences between encoders, mak-
ing it difficult to interpret results based on accu-
racy (Saphra and Lopez, 2019; Zhang and Bowman,
2018). So, many probing experiments appeal to the
ease of extraction of a linguistic variable (Pimentel
et al., 2020). Existing work has measured this by
controlling for probing model capacity, either using
relative claims between layers and encoders (Be-
linkov et al., 2017b; Blevins et al., 2018; Tenney
et al., 2019b; Liu et al., 2019a) or using explicit
measures to estimate and trade off capacity with
accuracy (Hewitt and Liang, 2019; Voita and Titov,
2020). An alternative is to control amount of su-
pervision, by restricting training set size (Zhang
and Bowman, 2018), comparing learning curves
(Talmor et al., 2019), or using description length
with online coding (Voita and Titov, 2020).

We extend this further by removing the distinc-
tion between gold categories in the training data
and reducing the supervision to binary classifica-
tion, as explained in Section 3. This extreme mea-
sure makes our test high specificity, in the sense
that positive results—i.e., when comprehensible
categories are recovered by our probe—are much
stronger, since a category must be essentially in-
vented without direct supervision.

Descriptive analysis In contrast to predictive
methods, which assess an encoder with respect to
particular data, descriptive methods analyze mod-
els on their own terms, and include clustering,
visualization (Reif et al., 2019), and correlation
analysis techniques (Voita et al., 2019; Saphra and
Lopez, 2019; Abnar et al., 2019; Chrupała and Al-
ishahi, 2019). Descriptive methods produce high-
specificity tests of what structure is present in the
model, and facilitate discovery of new patterns that
were not hypothesized prior to testing. However,
they lack the flexibility of predictive methods. Clus-
tering results tend to be dominated by principal
components of the embedding space, which cor-
respond to only some salient aspects of linguistic
knowledge, such as lexical features (Singh et al.,
2019) and word sense (Reif et al., 2019). Alterna-
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Figure 2: Latent logit vectors from BERT (left) and ELMo (right) for a sample from the Named Entities devel-
opment set visualized in the Embedding Projector (Smilkov et al., 2016) using UMAP (McInnes et al., 2018),
which is designed to preserve local clustering structure in a low dimensional visualization. Points are colored by
gold label, and induced clusters are outlined in red. ELMo has a clear notion of personhood (PERSON), while
BERT groups people with geopolitical entities (GPE) and nationalities (NORP). BERT strongly identifies dates
(DATE) and organizations (ORG), and both models group numeric/quantitative entities together. Both models sep-
arate small CARDINAL numbers (roughly, seven or less) and group them with ORDINALs, separate from larger
CARDINALs. The outlined areas in the bottom-right of the ELMo visualization include 2 and 4 induced clusters.

tively, more targeted analysis techniques generally
have a restricted inventory of inputs, such as layer
mixing weights (Peters et al., 2018b), transformer
attention distributions (Clark et al., 2019), or pair-
wise influence between tokens (Wu et al., 2020).
As a result of these issues, it is more difficult to
discover the underlying structure corresponding to
rich, layered ontologies. Our approach retains the
advantages of descriptive methods, while admitting
more control as the choice of binary classification
targets can guide the LSL model to discover struc-
ture relevant to a particular linguistic task.

Linguistic ontologies Questions of what en-
coders learn about language require well-defined
linguistic ontologies, or meaningful categorizations
of inputs, to evaluate against. Most analysis work
uses formalisms from the classical NLP pipeline,
such as part-of-speech and syntax from the Penn
Treebank (Marcus et al., 1993) or Universal Depen-
dencies (Nivre et al., 2015), semantic roles from
PropBank (Palmer et al., 2005) or Dowty (1991)’s
Proto-Roles (Reisinger et al., 2015), and named en-
tities, which have a variety of available ontologies
(Pradhan et al., 2007; Ling and Weld, 2012; Choi
et al., 2018). Work on ontology-free, or open, rep-

resentations suggests that the linguistic structure
captured by traditional ontologies may be encoded
in a variety of possible ways (Banko et al., 2007;
He et al., 2015; Michael et al., 2018) while being
annotatable at large scale (FitzGerald et al., 2018).
This raises the question: when looking for linguis-
tic knowledge in pretrained encoders, what exactly
should we expect to find? Predictive methods are
useful for fitting an encoder to an existing ontol-
ogy; but do our encoders latently hold their own
ontologies as well? If so, what do they look like?
That is the question we investigate in this work.

3 Approach

We propose a way to extract latent linguistic ontolo-
gies from pretrained encoders and systematically
compare them to existing gold ontologies. We use
a classifier based on latent subclass learning (Sec-
tion 3.1), which is applicable in any binary classi-
fication setting.1 We propose several quantitative
metrics to evaluate the induced ontologies (Sec-
tion 3.2), providing a starting point for qualitative
analysis (Section 5) and future research.

1A similar classifier was concurrently developed and pre-
sented for use in model distillation by Müller et al. (2020).
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3.1 Latent Subclass Learning

Consider a logistic regression classifier over inputs
x ∈ Rd. It outputs probabilities according to the
following formula:

P(y | x) = σ(w>x),

where w ∈ Rd is a learned parameter. Instead, we
propose the latent subclass learning classifier:

PLSL(y | x) = σ

(
log

N∑
i

eWix

)
,

where W ∈ RN×d is a parameter matrix, and N is
a hyperparameter corresponding to the number of
latent classes.

This corresponds toN+1-way multiclass logistic
regression with a fixed 0 baseline for a null class,
but trained on binary classification by marginaliz-
ing over theN non-null classes (Figure 1). The vec-
tor Wx ∈ RN may then be treated as a set of latent
logits for a random variable C(x) ∈ {1, . . . , N}
defined by the softmax distribution. Taking the
hard maximum of Wx assigns a latent class Ĉ(x)
to each input, which may be viewed as a weakly
supervised clustering, learned on the basis of ex-
ternal supervision but not explicitly optimized to
match prior gold categories.

For the loss LLSL, we use the cross-entropy loss
on PLSL. However, this does not necessarily en-
courage a diverse, coherent set of clusters; an LSL
classifier may simply choose to collapse all exam-
ples into a single category, producing an uninter-
esting ontology. To mitigate this, we propose two
clustering regularizers.

Adjusted batch-level negative entropy We
wish for the model to induce a diverse ontology.
One way to express this is that the expectation of
C has high entropy, i.e., we wish to maximize

H(ExC(x)).

In practice, we use the expectation over a batch.
The maximum value this can take is the entropy
of the uniform distribution over N items, or logN .
Therefore, we wish to minimize the adjusted batch-
level negative entropy loss:

Lbe = logN −H(ExC(x)),

which takes values in [0, logN ].

Instance-level entropy In addition to using all
latent classes in the expected case, we also wish
for the model to assign a single coherent class la-
bel to each input example. This can be done by
minimizing the instance-level entropy loss:

Lie = ExH(C(x)).

This also takes values in [0, logN ], and we com-
pute the expectation over a batch.

Loss We optimize the regularized LSL loss

LLSL + αLbe + βLie,

where α and β are hyperparameters, via gradient
descent. Together, the regularizers encourage a bal-
anced solution where the model uses many clusters
yet gives each input a distinct assignment. Note
that if α = β, the this objective maximizes the
mutual information between x and C, encouraging
the ontology to encode as much information as pos-
sible about the training data while still supporting
the binary classification objective.

3.2 Metrics

Since our interest is in descriptively analyzing en-
coders’ latent ontologies, there are no normatively
‘correct’ categories. However, we can leverage
existing gold ontologies—such as PropBank role
labels or Universal Dependencies—to quantify our
results in terms of well-understood categories. For
the following metrics, we consider only points in
the gold positive class.

B3 B-cubed (or B3) is a standard clustering met-
ric (Bagga and Baldwin, 1998; Amigó et al., 2009)
which calculates the precision and recall of each
point’s predicted cluster against its gold cluster, av-
eraging over points. It allows for label-wise scoring
by restricting to points with specific gold labels, al-
lowing for fine-grained analysis, e.g., of whether a
gold label is concentrated in few predicted clusters
(high recall) or well-separated from other labels
(high precision).

Normalized PMI Pointwise mutual information
(PMI) is commonly used as an association mea-
sure reflecting how likely two items (such as to-
kens in a corpus) are to occur together relative to
chance (Church and Hanks, 1989). Normalized
PMI (nPMI; Bouma, 2009) is a way of factoring
out the effect of item frequency on PMI. Formally,
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the nPMI of two items x and y is(
log

P(x, y)

P(x) P(y)

)/
− log(P(x, y)) ,

taking the limit value of -1 when they never occur
together, 1 when they only occur together, and 0
when they occur independently. We use nPMI to
analyze the co-occurrence of gold labels in pre-
dicted clusters: A pair of gold labels with high
nPMI are preferentially grouped together by the in-
duced ontology, whereas two labels with low nPMI
are preferentially distinguished.

Plotting pairwise nPMI of gold labels allows us
to see specific ways the induced clustering agrees
or disagrees with a gold reference (Section 5, Fig-
ure 3). Since nPMI is information-theoretic and
chance-corrected, it is a reliable indicator of the
degree of information about gold labels contained
in a set of predicted clusters. However, it is rel-
atively insensitive to cluster granularity (e.g., the
total number of predicted categories, or whether a
single gold category is split into many different pre-
dicted clusters), which is better understood through
our other metrics.

Diversity We desire fine-grained ontologies with
many meaningful classes. Number of attested
classes may not be a good measure of this, since it
could include classes with very few members and
no broad meaning. So we propose diversity:

exp(H(Ex Ĉ(x))).

This increases as the clustering becomes more fine-
grained and evenly distributed, with a maximum
of N when P(Ĉ) is uniform. More generally, ex-
ponentiated entropy is sometimes referred to as
the perplexity of a distribution, and corresponds
(softly) to the number of classes required for a
uniform distribution of the same entropy. In that
sense, it may be regarded as the effective number
of classes in an ontology. We use the predicted
class Ĉ rather than its distribution C because we
care about the diversity of the model’s clustering,
and not just uncertainty in the model.

Uncertainty In order for our learned classes to
be meaningful, we desire distinct and coherent clus-
ters. To measure this, we propose uncertainty:

Ex exp(H(C(x))).

This is also related to perplexity, but unlike diver-
sity, it takes the expectation over the input after

calculating the perplexity of the distribution. This
reflects how many classes, on average, the model
is confused between when provided with an input.
Low values correspond to coherent clusters, with a
minimum of 1 when every latent class is assigned
with full confidence. As with diversity, we take the
expectation over the evaluation set.

4 Experimental Setup

We adopt a similar setup to Tenney et al. (2019b)
and Liu et al. (2019a), training probing models
over several contextualizing encoders on a variety
of linguistic tasks.

4.1 Tasks

We cast several structure labeling tasks from Ten-
ney et al. (2019b) as binary classification by adding
negative examples, bringing the positive to negative
ratio to 1:1 where possible.

Named entity labeling requires labeling noun
phrases with entity types, such as person, loca-
tion, date, or time. We randomly sample non-entity
noun phrases as negatives.

Nonterminal labeling requires labeling phrase
structure constituents with syntactic types, such
as noun phrases and verb phrases. We randomly
sample non-constituent spans as negatives.

Syntactic dependency labeling requires labeling
token pairs with their syntactic relationship, such as
a subject, direct object, or modifier. We randomly
sample non-attached token pairs as negatives.

Semantic role labeling requires labeling predi-
cates (usually verbs) and their arguments (usually
syntactic constituents) with labels that abstract over
syntactic relationships in favor of more semantic
notions such as agent, patient, modifier roles in-
volving, e.g., time and place, or predicate-specific
roles. We draw the closest non-attached predicate-
argument pairs as negatives.

We use the English Web Treebank part of Universal
Dependencies 2.2 (Silveira et al., 2014) for depen-
dencies, and the English portion of Ontonotes 5.0
(Weischedel et al., 2013) for other tasks.

4.2 Encoders

We run experiments on the following encoders:

ELMo (Peters et al., 2018a) is the concatenation of
representations from 2-layer LSTMs (Hochreiter
and Schmidhuber, 1997) trained with forward and
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Named Entities Universal Dependencies

P / R / F1 Acc. Div↑ Unc↓ P / R / F1 Acc. Div↑ Unc↓

Gold 1.0 / 1.0 / 1.0 1.0 9.71 1.00 1.0 / 1.0 / 1.0 1.0 22.91 1.00

Multi .86 / .88 / .87 .94 8.58 1.88 .86 / .83 / .84 .93 21.94 1.77

LSL .28 / .80 / .41 .96 2.85 1.45 .10 / .60 / .18 .94 3.50 2.07
+be .20 / .43 / .27 .96 4.78 31.23 .18 / .13 / .15 .94 29.83 12.33
+ie .13 / 1.0 / .23 .93 1.00 1.00 .09 / .79 / .15 .94 2.00 1.01
+be +ie .43 / .54 / .48 .88 7.00 1.10 .18 / .27 / .22 .86 14.96 1.35

Single .13 / 1.0 / .23 - 1.00 1.00 .06 / 1.0 / .11 - 1.00 1.00

Table 1: Model selection results over BERT-large. Multi is the standard multi-class model trained directly on gold
labels, and Single is the degenerate single-cluster baseline. Our clustering regularizers (batch and/or instance-level
entropy), when taken together, yield a good tradeoff between diversity and uncertainty, though at some expense to
binary classification accuracy.

backward language modeling objectives. We use
the publicly available instance2 trained on the One
Billion Word Benchmark (Chelba et al., 2014).

BERT (Devlin et al., 2019) is a deep Transformer
stack (Vaswani et al., 2017) trained on masked lan-
guage modeling and next sentence prediction tasks.
We use the 24-layer BERT-large instance3 trained
on about 2.3B tokens from English Wikipedia and
BooksCorpus (Zhu et al., 2015).

BERT-lex is a lexical baseline, using only BERT’s
context-independent wordpiece embedding layer.

4.3 Probing Model

We reimplement the model of Tenney et al.
(2019b),4 which gives a unified architecture that
works for a wide range of probing tasks. Specif-
ically, it classifies single spans or pairs of spans
in the following way: 1) construct token represen-
tations by pooling across encoder layers with a
learned scalar mix (Peters et al., 2018a), 2) con-
struct span representations from these token repre-
sentations using self-attentive pooling (Lee et al.,
2017), and 3) concatenate those span representa-
tions and feed the result through a fully-connected
layer to produce input features for the classification
layer. We follow Tenney et al. (2019b) in training a
probing model over a frozen encoder, while using
our LSL classifier (Section 3) as the final output
layer in place of the usual softmax.

2tfhub.dev/google/elmo/2
3 github.com/google-research/bert
4Publicly available at https://jiant.info

4.4 Model selection
We run initial studies to determine hidden layer
sizes and regularization coefficients. For all LSL
probes, we use N = 32 latent classes.5

Probe capacity To mitigate the influence of
probe capacity on the results, we follow the best
practice recommended by Hewitt and Liang (2019)
and use a single hidden layer with the smallest size
that does not sacrifice performance. For each task,
we train binary logistic regression probes with a
range of hidden sizes and select the smallest yield-
ing at least 97% of the best model’s performance.
Details are in Appendix A.

Mitigating variance To decrease variance
across random restarts, we use a consistency-based
model selection criterion: train 5 models, compute
their pairwise B3 F1 scores, and choose the one
with the highest average F1. (However, as we find
in Section 5, the qualitative patterns that emerged
were consistent between runs.)

Regularization coefficients We run preliminary
experiments using BERT-large on Universal De-
pendencies and Named Entity Labeling with ab-
lations on our clustering regularizers. For each
ablation, we choose hyperparameters with the best
F1 against gold.

Results Results are shown in Table 1. As ex-
pected, the batch-level entropy loss drives up both
diversity and uncertainty, while the instance-level
entropy loss drives them down. In combination,

5Preliminary experiments found similar results for larger
N , with similar diversity in the full setting.

tfhub.dev/google/elmo/2
github.com/google-research/bert
https://jiant.info
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BERT-lex ELMo BERT-large Gold

Task P / R / F1 Div P / R / F1 Div P / R / F1 Div Div

Dependencies .06 / .86 / .11 1.33 .23 / .42 / .29 11.11 .14 / .33 / .19 11.22 22.91
Named Entities .19 / .39 / .26 4.33 .40 / .66 / .50 5.07 .47 / .53 / .50 7.50 9.71
Nonterminals .22 / .80 / .34 1.47 .36 / .25 / .30 10.16 .35 / .34 / .35 7.80 7.15
Semantic Roles .19 / .39 / .26 2.81 .40 / .17 / .24 22.35 .37 / .17 / .24 18.70 8.73

Table 2: Results by task for three pretrained encoding methods. All probing models were trained with the LSL loss
and cluster regularization coefficients α = β = 1.5, and chosen by the best-of-5 consistency criterion and detailed
in Section 4.4. Uncertainty for all models was close to 1 and is omitted for space.

however, they produce the right balance, with un-
certainty near 1 while retaining diversity.

Notably, the Named Entity model with the batch-
level loss has higher diversity when the instance-
level loss is added. This happens because batch-
level entropy can be increased by driving up
instance-level entropy without changing the en-
tropy of the expected distribution of predictions
H(Ex P(Ĉ(x))). So by keeping the uncertainty
down on each input, the instance-level entropy loss
helps the batch-level entropy loss promote diversity
in the induced ontology.

Based on these results, we set α = β = 1.5 for
Lbe and Lie for the main experiments.

5 Results and Analysis

Table 2 shows aggregate results for the tasks and en-
coders described in Section 4.6 Taking all metrics
into account, contextualized encodings produce
richer ontologies that agree more with gold than
the lexical baseline does. In fact, BERT-lex has nor-
malized PMI scores very close to zero across the
board (plots are provided in Appendix C), encoding
virtually no information about gold categories. For
this reason, we omit it from the rest of the analysis.

Named entities As shown in Table 3, neither
BERT nor ELMo are sensitive to categories that
are related to specialized world knowledge, such
as languages, laws, and events. However, they
are in tune with other types: ELMo discovers a
clear PERSON category, whereas BERT has dis-
tinguished DATEs. Visualization of the clusters
(Figure 2) corroborates this, furthermore showing
that the models have a sense of scalar values and
measurement; indeed, instead of the gold distinc-
tion between ORDINAL and CARDINAL num-
bers, both models distinguish between small and

6Results for more tasks and encoders are in Appendix B.
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BERT .70 .60 .54 .48 · .03 .02 .01
ELMo .38 .28 .35 .81 · .02 .01 .01

Table 3: Label-wise B3 F1 scores for Named Entities,
sorted by decreasing BERT-large F1. Induced ontolo-
gies capture some labels surprisingly well, but are in-
different to more specialized categories which may re-
quire more world knowledge to distinguish.

large (roughly, seven or greater) numbers. See
Appendix C for detailed nPMI scores.

Nonterminals Patterns in nPMI (Figure 3a) sug-
gest basic syntactic notions: complete clauses (S,
TOP, SINV) form a group, as do phrase types which
take subjects (SBAR, VP, PP), and wh-phrases
(WHADVP, WHPP, WHNP).

Dependencies Patterns in nPMI (Figure 3b) indi-
cate several salient groups: verb arguments (nsubj,
obj, obl, xcomp), left-heads (det, nmod:poss, com-
pound, amod, case), right-heads (acl, acl:relcl,
nmod7), and punct.

Semantic roles Patterns in nPMI (Figure 3c)
roughly match intuition: primary core arguments
(ARG0, ARG1) are distinguished, as well as
modals (ARGM-MOD) and negation (ARGM-
NEG), while trailing arguments (ARG2–5) and
modifiers (ARGM-TMP, LOC, etc.) form a large
group. On one hand, this reflects surface patterns:
primary core arguments are usually close to the
verb, with ARG0 on the left and ARG1 on the right;
trailing arguments and modifiers tend to be prepo-
sitional phrases or subordinate clauses; and modals

7Often the object in a prepositional phrase modifying a
noun.
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Gold Label P / R / F1

ARGM-MOD .62 / .41 / .49
ARG0 .52 / .17 / .26
ARG1 .50 / .09 / .15
ARGM-NEG .36 / .60 / .45
ARG2 .28 / .13 / .18

Table 4: Top semantic role labels by BERT-large B3

precision. Core arguments ARG0–2 are most preferen-
tially split, with high precision but low recall.

and negation are identified by lexical and positional
cues. On the other hand, this also reflects error pat-
terns in state-of-the-art systems, where label errors
can sometimes be traced to ontological choices in
PropBank, which distinguish between arguments
and adjuncts that have very similar meaning (He
et al., 2017; Kingsbury et al., 2002).

While the number of induced classes roughly
matches gold for most tasks, induced ontologies
for semantic roles are considerably more diverse,
with a diversity measure close to 20 for ELMo and
BERT (Table 2). Even though the alignment of
predicted clusters with gold is dominated by a few
patterns (Figure 3), the induced clustering contains
more information than just these patterns. To lo-
cate this information, we examine the gold classes
exhibiting the highest B3 precision, shown in Ta-
ble 4. Among these, core arguments ARG0, ARG1,
and ARG2 have very low recall, indicating that the
ontology splits them into finer-grained labels.

This follows intuition for PropBank core argu-
ment labels, which have predicate-specific mean-
ings. Other approaches based on Frame Semantics
(Baker et al., 1998; Fillmore et al., 2006), Proto-
Roles (Dowty, 1991; Reisinger et al., 2015), or
Levin classes (Levin, 1993; Schuler, 2005) have
more explicit fine-grained roles. Concurrent work
(Kuznetsov and Gurevych, 2020) shows that the
choice of semantic role formalism meaningfully
affects the behavior of supervised probes; further
comparisons using LSL probing may help shed
light on the origins of such differences.

6 Discussion

Our exploration of latent ontologies has yielded
some surprising results: ELMo knows people,
BERT knows dates, and both sense scalar and mea-
surable values, while distinguishing between small
and large numbers. Both models preferentially
split core semantic roles into many fine-grained

(a) Nonterminals.

(b) Universal dependencies.

(c) Semantic roles.

Figure 3: Pairwise gold label nPMIs on selected cate-
gories for ontologies induced from BERT-large on se-
lected tasks. Blue is positive nPMI, representing that
gold labels are preferentially grouped together (i.e.,
conflated by the model) relative to chance. Red is
negative nPMI, representing that gold labels are well-
separated. Perfectly matching ontologies would be 1
(blue) along the diagonal and -1 (red) in all off-diagonal
cells. Counts are summed over all 5 runs to better re-
flect the underlying representations, though variance
was low and our observed trends hold across all runs.
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categories, and seem to encode broad notions of
syntactic and semantic structure. These findings
contrast with those from fully-supervised probes,
which produce strong agreement with existing an-
notations (Tenney et al., 2019b) but can also re-
port false positives by fitting to weak patterns in
large feature spaces (Zhang and Bowman, 2018;
Voita and Titov, 2020). Instead, agreement of la-
tent categories with known concepts can be taken
as strong evidence that these concepts (or similar
ones) are present as important, salient features in
an encoder’s representation space.

This issue is particularly important when looking
for deep, inherent understanding of linguistic struc-
ture, which by nature must generalize. For super-
vised systems, generalization is often measured by
out-of-distribution objectives like out-of-domain
performance (Ganin et al., 2016), transferability
(Wang et al., 2018), targeted forms of composition-
ality (Geiger et al., 2020), or robustness to adver-
sarial inputs (Jia and Liang, 2017). Recent work
also advocates for counterfactual learning and eval-
uation (Qin et al., 2019; Kaushik et al., 2020) to
mitigate confounds, or contrastive evaluation sets
(Gardner et al., 2020) to rigorously test local deci-
sion boundaries. Overall, these techniques target
discrepancies between salient features in a model
and causal relationships in a task. In this work, we
extract such features directly and investigate them
by comparing induced and gold ontologies. This
identifies some very strong cases of transferability
from the binary detection task to detection tasks
over gold subcategories, such as ELMo’s people
and BERT’s dates (Table 3). Future work may
investigate cross-task ontology matching to iden-
tify other transferable features, the emergence of
categories signifying pipelined reasoning (Tenney
et al., 2019a), surface patterns, or new, perhaps un-
expected distinctions which can appear when going
beyond existing schemas (Michael et al., 2018).

Our results point to a paradigm of probing with
latent variables, for which LSL is one potential
technique. We have only scratched the surface of
what may emerge with such methods: while our
probing test is high specificity, it is low power; ex-
tant latent structure may still be missed. LSL prob-
ing may produce different ontologies due to many
factors, such as tokenization (Singh et al., 2019),
encoder architecture (Peters et al., 2018b), probe
architecture (Hewitt and Manning, 2019), data dis-
tribution (Gururangan et al., 2018), pretraining task

(Liu et al., 2019a; Wang et al., 2019a), or pretrain-
ing checkpoint. Any such factors may be at work
in the differences we observe between ELMo and
BERT: for example, BERT’s tokenization method
may not as readily induce personhood features due
to splitting of rare words (like names) in byte-pair
encoding. Furthermore, concurrent work (Chi et al.,
2020) has already found qualitative evidence of
syntactic dependency types emergent in the special
case of multilingual structural probes (Hewitt and
Manning, 2019). With LSL, we provide a method
that can be adapted to a variety of probing settings
to both quantify and qualify this kind of structure.

7 Conclusion

We introduced a new model analysis method based
on latent subclass learning: by factoring a binary
classifier through a forced choice of latent sub-
classes, latent ontologies can be coaxed out of in-
put features. Using this approach, we showed that
encoders such as BERT and ELMo can be found
to hold stable, consistent latent ontologies on a
variety of linguistic tasks. In these ontologies, we
found clear connections to existing categories, such
as personhood of named entities. We also found
evidence of ontological distinctions beyond tradi-
tional gold categories, such as distinguishing large
and small numbers, or preferring fine-grained se-
mantic roles for core arguments. In latent subclass
learning, we have shown a general technique to un-
cover some of these features discretely, providing
a starting point for descriptive analysis of our mod-
els’ latent ontologies. The high specificity of our
method opens doors to more insights from future
work, which may include investigating how LSL
results vary with probe architecture, developing
intrinsic quality measures on latent ontologies, or
applying the technique to discover new patterns in
settings where gold annotations are not present.
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E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 3261–
3275. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355. Association for
Computational Linguistics.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. OntoNotes release
5.0 LDC2013T19. Linguistic Data Consortium,
Philadelphia, PA.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4166–4176. Association
for Computational Linguistics.

Kelly Zhang and Samuel Bowman. 2018. Language
modeling teaches you more than translation does:
Lessons learned through auxiliary syntactic task
analysis. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 359–361. Association
for Computational Linguistics.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor An-
geli, and Christopher D. Manning. 2017. Position-
aware attention and supervised data improve slot
filling. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 35–45. Association for Computational Lin-
guistics.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE inter-
national conference on computer vision, pages 19–
27.

A Probe capacity tuning

Results from hidden size tuning are shown in Fig-
ure 4. We use the accuracy of a binary classifier
trained only on binary labels, choosing the small-
est hidden size with at least 97% of the maximum

performance over all trials. For comparison, we re-
port the accuracy of a fully supervised multi-class
model with the same hidden size. Our method
sometimes chooses a hidden size where the accu-
racy of the fully supervised probe is much lower
than max. While this suggests limits on the struc-
ture that can be produced, it makes our method
independent of fine-grained gold labeling. Future
work may investigate the role of probe expressive-
ness in determining induced ontologies.

B More Experimental Results

Results on larger set of encoders and tasks are
shown in Tables 5–11. The extra tasks are undi-
rected Universal Dependencies (Nivre et al., 2015),
TAC relation classification (Zhang et al., 2017), and
OntoNotes coreference (Pradhan et al., 2007). The
extra encoders are BERT-base, multilingual BERT
(mBERT)8 and ALBERT (Lan et al., 2020).

C More Analysis Results

We show more comparative nPMI plots for BERT-
large and ELMo in Figure 5 and Figure 6. These
use co-occurrence counts summed over 5 runs, and
exhibit the same overall trends as each run.

Relation classification nPMI plots for BERT-
large and ELMo are shown for TAC relation clas-
sification in Figure 7. ELMo produces two dif-
fuse groups of gold labels, while BERT seems
to more clearly identify several categories of re-
lations. Some of these may seem intuitive, e.g.,
org:founded by and per:date of birth
relate to the creation of an entity, and are grouped
together. However, the model distinguishes these
from per:origin and per:parents, which
may also intuitively seem similar. The broad distri-
bution and highly specific semantics of TAC rela-
tions makes direct qualitative assessment difficult.
Further analysis, perhaps comparing induced clus-
ters more surface-level features (e.g., dependency
paths) may shed more light on these results.

Lexical baseline results Normalized PMI plots
for the lexical baseline on several tasks are shown
in Figure 8. In most cases, these show essentially
no relation to gold categories. In the few cases
where groups seem to emerge, they are coarser and
more diffuse than what we observe with probes
over contextual representations.
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Figure 4: Performance on hidden size tuning experiments for different tasks. Clockwise from top-left, they are
nonterminals, named entities, semantic roles, and syntactic dependencies. coarse (red) is binary accuracy of a
binary classifier, fine-binary (blue) is binary accuracy of a full multiclass classifier, and fine-full (green)
is the full multiclass accuracy of the multiclass classifier. The black vertical line is the smallest hidden size that
passes the 97% performance threshold for coarse.
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P R F1 Acc. Diversity Uncertainty

Gold 1.00 1.00 1.00 1.00 9.71 1.00

ELMo 0.40 0.66 0.50 0.83 5.07 1.08
BERT-base 0.43 0.57 0.49 0.88 6.09 1.11
BERT-large 0.47 0.53 0.50 0.86 7.50 1.10
mBERT 0.25 0.67 0.37 0.84 3.29 1.06
ALBERT-large 0.38 0.53 0.44 0.89 6.00 1.15

BERT-large (lex) 0.19 0.39 0.26 0.74 4.33 1.13

Table 5: Results by encoder for OntoNotes named entity labeling.

P R F1 Acc. Diversity Uncertainty

Gold 1.00 1.00 1.00 1.00 7.15 1.00

ELMo 0.36 0.25 0.30 0.58 10.16 1.12
BERT-base 0.36 0.41 0.38 0.60 5.76 1.06
BERT-large 0.35 0.34 0.35 0.61 7.80 1.06
mBERT 0.36 0.34 0.35 0.59 7.38 1.06
ALBERT-large 0.38 0.28 0.32 0.59 9.07 1.08

BERT-large (lex) 0.22 0.80 0.34 0.50 1.47 1.26

Table 6: Results by encoder for OntoNotes nonterminal labeling.

P R F1 Acc. Diversity Uncertainty

Gold 1.00 1.00 1.00 1.00 22.91 1.00

ELMo 0.23 0.42 0.29 0.67 11.11 1.22
BERT-base 0.13 0.34 0.19 0.76 9.69 1.23
BERT-large 0.14 0.33 0.19 0.77 11.22 1.23
mBERT 0.27 0.51 0.35 0.73 9.40 1.22
ALBERT-large 0.23 0.41 0.29 0.72 9.84 1.20

BERT-large (lex) 0.06 0.86 0.11 0.50 1.33 1.02

Table 7: Results by encoder for Universal Dependency labeling.

P R F1 Acc. Diversity Uncertainty

Gold 1.00 1.00 1.00 1.00 22.91 1.00

ELMo 0.19 0.23 0.21 0.71 19.12 1.14
BERT-base 0.27 0.24 0.25 0.85 22.79 1.20
BERT-large 0.23 0.23 0.23 0.82 18.51 1.17
mBERT 0.24 0.20 0.21 0.83 20.31 1.19
ALBERT-large 0.30 0.27 0.28 0.81 20.53 1.14

BERT-large (lex) 0.09 0.54 0.16 0.50 3.39 1.00

Table 8: Results by encoder for undirected Universal Dependency labeling.
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P R F1 Acc. Diversity Uncertainty

Gold 1.00 1.00 1.00 1.00 8.73 1.00

ELMo 0.40 0.17 0.24 0.76 22.35 1.08
BERT-base 0.39 0.18 0.25 0.86 21.95 1.15
BERT-large 0.37 0.17 0.24 0.88 18.70 1.15
mBERT 0.41 0.21 0.28 0.88 19.05 1.12
ALBERT-large 0.43 0.21 0.28 0.87 19.90 1.12

BERT-large (lex) 0.19 0.39 0.26 0.46 2.81 1.01

Table 9: Results by encoder for OntoNotes semantic role labeling.

P R F1 Acc. Diversity Uncertainty

Gold 1.00 1.00 1.00 1.00 1.00 1.00

ELMo 1.00 0.09 0.16 0.80 14.22 1.18
BERT-base 1.00 0.09 0.16 0.86 14.67 1.24
BERT-large 1.00 0.09 0.17 0.87 15.57 1.27
mBERT 1.00 0.09 0.16 0.83 13.86 1.24
ALBERT-large 1.00 0.09 0.16 0.86 13.56 1.26

BERT-large (lex) 1.00 0.78 0.87 0.78 1.60 1.03

Table 10: Results by encoder for OntoNotes coreference. Note the high diversity scores, showing that the LSL
model can find fine-grained structure even in the case of binary labels.

P R F1 Acc. Diversity Uncertainty

Gold 1.00 1.00 1.00 1.00 24.78 1.00

ELMo 0.11 0.78 0.20 0.77 2.38 1.05
BERT-base 0.11 0.90 0.20 0.76 1.94 1.05
BERT-large 0.16 0.63 0.25 0.80 3.87 1.11
mBERT 0.15 0.87 0.26 0.76 2.21 1.05

BERT-large (lex) 0.07 0.97 0.13 0.76 1.11 1.02

Table 11: Results by encoder for TAC relation classification. Note that the diversity scores are much lower than
gold for most encoders. This accords with Tenney et al. (2019b)’s findings that ELMo and BERT have middling
performance on the task; it seems unlikely that the highly specific relations in TACRED are salient in their feature
spaces.
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(a) Pairwise nPMIs for selected named entity classes in ontologies induced on BERT-large (left) and ELMo (right).

(b) Pairwise nPMIs for selected nonterminal classes in ontologies induced on BERT-large (left) and ELMo (right).

Figure 5: Pairwise nPMI charts for named entities and nonterminals.
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(a) Pairwise nPMIs for selected named universal dependency labels in ontologies induced on BERT-large (left) and ELMo (right).

(b) Pairwise nPMIs for selected semantic roles in ontologies induced on BERT-large (left) and ELMo (right).

Figure 6: Pairwise nPMI charts for syntactic dependencies and semantic roles.
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Figure 7: Pairwise nPMIs for TAC relations in ontologies induced on BERT-large (top) and ELMo (bottom).
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Figure 8: Pairwise nPMI charts for the lexical baseline using non-contextual embeddings from BERT-large. Clock-
wise from top-left, they are named entities, Universal Dependencies, nonterminals, TAC relations, semantic roles,
and undirected Universal Dependencies. In most cases this model seems to have no relation to gold labels, and in
the few cases with interesting structure, this structure is weaker and coarser than with contextual embeddings.


