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Abstract

We aim to leverage human and machine in-
telligence together for attention supervision.
Specifically, we show that human annotation
cost can be kept reasonably low, while its
quality can be enhanced by machine self-
supervision. Specifically, for this goal, we ex-
plore the advantage of counterfactual reason-
ing, over associative reasoning typically used
in attention supervision. Our empirical results
show that this machine-augmented human at-
tention supervision is more effective than exist-
ing methods requiring a higher annotation cost,
in text classification tasks, including sentiment
analysis and news categorization.

1 Introduction

The practical importance of attention mechanism
has been well-established, for both (a) improving
NLP models (Vaswani et al., 2017), and also (b) en-
hancing human understanding of models (Serrano
and Smith, 2019; Wiegreffe and Pinter, 2019).

This paper pursues the former direction, but un-
like existing models, typically using attention in
“unsupervised” nature. Adding human supervision
to attention has been shown to improve model pre-
dictions and explanations (Jain and Wallace, 2019).
For example, consider a review in (Tang et al.,
2019) “this place is small and crowded but the
service is quick”. Models with unsupervised at-
tention may attend highly on “quick”, a generic
strong signal for restaurant reviews, but one may
supervise to focus on “crowded” to guide models
to predict a negative sentiment correctly.

For this goal, attention supervision task (Yu et al.,
2017; Liu et al., 2017) treats attention as output
variables so that models can be trained to generate
similar attention to human supervision. We cate-
gorize such human supervision into the following
two levels:

• Sample level rationale: In the above exam-
ple, whether to attend on quick or crowded
depends on the ground-truth sentiment class.
Human annotator is required to examine
each training sample, and highlight important
words specific to a sample and its class label.

• Task level: An alternative with lower anno-
tation overhead would be annotating vocabu-
lary, separately from training samples. That
is, both quick and crowded are annotated to
attend, since both have high importance for
the target task of sentiment classification.

A naive belief would be assuming the former
with a higher annotation cost is more effective at
supervising the model’s attention. Our key claim,
in contrast, is that requiring more annotation, or,
sample-specific supervision, can be less effective
than requiring less from human then augmenting
it by machine (less-is-more-hypothesis). Similar
skepticism on asking more, or sample-level ratio-
nales from humans, was explored in (Bao et al.,
2018), where machine attention from large addi-
tional annotations was more effective supervisions
than rationales.

In this paper, we validate less-is-more without
additional annotation overhead, by proposing a
holistic approach of combining both human an-
notation and machine attention. Key distinctions
from (Bao et al., 2018) are (a) humans annotate
even less, and (b) without additional training re-
sources. Specifically, we start by loosening the def-
inition of human annotation (Camburu et al., 2018;
Zhong et al., 2019) into the task-level annotation: it
reduces annotation cost to the size of vocabulary, or
often to zero, when public resources such as senti-
ment lexicon replace such annotation. We show the
effectiveness of this zero-cost supervision, for both
sentiment classification and news categorization
scenarios, after our proposed adaptation.
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Our adaptation goal is an unsupervised adap-
tation of task-level human annotation to sample-
level supervision signals for attention/classification
models. Specifically, we propose Sample-level
AttentioN Adaptation (SANA). Specifically, for
self-supervising such adaptation, SANA conducts
what-if tests per each sample, of whether the per-
mutation on human annotation changes the ma-
chine prediction. That is, we collect the counterfac-
tual (machine) supervisions for free, by observing
whether highly attended word by human leads to
the same machine prediction, compared to when
such attention is counterfactually lowered. In such
a case, SANA supervises to reduce the importance
of the word. We validate such counterfactual sig-
nals are missing pieces for adapting word impor-
tance to sample-specific prediction.

We evaluate SANA on three popular datasets,
SST2, IMDB, and 20NG. In all of the text clas-
sification datasets, SANA achieves significant im-
provements over baselines, using unsupervised at-
tention or supervised with task- or sample-level
human annotations, in the following four dimen-
sions: Models supervised by SANA predict more
accurately, explain causality of attention better, and
are more robust over adversarial attacks, and more
tolerant of the scarcity of training samples.

2 Preliminaries

2.1 Text Classification with Attention
Text classification assumes a dataset D = {xi, yi}

N
i=1

which associates an input text xi to its correspond-
ing class label yi. We will omit the index i when
dealing with a single input sample. Let the input
sequence of word features (e.g., embeddings) be
denoted as x = {wt}

T
t=1, where T is the length of the

sequence. The sequence of hidden states produced
by an encoding function fφ with learnable parame-
ters φ is then h = {ht}

T
t=1. Formally, fφ : x→ (h, α̂),

where attention weights α̂ = {α̂t}
T
t=1 indicate a prob-

ability distribution over the hidden states (Zou et al.,
2018; Yang et al., 2016). Finally, the hidden rep-
resentations are fed into a function gθ : (h, α̂)→ ŷ
with learnable parameters θ and a softmax layer
that predicts the probabilities ŷ over classes:

ŷ = Softmax(W>h̃ + b), θ = {W, b} (1)

where h̃ =
∑

ht∈h α̂tht and Softmax(zi) =

ezi/
∑

j ez j . The parameters φ and θ are trained to
minimize the cross-entropy loss Ltask(ŷ, y) between
the predicted label ŷ and the ground-truth label y.

2.2 Attention Supervision
Attention can be treated as output variables, so that
humans can supervise. Given an input sample x,
let α and α̂ be the attention labels (provided by hu-
man annotators) and the trained attention weights.
Then, the loss for attention supervision is defined
as the cross-entropy loss Latt(α̂, α) between α̂ and
α. Finally, the parameters of the text classification
network with attention supervision are trained to
minimize both loss terms together as follows:

L = Ltask(ŷ, y) + µ · Latt(α̂, α) (2)

where µ is a preference weight.
Requiring humans to explicitly annotate soft la-

bels α has been considered unrealistic (Barrett et al.,
2018), and often delegated to implicit signals such
as eye gaze. As an alternative to asking humans to
annotate, important words for the given sample and
class label have been typically annotated as ratio-
nale (Bao et al., 2018; Zhao et al., 2018). Formally,
given an input sample x and its class label y, let
A ∈ {0, 1}T be a binary vector of selecting words in
x, i.e., ∀wt ∈ x : A(wt) ∈ {0, 1}. Then, we convert
the attention annotation A into a soft distribution
of target attention labels α using softmax:

αt =
exp(λ · A(wt))∑T

t′=1 exp(λ · A(wt′))
(3)

where λ is a positive hyper-parameter that controls
the variance of scores: when λ increases, the dis-
tribution of α becomes more skewed, guiding to
attend a few of more important words.

To illustrate a rationale, when given the afore-
mentioned review sample in Sec. 1, possible
annotations for the negative label are either
“this place is small and crowded but the service is
quick” or “this place is small and crowded but
the service is quick”, where the underlines in-
dicate the hard selection by human. Then, we
can translate them into the sample-level anno-
tation A = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0] or A =

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0].

3 Less is More for Attention Supervision

Sample-level annotation is reportedly too expen-
sive in many practical settings (Zhong et al., 2019),
and is far difficult for humans to capture the de-
pendency with corresponding class labels. In con-
trast, annotators may select important words for a
target task, namely task-level attention annotation
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(Def. 3.1), without looking up individual samples
and their labels.

Definition 3.1 (Task-level Attention Annotation)
Assuming the existence of the vocabulary V, the
vocab-level annotation Atask ∈ {0, 1}|V | is a bi-
nary vector of the hard selection for words in
V, i.e., ∀wt ∈ V : Atask(wt) ∈ {0, 1}. Based
on Atask, when given an input sample x, we can
use a proxy of the sample-level annotation A, i.e.,
∀wt ∈ x : A(wt) = Atask(wt).

Sample-level Task-level Reduction ratio
SST2 208K 16K -92.3%
IMDB 5M 124K -97.5%
20NG 232K 22K -90.5%

Table 1: Comparison of annotation space

As shown in Tab. 1, the annotation space, which
is referred to as a word set size for annotation, is
10∼36 times smaller at task-level than at sample-
level. Generally, the vocabulary size is far smaller
than the total number of word occurrences in train-
ing samples. Our goal is thus to keep annotation
cost cognitively reasonable (Zou et al., 2018; Zhao
et al., 2018), leaving machine self-supervision to
close the annotation quality gap (Sec. 3.1 and 3.2).
Meanwhile, we present a setup of zero-cost su-
pervision, which allows us attention supervision
without any human efforts in all scenarios using
public resources and tools (Sec. 3.3).

3.1 Counterfactuals as Causal Signals

Our key idea is to leverage causal signals (Johans-
son et al., 2016) from human annotation A (or at-
tention labels α) of an input sample x to its corre-
sponding model prediction ŷ. More specifically, we
test whether two different attentions (one is orig-
inal and the other is counterfactual) on the same
input sample x lead to different prediction results
ŷ. If high (original) and low (counterfactual) atten-
tion weights for an word wt yield the same (or very
similar) prediction, it provides evidence to edit the
importance of word wt in A into a lower value.

Formally, let α̂ and ᾱ be the original and coun-
terfactual attention weights, respectively, and let
ŷ and ȳt be the original prediction and its counter-
factual prediction with attention change (i.e., from
α̂t to ᾱt) on wt ∈ x, respectively. Then, knowing
the quantity |ŷ − ȳt|, measured as the individual-
ized treatment effect (ITE), enables measuring how

Algorithm 1 SANA
Input: Training dataset D, Task-level annotation A
Output: Model parameters {φ, θ}
Initialize attention labels α from A . Using Eq (3)
{φ, θ} ← argminφ,θ L(D, α; φ, θ) . Using Eq (2)
for z = 1 to zmax do

for each (x, y) ∈ D do
h, α̂← fφ(x)
ŷ← gθ(h, α̂)
for each wt ∈ x do

if A(wt) > 0 then
ᾱ← Counterfactuals(α̂,wt)
ȳt ← gθ(h, ᾱ)
if TVD(ŷ, ȳt) < ε then

A(wt)← γ · A(wt)
end

end
end

end
λ← γ−1λ . In Eq (3)
Update attention labels α from A . Using Eq (3)
{φ, θ} ← argminφ,θ L(D, α; φ, θ) . Using Eq (2)

end
return {φ, θ}

much the word wt contributes to the original pre-
diction via attention mechanism. For this measure-
ment, we adopt the Total Variance Distance (Jain
and Wallace, 2019) between the two predictions,
which is defined as follows:

TVD(ŷ, ȳt) =
1
2

C∑
c=1

|ŷc − ȳc
t | (4)

where c is the class index. If TVD value is too
low, we can give a penalty by decaying the human
annotation A(wt) with a factor of γ, which we em-
pirically set as 0.5, to update the attention labels.

3.2 Sample-level Attention Adaptation

Based on TVD, we propose a simple yet effec-
tive approach, Sample-level AttentioN Adaptation
(SANA), to derive the sample-level machine at-
tention from the task-level human annotation. As
described in Alg. 1, SANA starts with the clas-
sification model trained with the initial attention
labels α. Based on φ and θ, we run the classifica-
tion inference several times for an input sample:
one for obtaining the original attention weights α̂
and the others for counterfactual attention weights
ᾱ. More specifically, we first store the hidden rep-
resentations h and the attention weights α̂ from
fφ, and the original prediction ŷ. Then, for each
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word wt, Counterfactuals returns the counter-
factual attention weights ᾱ, by 1) copying α̂ but 2)
assigning zero to the t-th dimension and 3) renor-
malizing as probability distribution, and we obtain
its corresponding prediction result ȳt by re-using h.

Note that, since the hidden representation at time
step t contextualizes a word wt with surrounding
words, we adopt perturbing only single words in
SANA, not multiple words at the same time, also
enjoying the computational advantage.

Finally, based on ŷ and ȳt, as defined in Eq (4),
we compute TVD and update the human annota-
tion A by threshold ε and decay ratio γ. Once
an iteration1 is completed over the whole training
corpus, we re-train the network with the updated
attention annotation and labels. For the stable up-
date, we observe that increasing the coefficient λ in
Eq (3) is crucial, as TVD is not an optimal metric,
preventing α from being flattened.

3.3 Zero-cost Supervision

From this point on, for task-level supervision, we
assume zero-cost human annotation efforts, either
by using public resources or self-supervision.

Supervision by public resources Task-level an-
notation are often publicly available as resources
or tools. For example, sentiment lexicon (Esuli
and Sebastiani, 2006) consists of sentiment words,
which are important to the sentiment classification
task, and named-entity recognizer (NER) (Peters
et al., 2017) can collect entity words commonly at-
tended in news categorization task. We empirically
show that both lexicon and NER can be adequate
substitutes for the manual task-level annotation.

Model distillation In an extreme scenario with-
out any human annotator and public resources, in-
spired by self knowledge distillation (Furlanello
et al., 2018), we report results for using the atten-
tion weights of the unsupervised model as a super-
vision. Note, however, this is highly unlikely in
practice, but reported as a lower bound accuracy,
when unsupervised attention noise is propagated
through distillation supervision. Using SANA is
even more critical in this noisy annotation scenario,
to denoise attention supervision from counterfac-
tual reasoning, which we empirically analyze this
in the subsequent section.

1O(|D| · T ), where T is the maximum sequence length

4 Experiment Setup

4.1 Datasets

To validate the effectiveness of SANA, we use the
following three text classification datasets, which
are widely used (Wang et al., 2018; Jain and Wal-
lace, 2019) and statistically diverse as well. We
split the official training split into 90% and 10% as
training and validation sets respectively. We expect
SANA in two-sentence tasks, such as SNLI and
MPQA, would be promising, which we leave as
future work.

• SST2 (Socher et al., 2013): Stanford Sen-
timent Treebank provides around 11K sen-
tences tagged with sentiment on a scale from
1 (most negative) to 5 (most positive). We
filter out neutral samples and dichotomize the
remaining sentences into positive (4,5) and
negative (1,2). We set the maximum sequence
length as 30.

• IMDB (Maas et al., 2011): IMDB Large
Movie Review Corpus is a binary sentiment
classification dataset containing 50K polar-
ized (positive or negative) movie reviews, split
into half for training and testing. We set the
maximum sequence length as 180.

• 20NG: 20 Newsgroups2 contains around 19K
documents evenly categorized into 20 differ-
ent categories. Following (Jain and Wallace,
2019), we extract samples belonging to base-
ball and hockey classes, which we designate
as 0 and 1, deriving a binary classification task
(Hockey vs Baseball). We set the maximum
sequence length as 300.

4.2 Implementation Details

For all datasets, we use skip-gram (Mikolov et al.,
2013) (official GoogleNews-vectors-negative300)
word embeddings with 300 dimensions. We use 1-
layered GRU for each direction with hidden size of
150 for both SST2 and IMDB, and 300 for 20NG
dataset, with gθ of 300 dimension with 0.5 dropout
rate. For attention mechanism, the size of trainable
context vector is set to 100 for SST2 and 300 for
IMDB and 20NG.

For attention supervision, we use the balancing
coefficient µ = 1.0 for SST2 and IMDB, and µ =

2.0 for 20NG. Contrary to Zou et al. (2018), we

2http://qwone.com/˜jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/
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observe a larger µ is more effective for the smaller
dataset. We set the contrasting coefficient λ = 3
except λ = 5 for 20NG dataset. In Alg. 1, we use
decay ratio γ = 2.0 and TVD threshold ε = 0.3. In
our experiments, the decay ratio is not significantly
correlated with the final accuracy, but correlated
more with the convergence period. Setting γ = 2.0
leads to the reported performance within zmax = 5.

For BERT, we train BERT-base architecture with
a batch size of 4 over 3 epochs. We used Adam
with a learning rate of 6.25e-5 and PiecewiseLinear
scheduler.

All parameters are optimized until convergence,
using Adam optimizer of learning rate 0.001. The
learning parameters were chosen by the best perfor-
mance on the validation set. In Alg. 1, the models
are additionally fine-tuned over 10 epochs for each
iteration. Note that learning time longer than our
setting does not contribute to improving the model
accuracy.

5 Results and Discussion

We now proceed to empirically validate the effec-
tiveness of SANA, compared to unsupervised atten-
tion, and attention supervision approaches using ei-
ther task-level or sample-level annotations as base-
lines (shortly, unsupervised, task-level, and sam-
ple). For task-level annotations (e.g., in SANA), we
adopt pre-annotated task-level annotations without
any additional human efforts: for the two sentiment
tasks, we use SentiWordNet (Esuli and Sebastiani,
2006), and for 20NG task, we use entities recog-
nized by AllenNLP NER (Peters et al., 2017). We
thus present the empirical findings for the follow-
ing four research questions:

RQ1: Does SANA improve model accuracy?
RQ2: Does SANA improve model robustness?
RQ3: Is SANA effective for data-scarce cases?
RQ4: Does SANA improve attention explainabil-
ity?

5.1 RQ1: Classification Accuracy

The main objective of this work is to improve at-
tention supervisions for the purpose of better text
classification. Thus, we evaluate the three atten-
tion methods by their contribution to the classifi-
cation performance. Tab. 2 shows the classifica-
tion accuracy for three classification datasets. In
the table, we can observe the proposed approach,
SANA with task-level annotation, outperforms all
baselines in all the datasets. Among the results,

Accuracy
SST2 IMDB 20NG

BERT 91.67 94.10 93.25
unsupervised
BiGRU 83.96 88.07 86.04
model distillation
BiGRU 83.53 86.93 85.12
+ SANA 84.35 88.03 88.23
task-level annotation
BiGRU 85.12 89.30 87.19
+ SANA 85.72 90.10 89.13

Table 2: Classification Performance: accuracy (%) on
the three classification datasets.

SANA achieves the largest improvement over in
20NG dataset, which has the smallest training data.
This suggests that SANA can also provide effective
attention supervisions in data-scarce environments.
To discuss this issue further, we will repeat this
comparison over the varying size of training data
for RQ3.

Our study also confirms two additional observa-
tions to our advantage– counterfactual 1) is effec-
tive even in model distillation setting and 2) mean-
ingfully contributes to performance gains. More
specifically, 1) SANA achieves 84.35% in SST2
dataset which is higher than the distillation only
model, but lower than task-level supervised model.
2) this model gets 88.23% in 20NG dataset, which
outperforms even task-level supervised model with
1.04 point gains. This also suggests the limitation
of model distillation as supervision signals and su-
pervision by public resources can provide better
initial point for SANA than model distillation.

Our key contribution is to show zero-cost atten-
tion supervision can improve a simple model closer
to a highly sophisticated model, such as BERT (De-
vlin et al., 2019) requiring more layers and data.
This motivates us to supervise attention for BERT,
though understanding of BERT internals, such as
(Rogers et al., 2020), is mostly observational at
this stage– Intervening with attention would be an
interesting future work.

Our experimental results show that SANA works
well in diverse scenarios, but we observe that the
effectiveness is reduced when the length of target
text increases (Figure 2) or token identifiability de-
creases (e.g., complex architecture): SANA more
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effectively works when the token identifiability is
improved (by adding residual connection between
two recurrent layers), achieving 0.83 point gain
from 89.14%, which is larger gap than 0.47 point
gain without residual connection.

5.2 RQ2: Robustness in Adversarial Attacks

Having tested for the overall performance with the
original datasets, we evaluate the robustness of
SANA with the the adversarial datasets. Recently,
adversarial examples (Zhang et al., 2019) have been
employed as an evaluation tool for model robust-
ness: while the adversarial example conveys very
similar semantics of its original sample, but with
small and intentional feature perturbations to cause
classification models to make false predictions. For
robustness analysis, we thus test whether the atten-
tion models can keep the original predictions from
adversarial examples.

This experiment consists of the following steps:
First, based on the original training data, we set
a basic BiGRU model (without attention mecha-
nism) as threat model, which an adversarial attack
method aims to deceive. Second, based on the
original test data, we generate paraphrase texts by
using the state-of-the-art attack method (Alzantot
et al., 2018) with word-level perturbations. Third,
we randomly select almost 500 paraphrase texts,
which succeed in changing the prediction of threat
model, i.e., adversarial examples. Finally, we re-
port the accuracy of the three attention models over
both adversarial examples and their corresponding
original samples, respectively.

Tab. 3 presents the results of adversarial attacks.3

In the table, we can find that SANA is more robust,
showing the smallest gap of the classification accu-
racy between the original and adversarial samples.
It demonstrates that, when the network is attending
to the words having causal signals to the model pre-
diction, the network becomes more robust against
adversarial attacks, which is consistent with the
experimental results in Lai et al. (2019). In addi-
tion to that, we observe similar results against the
white-box adversarial examples (Tsai et al., 2019),
where SANA improves 3.20 and 1.80 point gains
from both unsupervised and supervised attentions.

3The reason why “Original” is different from natural ac-
curacy in Tab. 2 is that we conduct the experiments over the
original samples only paired with the adversarial examples,
incurring the biases in the test set.

Figure 1: Sample Effectiveness: accuracy (%) on vary-
ing the amount of training samples in IMDB dataset.

5.3 RQ3: Sample Effectiveness
This section compares models over the varying
amount of training samples in IMDB dataset, as a
stress test for data-scarce scenarios.

For this experiment, we collect the sample-
specific annotations from human workers. First, we
randomly select 500 training samples from IMDB
dataset, and ask the worker to underline the appar-
ent rationales for the sentiment class, guided by the
definition of rationale in Zhang et al. (2016). The
data collection is conducted using an open anno-
tation tool (Yang et al., 2018). Then, we build an
additional method, named sample, which is trained
with the collected sample-specific annotations.

The results are presented in Fig. 1. We notice
that SANA and sample show much stronger per-
formance when the training data is scarce, where
similar results are reported in (Bao et al., 2018).
As we expected, the attention supervision using the
sample-specific annotations gets a higher accuracy
than that using the task-level annotations, but can-
not be scaled-up above 500 training samples, which
is represented by the red reference line. In contrast,
SANA improves accuracy with ≥ 1000 samples
and its scalability. This result demonstrates that
our counterfactual inferences successfully augment
one annotation into multiple (counterfactual) atten-
tion supervisions, better regularizing from limited
samples.

5.4 RQ4: Attention as Human Explanation
This section studies whether attention, after super-
vision, is more effective for human consumption
as model explanation. Existing metrics for explain-
ability measure whether attention correlates with
(a) class prediction or (b) feature importance, dis-
cussed in the next sections respectively.
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SST2 IMDB 20NG
Original Adversarial |∆| Original Adversarial |∆| Original Adversarial |∆|

unsupervised 47.2 47.8 0.6 68.8 64.1 4.7 47.7 48.3 0.6
task-level 50.3 48.3 2.1 69.2 65.0 4.1 48.7 48.2 0.5
task-level + SANA (Ours) 49.9 49.7 0.2 69.4 65.2 4.1 48.1 48.3 0.2

Table 3: Adversarial Attack: accuracy (%) for original and adversarial examples on the three classification dataset.
Against the adversarial attacks, the proposed method SANA shows consistent performance with the smallest ac-
curacy gap (|∆|) over all the datasets. For this evaluation, we use 485, 532, and 478 pairs of original samples and
adversarial examples, in SST2, IMDB, and 20NG respectively.

5.4.1 Attention as Causal Explanation

One measure for the explainability of attention is
whether each attention weight captures the causal-
ity of word and class prediction, by permuting
words and observing prediction changes. If the
learning is successful, such causal signals should
be consistently observed in the test predictions. To
validate this, we employ the attention-permutation
experiments designed in (Jain and Wallace, 2019),
i.e., what-if simulation. Specifically, when given an
input sample in the test phase, we look into whether
the randomly mutated attention (i.e., cause) from
the original attention yields any changes in the cor-
responding prediction result (i.e., effect). Here,
TVD for the permutation can be regarded as a de-
sirable evaluation measure: as TVD is lower, the
(original) learned attention has a weak mapping
with the model prediction, and vice versa.

The results are presented in Fig. 2, where x-axis
refers to TVD values, i.e., the difference of model
predictions, and y-axis refers to the frequency of
what-if simulations on their returning TVD value.
To carefully analyze this, we divide the simulation
results by four different intervals of input sequence
length, which can be an influencing factor: as the
perturbations on longer texts are unlikely to make
prediction changes (Sen et al., 2020).

In this figure, we can observe that SANA has the
lowest frequency on TVD = 0 in all cases, show-
ing the distribution skewed to larger TVD (i.e.,
right on x-axis) compared to baselines. Such dis-
tribution suggests that attention in SANA strongly
affects model prediction by the causal signals. In
unsupervised and vocab (i.e., task-level), the dis-
tributions are skewed to lower TVD (i.e., left on
x-axis), having larger frequency on zero TVD than
SANA. These patterns indicate the baselines have
weak attentions loosely aligned to model predic-
tions, motivating SANA even working well in long
texts.

5.4.2 Attention as Importance Indicator
As an alternative metric of attention explainablity,
(Jain and Wallace, 2019) considers the relationship
between attention weights and gradient-based fea-
ture importance score of each word.

However, prior research suggests using word
as a unit of importance feature is rather artificial,
as word is contextualized by, and interacts with
other words: (Wiegreffe and Pinter, 2019) observes
such limitation, and Shapley (Chen et al., 2018)
measures interaction between features for capturing
dependency of arbitrary subsets.

For this purpose, we report the KL diver-
gence between C-Shapley4 and attention weights,
DKL(Shapley(x) || attention(x)). We present
the results in Tab. 4, showing SANA approach is the
most well correlated method with Shapley scores,
well capturing word dependency.

unsupervised task-level SANA
IMDB 52.62 12.69 8.86

Table 4: KL-divergence from C-Shapley

Intuitively, C-Shapley observes the interaction
in n-gram, and our work, attending upon hidden
representations of RNN, which are soft n-grams,
captures similar interactions. This result manifests
that, standing on self-supervision signals, our coun-
terfactual process can improve the explanation on
the contextualization ability of RNN architectures.

6 Related Work

Instead of treating attention as a by-product of
model training, the following work explored how
machine/human can consume attention for model
improvement or explanation, respectively. Ma-
chine/human may also provide supervision. We
thus categorize existing work by machine/human

4https://github.com/Jianbo-Lab/LCShapley

https://github.com/Jianbo-Lab/LCShapley
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(a) SST2

(b) IMDB

(c) 20NG

Figure 2: Attention Analysis: x-axis refers to TVD
values returned by what-if simulations and y-axis refers
to the simulation frequency according to the returning
TVD value. The compared datasets are (a) SST2 for
sentence-level binary classification, (b) IMDB and (c)
20NG for document-level binary classification.

consumption and supervision. Our work falls into
human providing supervision (with machine aug-
menting supervision) for machine consumption.

6.1 Attention to/from Human
As for human consuming attention as explanation,
there has been criticism that unsupervised attention
weights are too poorly correlated with the contribu-
tion of each word for machine decision (or, unfaith-
ful) (Jain and Wallace, 2019; Serrano and Smith,
2019; Pruthi et al., 2019). Meanwhile, (Wiegreffe
and Pinter, 2019) develops diagnostics to decide
when attention is good enough as explanation.

As for improving human consumption, one di-
rection focuses on better aligning models to human,
another on improving annotation quality.

First, identifiability (Brunner et al., 2020) ex-
plains human-machine discrepancy, where token-
level information is lost in model hidden states.
For better alignment, (Tutek and Šnajder, 2020) uti-
lizes masked language model (MLM) loss and (Mo-
hankumar et al., 2020) invents orthogonal LSTM
representations.

Second, toward the direction of improving an-
notation, (Barrett et al., 2018; Zhong et al., 2019;
Bao et al., 2018) adopts sample-specific human an-
notations. In addition to rationales, (Zhao et al.,
2018) uses event trigger words and (Kim and Kim,
2018) leverages user authenticated domains to nar-
row down the scope of attentions. (Strubell et al.,
2018) injects word dependency relations to recog-
nize the semantic roles in text. Such annotation
overhead can be replaced by existing pre-annotated
resources: (Zou et al., 2018) considers sentiment
lexicon dictionary for a related task.

We pursue the second direction, but without in-
curring additional human annotation, by exploring
the counterfactual augmentation, originated from
self-supervision signals, contributing towards both
accuracy and robustness of the model.

6.2 Attention to/from Machine
Machine consuming attention for higher accuracy
is the most classical target scenario. (Yang et al.,
2016) proposes hierarchical attention for document
classification, (Chen et al., 2016) personalizes clas-
sification to user and product attributes. (Margatina
et al., 2019) incorporates knowledge information
to the self-attention module, i.e., lexicon features.

Alternatively, machine may mine or augment
attention supervision: (Tang et al., 2019) automati-
cally mines attention supervision by masking-out
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highly attentive words in a progressive manner.
(Choi et al., 2019) augments counterfactual obser-
vations to debias human attention supervision via
instance similarity. Our work is of combining the
strength of the two works: we automatically im-
prove attention supervision via self-supervision sig-
nals, but we build it with free task-level resources.

7 Conclusion & Future Work

We studied the problem of attention supervision,
and showed that requiring sample-level human su-
pervision is often less effective than task-level al-
ternative with lower (and often zero-) overhead.
Specifically, we proposed a counterfactual signal
for self-supervision, to augment task-level human
annotation, into sample-level machine attention su-
pervision, to increase both the accuracy and ro-
bustness of the model. We hope future research
to explore scenarios where human intuition is not
working as well as text classification, such as graph
attention (Veličković et al., 2017).
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Martin Tutek and Jan Šnajder. 2020. Staying true to
your word:(how) can attention become explanation?
arXiv preprint arXiv:2005.09379.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.
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