
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6521–6532,
November 16–20, 2020. c©2020 Association for Computational Linguistics

6521

MOCHA: A Dataset for Training and Evaluating
Generative Reading Comprehension Metrics

Anthony Chen
UC Irvine

anthony.chen@uci.edu

Gabriel Stanovsky∗

The Hebrew University
gabis@cse.huji.ac.il

Sameer Singh
UC Irvine

sameer@uci.edu

Matt Gardner
AI2 Irvine

mattg@allenai.org

Abstract

Posing reading comprehension as a genera-
tion problem provides a great deal of flexibil-
ity, allowing for open-ended questions with
few restrictions on possible answers. How-
ever, progress is impeded by existing gen-
eration metrics, which rely on token over-
lap and are agnostic to the nuances of read-
ing comprehension. To address this, we in-
troduce a benchmark for training and evalu-
ating generative reading comprehension met-
rics: MOdeling Correctness with Human
Annotations. MOCHA contains 40K human
judgement scores on model outputs from 6 di-
verse question answering datasets and an addi-
tional set of minimal pairs for evaluation. Us-
ing MOCHA, we train a Learned Evaluation
metric for Reading Comprehension, LERC,
to mimic human judgement scores. LERC
outperforms baseline metrics by 10 to 36
absolute Pearson points on held-out annota-
tions. When we evaluate robustness on mini-
mal pairs, LERC achieves 80% accuracy, out-
performing baselines by 14 to 26 absolute per-
centage points while leaving significant room
for improvement. MOCHA presents a chal-
lenging problem for developing accurate and
robust generative reading comprehension met-
rics.1

1 Introduction

Reading comprehension (RC) has seen significant
progress in the last few years, with a number of
question answering (QA) datasets being created
(Rajpurkar et al., 2016; Lai et al., 2017; Talmor
et al., 2018). However, a majority of datasets are
presented using a span-selection or multiple-choice
(MC) format. Both formats are easy to evaluate,

∗Work done while at the Allen Institute for AI and the
University of Washington.

1The dataset, code, a leaderboard, and a demo are available
at https://allennlp.org/mocha.

Passage: . . . Behind one door is a lady whom the king
has deemed an appropriate match for the accused; behind
the other is a fierce, hungry tiger. Both doors are heavily
soundproofed to prevent the accused from hearing
what is behind each one. . .

Question: What feature do the doors have?
Reference: soundproofed
Candidate: They are heavily soundproofed to

prevent the accused from hearing
what’s behind each one.

Human Judgement: 5 out of 5
LERC: 4.98 out of 5

BLEU-1: 0.07
ROUGE-L: 0.15
METEOR: 0.17

Figure 1: Generative reading comprehension example.
Properly scoring the candidate requires access to the
passage. Current metrics, such as BLEU, ROUGE and
METEOR, are agnostic to the end-task while LERC is
trained with the passage and question as input. As a
result, LERC assigns a score that better reflects human
judgement.

but in return, have restrictions placed on the ques-
tions that can be asked or the answers that can be
returned. Furthermore, both formats hinge on dis-
tractor spans/choices for learning to be effective.
Ensuring high quality distractors is a challenging
task in and of itself, which can lead to models that
exploit spurious correlations (Jia and Liang, 2017;
Min et al., 2019; Geva et al., 2019). Posing RC
as a generation task addresses the aforementioned
issues. Generative RC does not require distractors,
circumventing biases that could be introduced by
them, and allows arbitrary questions and answers.

Unfortunately, existing metrics for evaluating
text generation come with significant shortcom-
ings. Many metrics score n-gram overlap, and it
is well established that using token overlap as a
measure of similarity has drawbacks (Chen et al.,
2019; Edunov et al., 2019; Wang et al., 2020). Cur-

https://allennlp.org/mocha


6522

rent metrics also only consider the reference and
are agnostic to the end-task being evaluated. Fig. 1
demonstrates that this is problematic for generative
RC because scoring a candidate may require a met-
ric to also consider the passage and the question.
Without cheap and reliable evaluation, progress
in generative reading comprehension has been ex-
tremely slow.

To address the need for better evaluation met-
rics tailored to reading comprehension, we present
a dataset called MOCHA, aimed at developing
learned metrics that MOdel the Correctness of can-
didates using Human Annotation scores. MOCHA
contains human judgement scores on 40K can-
didates, an order of magnitude larger than prior
work (Chen et al., 2019). The candidates come
from six diverse QA datasets which test a wide
range of RC phenomena such as commonsense
reasoning and understanding narrative over movie
scripts. After collecting all annotations, we fol-
low work on creating more robust evaluation
sets (Kaushik et al., 2020; Gardner et al., 2020)
and augment the test set of MOCHA by manually
writing a small set of minimal pairs (Table 3). The
set of minimal pairs serve as a harder evaluation
set for probing metric robustness.

Using MOCHA, we train a Learned Metric
for Reading Comprehension which we abbrevi-
ate as LERC. We compare LERC against two
sets of baselines: (1) existing metrics such
as METEOR (Banerjee and Lavie, 2005) and
BERTScore (Zhang et al., 2019); and (2) a sen-
tence similarity model trained on STS-B (Cer et al.,
2017). To ensure fair comparison, we evaluate
LERC in an out-of-dataset setting: LERC is trained
on all datasets except the one it is being evaluated
on. On the test set, LERC outperforms baselines
by as much as 36 Pearson correlation points and on
the minimal pairs set, by as much as 26 accuracy
points. Error analysis and minimal pair results in-
dicate that there is substantial room to improve the
robustness of LERC and its sensitivity to different
linguistic phenomena. We hope that MOCHA and
LERC enables a continual cycle of generative RC
model and dataset developments that will enable
easier collection of more diverse and useful candi-
dates, allowing better learned metrics to be trained.

Instance Score

Passage: With the aid of his daughter, Abigail,
Barabas recovers his former assets. Barabas
then uses his daughter’s beauty to embitter
Lodowick and Mathias against each other.
Q: Why did Lodowick and Mathias fight?
Ref: Over the affection of Abigail
Cand: They fight over Barabas’s daughter.

5

Passage: Miss Moppet ties a duster about her
head and sits before the fire. The mouse thinks
she looks very ill and comes down the bell-pull.
Q: What does the mouse think when she sees
the duster on Miss Moppet’s head?
Ref: that Miss Moppet is ill
Cand: Miss Moppet thinks it is ill and is trying
to sniff him.

2

Passage: Robin took a very long time to clean
the windows of her house.
Q: How would you describe Robin?
Ref: a neat freak
Cand: a clean person

5

Passage: The strangest thing that has happened
was when they were singing the Chinese Na-
tional Anthem she was standing in front of the
TV swaying and singing.
Q: What is probably true about this story?
Ref: They are watching the Olympics
Cand: The Olympics are watching

2

Table 1: Example instances with human judgement
scores from MOCHA highlighting the diverse phe-
nomenon that an evaluation metric needs to han-
dle. These phenomenon include resolving coreference,
dealing with factual correctness, understanding para-
phrases, and understanding semantic roles.

2 A Description of MOCHA

Reading comprehension is the task of probing
how well systems can understand passages of text.
Framing reading comprehension as a generation
problem provides a great deal of flexibility, but
introduces the challenging problem of evaluation.
These challenges are further amplified when ap-
plied to generative reading comprehension, where
the introduction of a passage and a question can
add to the complexity of evaluation (Table 1). To
handle this challenge, we propose to train a gen-
erative reading comprehension metric. This first
requires a large set of human judgement scores to
be gathered.

In this section, we present MOCHA, a dataset
that pairs reading comprehension instances, which
consists of a passage, question, and reference, with
candidates and human judgement scores. We de-
scribe the process of gathering candidates, collect-



6523

Instructions
1. Read the passage.
2. Read the question, correct answer, and 
predicted answer.
3. Select the score that best reflects how 
closely a predicted answer captures the 
same information as the correct answer.

Passage: ...I got all of the ingredients I would need 
together to make the coffee and brought them to 
the company coffee machine…
Question: How was the coffee made?
Correct Answer: With a coffee machine
Predicted Answer: With a personal coffee machine

Figure 2: A compressed version of the Mechanical Turk interface for evaluating answer correctness. Workers were
asked to score (1 to 5) how similar a candidate is to a reference using the passage and the question.

ing human judgement scores, and creating minimal
pairs for evaluation.

2.1 Datasets

Candidates in MOCHA come from 6 constituent
QA datasets that are diverse in their domains and
answer types. This ensures that training and evalu-
ation with MOCHA does not overfit to the charac-
teristics of any constituent dataset.

NarrativeQA (Kociský et al., 2017) tests rea-
soning about events, entities, and their relations on
movie scripts and book summaries.

MCScript (Ostermann et al., 2018) tests reason-
ing on stories written for a child-level reader.

CosmosQA (Huang et al., 2019) tests common-
sense reasoning on blogs describing everyday
events.

SocialIQA (Sap et al., 2019) tests social reason-
ing with passages constructed from a knowledge
base.

DROP (Dua et al., 2019) tests predicate ar-
gument structure and numerical reasoning on
Wikipedia articles concerning American football
games, census results, and history.

Quoref (Dasigi et al., 2019) tests coreferential
reasoning on Wikipedia articles.

NarrativeQA was created as a generative RC
dataset. CosmosQA, MCScript, and SocialIQA
were created as MC datasets which we re-purpose
as generative datasets by using the correct choice
as the reference. Our motivation for doing this
is that the number of generative QA datasets is
quite small, which we attribute to the quality of
evaluation metrics.

The main focus of this work is in developing
and evaluating metrics for generative RC. However,
we wanted to see whether a learned metric could
do well on span-selection datasets. We collected

candidates on two span-based datasets, DROP and
Quoref, to test this.

2.2 Collecting Candidates

Candidates on all four generative datasets are gen-
erated using backtranslation (Sennrich et al., 2016)
and using a fine-tuned GPT-2 model (Radford
et al., 2019). We also generate candidates for Nar-
rativeQA and MCScript using a trained MHPG
model (Bauer et al., 2018). We tried using MHPG
for CosmosQA and SocialIQA but candidates were
of poor quality. Unique to NarrativeQA, each ques-
tion has two references. We treat the second ref-
erence as a candidate to be annotated if it has low
n-gram overlap with the first reference. We use
a span-selection BERT-based model to generate
candidates for Quoref and NAQANET (Dua et al.,
2019) and NABERT2 models for DROP.

Models are trained on the training sets of each
constituent dataset and candidates are produced
on instances from the validation set (and test set
if available). We filtered out candidates that ex-
actly matched the reference. We also filtered out
instances in DROP where the reference and the
candidate are both numbers.3

In total, MOCHA contains 40K candidates, large
enough for training a learned metric as well as for
evaluating current and future metrics.

2.3 Annotation Procedure

Annotations are collected with Mechanical Turk
using the interface in Fig. 2. Workers are asked to
score candidate answers on an ordinal scale from
1 to 5. We start by collecting a single annotation
per candidate. Following this, candidates are split
into training, validation, and test sets such that all
candidates from a passage are contained within a
dataset split. For instances in our validation and

2https://github.com/raylin1000/drop-bert
3From our inspection, if the reference and candidate are

both numbers that are not equal, the candidate is always
wrong.



6524

Dataset Avg
Pass. Len

Avg
Ques. Len

Avg
Ref. Len

Avg
Cand. Len

# Passages # Ques./Ref. Pairs # Candidates

Train Dev Test Train Dev Test Train Dev Test

NarrativeQA 333.0 9.6 5.8 5.9 85 11 18 2249 277 500 7471 890 1707
MCScript 197.1 7.8 4.3 4.1 462 61 93 2940 390 583 7210 978 1409
CosmosQA 72.8 10.8 7.5 8.8 1064 142 212 1139 156 226 5033 683 1017
SocialIQA 15.7 7.2 3.9 3.9 3075 414 611 3075 414 611 7409 1017 1527
DROP 213.4 11.6 3.6 5.1 80 10 17 542 76 117 687 97 152
Quoref 324.0 15.8 2.3 8.2 184 24 38 1098 123 180 3259 344 509

Total 4950 662 989 11043 1436 2217 31069 4009 6321

Table 2: Statistics for the human judgements per constituent dataset in MOCHA.

1 2 3 4 5
Annotation Score

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n 
of

 In
st

an
ce

s

NarrativeQA
MCScript
CosmosQA
SocialIQA
DROP
Quoref

Figure 3: Human judgement score distribution on the
training set of MOCHA, divided into the 6 constituent
datasets. The distribution of scores is right-skewed
because we did not annotate candidates that exactly
matched a reference.

test sets, we collect one additional human judge-
ment score per candidate for span-based datasets,
and two additional human judgement scores per
candidate for generative datasets. Multiple annota-
tions for a given candidate are averaged to form a
gold annotation. More details such as payout and
qualification testing are provided in Appendix D.

We calculated inter-annotator agreement using
Krippendorff’s Alpha-Reliability (Krippendorff,
2011) on the validation set of all 6 constituent
datasets. We choose this metric because it applies
to our setting, where there are multiple annotators
per instance, and the annotators vary between in-
stances. Agreement on our 6 datasets range from
0.71 to 0.92 (average = 0.82), indicating strong
agreement.

2.4 Statistics for MOCHA

Statistics of instances and dataset splits in MOCHA
are provided in Table 2. The number of unique
passages varies considerably across datasets. Nar-
rativeQA, which has the longest passages, has few
unique passages, while SocialIQA has a unique
passage for each question/reference pair. The num-

1 2 3 4 5
Annotation Score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
op

or
tio

n 
of

 In
st

an
ce

s

NarrativeQA
MCScript
CosmosQA
SocialIQA

Figure 4: Score distribution on candidates from GPT-
2. GPT-2 produces a very skewed score distribution for
CosmosQA and SocialIQA, highlighting the difficulty
of generative RC on commonsense questions.

ber of candidates also varies across datasets. The
most pronounced outlier is DROP, where we col-
lected a tenth of the candidates compared to the
other datasets. This is because we filtered out in-
stances when both the candidate and reference were
numbers, leaving much fewer candidates to anno-
tate. The number of candidates outnumbers the
question/reference pairs because for each pair, we
generated multiple candidates using different gener-
ation sources (e.g. backtranslation, different model
outputs).

Fig. 3 provides the annotation score distribution
on the training set of MOCHA. Score distributions
are right-skewed because we did not collect an-
notations when the reference exactly matched the
candidate. The right-skew is most pronounced for
Quoref because the number of ways a candidate
can get a perfect score while not matching the ref-
erence is limited in a span extraction format.

2.5 Limitations and Robust Evaluation with
Minimal Pairs

Candidates in MOCHA come from existing mod-
els, so that a metric learned on this data will be
most applicable to current research. However, as



6525

Phenomenon Original Instance Minimal Pairs

Coreference Passage: Norman is the supposed son of Frenchman de
Vac . . . As de Vac dies, he reveals Norman is Richard,
the king’s son and Edward’s brother, who he kidnapped.
Q: Who is the Frenchman de Vac?
Ref: a fencing master who kidnapped Norman

Cand. 1: a fencing master who kidnapped
Richard (5)
Cand. 2: a fencing master who kidnapped
Edward (3)

Hyponymy Passage: With the electric rifle, Tom and friends bring
down elephants, rhinoceroses, and buffalo.
Q: What does Tom bring down with his rifle?
Ref: Rhinoceroses, buffalo, and elephants.

Cand. 1: Animals (4)
Cand. 2: Humans (1)

Negation Passage: skylar told quinn’s friend about a secret that
quinn wanted to keep hidden.
Q: What will Quinn want to do next?
Ref: be angry

Cand. 1: Quinn will be mad at Skylar (5)
Cand. 2: Quinn will not be mad at Skylar
(1)

Semantic
Role

Passage: Taylor gave a raise and promotion to Kendall.
Q: How would you describe Taylor?
Ref: As someone who appreciates what Kendall does

Cand. 1: Taylor appreciates Kendall (5)
Cand. 2: Kendall appreciates Taylor (1)

Syntax Passage: Taylor looked around in Robin’s cupboards
and peeked inside Robin’s drawers and medicine cabinet.
Q: How would you describe Taylor?
Ref: intrusive

Cand. 1: I would describe Taylor as intru-
sive (5)
Cand. 2: Would I describe Taylor as intru-
sive (3)

Word Sense Passage: Taylor got married but kept her last name.
Q: How would you describe Taylor?
Ref: independent

Cand. 1: individualistic (5)
Cand. 2: nonpartisan (1)

Other Passage: The Princess stuffs her ears with cotton and
begins her journey.
Q: What does the Princess put in her ears?
Ref: She puts cotton in her ears.

Cand. 1: Her ears have cotton (4)
Cand. 2: Her ears are cotton (2)

Table 3: Minimal pairs categorized by the linguistic phenomena. Given a passage, question, and reference, we
create two new candidates, c1 and c2, with associated human judgement scores s1 and s2. In total, we wrote 200
minimal pairs (50 for each generative QA dataset).

research in generative reading comprehension mod-
els is presently limited, the strength of these models
can be low. Fig. 4 shows that generative QA mod-
els struggle to produce quality answers when asked
about commonsense scenarios. The majority of
5’s in CosmosQA and SocialIQA are produced via
backtranslation, while GPT-2 struggles to produce
“correct” candidates. This raises an issue with the
evaluation; a metric can look strong when eval-
uated on current model outputs, but may in-fact
struggle in the future when QA systems produce
better answers. Thus, using only these candidates
for evaluation could lead to overconfidence in a
learned metric’s capabilities.

We take inspiration from from recent work creat-
ing more robust evaluations (Kaushik et al., 2020;
Gardner et al., 2020) and augment the test set of
MOCHA with a small number of minimal pairs cre-
ated by the authors. Given a passage, question, and
reference from the test set, we manually create two

new candidates, c1 and c2, which form a minimal
pair. Accompanying c1 and c2 are human judge-
ment scores, s1 and s2, collected using the same
interface in Fig. 2. The minimal pair is created so
that c1 has a higher score (i.e. is a better answer)
than c2. Each minimal pair is designed to capture
a particular linguistic phenomenon (see Table 3).
Using this set of minimal pairs, we can study how
often a metric prefers the better candidate. We cre-
ate 200 minimal pairs (50 for each generative QA
dataset), which we use for evaluation separately
from the original test set.

3 A Learned Metric

We provide details on LERC, our learned metric.
LERC is initialized using BERT-base (Devlin et al.,
2019) We define as input a tuple consisting of a
passage, p, a question, q, a reference answer, a,
and a candidate answer, â. The input to BERT is



6526

Metric NarrativeQA MCScript CosmosQA SocialIQA DROP Quoref Avg. r
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

BLEU-1 0.403 0.472 0.181 0.260 0.660 0.670 0.595 0.549 0.409 0.387 0.674 0.578 0.487 0.486
METEOR 0.605 0.615 0.461 0.502 0.696 0.711 0.644 0.637 0.664 0.568 0.729 0.716 0.633 0.624
ROUGE-L 0.434 0.495 0.224 0.297 0.701 0.701 0.599 0.558 0.480 0.366 0.712 0.604 0.525 0.503
BERTScore 0.419 0.534 0.172 0.194 0.803 0.779 0.604 0.584 0.174 0.328 0.207 0.286 0.396 0.450

BERT STS-B 0.711 0.686 0.364 0.449 0.803 0.789 0.663 0.666 0.690 0.715 0.690 0.750 0.653 0.676

LERC 0.772 0.738 0.666 0.694 0.852 0.824 0.777 0.799 0.760 0.712 0.704 0.741 0.755 0.751

Table 4: Pearson correlation to human judgement scores on the validation and test sets of MOCHA. LERC results
are from a model trained in an out-of-dataset fashion, averaged across three runs.

h[CLS]

Score 
Layer

3.32

I got all of the ingredients I 
would need together to make 

the coffee and brought them to 
the company coffee machine.

How was the coffee made?

With a coffee machine

With a personal coffee 
machine

[CLS]

Passage

[SEP]

Question

[SEP]

Reference

[SEP]

Candidate

[SEP]

Figure 5: LERC is a BERT model that has been fine-
tuned on human judgment scores. LERC takes as input
a passage, question, reference, and candidate, and re-
turns a score rating the ”correctness” of the candidate.

structured as:

[CLS] p [SEP] q [SEP] a [SEP] â [SEP]

BERT returns a hidden state for each input token.
We use the first hidden state h[CLS], as the pooled
representation of the input.

3.1 Fine-Tuning with Human Judgements
Our goal is to train BERT to mimic the hu-
man judgements given a set of input tuples,
{(p,q, a, â)}ni=1, and a set of human judgment
scores, {y}ni=1, We apply a regression layer on
top of our pooled representation (Fig. 5) and train
with a MSE loss.

ŷi = W hi [CLS]

lossi = (yi − ŷi)
2

3.2 Pre-Training the Learned Metric
Learning the interactions between the input compo-
nents can be difficult with only human judgement
fine-tuning. To overcome this, we pre-train on
four multiple-choice QA datasets: BoolQ (Clark
et al., 2019a), MCTest (Richardson et al., 2013),
RACE (Lai et al., 2017), and MultiRC (Khashabi

et al., 2018). We use the same input structure as
fine-tuning, but the reference and candidate are
replaced by two answer choices, a1 and a2:

[CLS] p [SEP] q [SEP] a1 [SEP] a2 [SEP]

We pre-train BERT via 3-way classification to pre-
dict whether: a1 is the correct answer, a2 is the
correct answer, or a1 and a2 are both correct. Mul-
tiRC has multiple correct answers per question and
we create additional instances where both a1 and
a2 are correct by duplicating the correct answer for
all three datasets.

4 Experiments

Training LERC: We use the PyTorch (Paszke
et al., 2019), HuggingFace Transformers (Wolf
et al., 2019), and AllenNLP (Gardner et al., 2017)
libraries to implement LERC. We pre-train LERC
before fine-tuning on MOCHA. We evaluate LERC
in two settings, an out-of-dataset (OOD) setting
and an all-datasets (AD) setting. In the OOD set-
ting, we train and tune LERC on all datasets in
MOCHA except the dataset we are evaluating on.
This reflects the use case where we want to apply
LERC to evaluate a new dataset where we do not
have human judgement scores. In the AD setting,
we train on all datasets in MOCHA and evaluate on
all datasets. All results reported for LERC are the
average of three runs using the best set of hyperpa-
rameters found on the validation set of MOCHA.

Baselines: We compare LERC against BLEU-1
(Papineni et al., 2001), ROUGE-L (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), and BERTScore
(Zhang et al., 2019). We also compare LERC
against a BERT-base model fine-tuned on the sen-
tence similarity task, STS-B (Cer et al., 2017). Re-
sults for BERT STS-B are the average of three runs
using the best set of hyperparameters found on the



6527

Dataset Dev r

NarrativeQA 0.805
MCScript 0.816
CosmosQA 0.864
SocialIQA 0.820
DROP 0.796
Quoref 0.794

Table 5: Pearson correlation on the validation set
of MOCHA with LERC trained on all constituent
datasets.

Ablation Avg. Dev r

Ref. Only 0.081
Cand. Only 0.093
Ref. & Cand. 0.742
Ques. & Ref. & Cand. 0.723
Pass. & Ques. & Ref. & Cand. 0.726

LERC (with pre-training) 0.755

Table 6: Partial-input ablations of LERC trained in an
out-of-dataset fashion. Results are Pearson correlation
on the validation set, averaged across all constituent
datasets.

validation set of STS-B. All baselines are agnostic
to the passage and the question.

4.1 Correlation Results

We evaluate the baselines and OOD LERC in Table
4 using Pearson correlation. LERC outperforms the
baseline metrics despite being trained in a out-of-
dataset situation. METEOR does surprisingly well
despite relying on n-gram overlap to do evaluation.
Interestingly, the sentence similarity model does
better than the baseline metrics while falling behind
LERC.

We also study whether having human judge-
ments for a particular dataset helps. We present
results in Table 5 on the validation set of MOCHA
when LERC is trained in an AD setting. Having
human judgements for the target dataset is always
helpful.

4.2 Error Analysis of LERC

We gather the 10 validation instances per gener-
ative dataset (40 instances total) with the highest
absolute difference between the human judgement
score and LERC score. We categorize the errors

Error
Source

Example

Passage
Use
(22.5%)

Passage: Edward takes charge and the chil-
dren develop and expand the farmstead, aided
by the entrepreneurial spirit of the younger
brother Humphrey. They are assisted by a
gypsy boy, Pablo, who they rescue from a
pitfall trap.
Q: Who do the children rescue from a trap?
Ref: Pablo Cand: A gypsy kid
Human Score: 4.6 LERC: 1.0

Same
Meaning
(35%)

Passage: The story centres on the relation-
ship between Mrs Kitty Warren and her
daughter, Vivie. Mrs. Warren, a former pros-
titute.
Q: What did Mrs. Warren previously do for
work?
Ref: Prostitution
Cand: She was an escort.
Human Score: 4.6 LERC: 1.06

Opposite
Meaning
(15%)

Passage: Sasha hated her neighbours dog as
it barked all day and night so after going to
the shop and buying poisonous slug pellets,
Sasha gave the dog some pills.
Q: How would you describe Sasha?
Ref: mean Cand: kind
Human Score: 1 LERC: 4.32

Other
(27.5%)

Passage: The train was slow and ambling, so
much so that we were 2 hours late when we
arrived in Montreal, missing our connection.
Q: What might be true if the freight trains
didn’t cause a delay ?
Ref: They wouldn’t have missed their con-
nection
Cand: they couldn’t help noticing their con-
nection
Human Score: 1 LERC: 4.2

Table 7: Error analysis of LERC. We take the 10 valida-
tion instances per generative dataset (40 total) with the
largest difference between the score assigned by LERC
and the score assigned by humans. We then group the
highest error instances by the sources of the error.

made by LERC in Table 7. A large source of error
is the inability to leverage the passage correctly as
well as handling large lexical gaps between refer-
ences and correctly paraphrased candidates. The
“Other” category includes understanding semantic
roles and misspellings of the reference.

4.3 Ablation Results

We study five ablations of OOD LERC with re-
sults in Table 6. All ablations do not involve any
pre-training. When looking at ablations of LERC,
several interesting phenomena emerge.

Pre-training is important with such a complex
input structure. Removing pre-training while still



6528

Metric NarrativeQA MCScript CosmosQA SocialIQA Avg.
BLEU-1 53 54 52 55 53.5
ROUGE-L 53 57 53 53 61.2
METEOR 60 62 57 53 54
BERTScore 70 58 74 62 66

BERT STS-B 70.6 70 59.3 66.6 66.6

LERC 80 87.3 72.6 81.3 80.3

Table 8: Results of LERC (OOD setting) and baselines evaluated on minimal pairs. Numbers are accuracy values:
given a minimal pair of candidates, what percent of the time does a metric prefer the better candidate.

using the passage and question as input hurts per-
formance. Ablations of LERC that do not use the
passage but still have the reference and candidate as
input only fall slightly behind the complete metric.
One explanation is that current generative QA mod-
els may not generate many candidates that would re-
quire the metric to use the passage. Therefore, even
the complete version of LERC may have learned
to ignore the passage. We explore this in the fol-
lowing section when conducting an error analysis
of LERC.

As sanity checks for dataset biases, we also eval-
uate impoverished ablations that should not per-
form well: when the model has access only to the
reference or to the candidate. These ablations cor-
relate quite poorly with human judgments. The
correlation is slightly positive for both, however,
perhaps measuring the grammaticality of a candi-
date, or the difficulty of matching long references.

4.4 Minimal Pair Results

We now present results on the set of minimal pairs.
We use these minimal pairs to evaluate preference:
given a minimal pair of candidates (c1, c2), what
percentage of the time does a metric prefer the
better candidate? For cases where a metric assigns
the same score to both candidates, we give a half-
point.

Results are reported in terms of accuracy in Ta-
ble 8. N-gram based metrics are close to random,
which aligns with intuition because minimal pairs
were created such that both candidates have a simi-
lar token overlap with the reference. The sentence
similarity model does much better, likely because
it generalizes beyond token overlap. Finally, LERC
(OOD setting) does the best, suggesting that while
there is still room for improvement, the phenom-
ena targeted by the minimal pairs is captured when

Difference
Source

Examples

BLEU
under-scores
paraphrases
(92.5%)

Passage: Tracy took Jesse’s students to
the park. Jesse had an emergency and
asked her to.
Q: How would Jesse feel afterwards?
Ref: grateful Cand: thankful
LERC: 5.0 BLEU-1: 0
Human Score: 5

LERC overly
sensitive
(7.5%)

Passage: By 17, Norman is the best
swordsman in all of England; by the age
of 18, he has a large bounty on his head,
and by the age of 19, he leads the largest
band of thieves in all of England.
Q: What age was Norman when there
was a bounty on his head?
Ref: 18 Cand: 19
LERC: 5.0 BLEU-1: 0
Human Score: 1

Table 9: Analysis of LERC vs BLEU-1. We take the
10 validation instances per generative dataset (40 total)
with the largest difference between the score assigned
by LERC and the score assigned by BLEU-1. We then
group these instances by the source of the difference.

evaluated using preference.

4.5 LERC vs BLEU

To understand the differences in behavior between
LERC and the popular BLEU metric, we collect the
10 validation instances per generative dataset with
the highest absolute difference between the BLEU-
1 and LERC score. We categorize the source of the
differences in Table 9. In about 90% of the cases,
the gap is due to BLEU scoring candidates too low
(e.g. not capturing paraphrases). In the remaining
cases, the gap is due to LERC over-scoring the can-
didate, usually due to the reference and candidate
being similar (e.g. both are numbers).



6529

5 Related Work

There has been a long history of developing evalu-
ation metrics, which have generally fallen into one
of three categories. The first consists of metrics
that use some variant of n-gram matching (Papineni
et al., 2001; Lin, 2004; Banerjee and Lavie, 2005).
They are easy to implement, but lack flexibility
by focusing only on token overlap. The second
cateogry of metrics eschew some of the aforemen-
tioned issues by calculating a softer similarity score
using embeddings of tokens (Clark et al., 2019b;
Zhang et al., 2019). However, it is unclear how
to tailor them to question answering, where the
passage and question should be assimilated. The fi-
nal category consists of metrics learned end-to-end
from human judgements (Cui et al., 2018; Sellam
et al., 2020). These metrics are flexible in that
they can be tuned to the specific evaluation setting
but depend on a large corpus of human judgement
scores to train on. We hope that the release of
MOCHA pushes the development of QA metrics
that fall into this category.

MOCHA is directly inspired by the annual WMT
Metrics Shared Task (Machácek and Bojar, 2014;
Stanojević et al., 2015; Bojar et al., 2016, 2017;
Ma et al., 2018, 2019). Participants submit auto-
matic translations and human judgement scores are
collected for the submitted translations. The an-
notations collected as part of the WMT Metrics
Shared Task have made it easy to evaluate and cre-
ate new translation metrics (Popovic, 2015; Ma
et al., 2017; Shimanaka et al., 2018). In a simi-
lar vein, SummEval is a recently released dataset
that evaluates a number of evaluation metrics for
summarization (Fabbri et al., 2020).

6 Conclusion

We present MOCHA, a dataset of human judge-
ment scores for training and evaluating generative
reading comprehension metrics. Using MOCHA,
we train a learned metric, LERC, that outperforms
all existing metrics and is much more robust when
evaluated on a set of minimal pairs.

While we have demonstrated that LERC is a bet-
ter metric for evaluating generative reading com-
prehension than any existing metric, considerable
work remains. Error analysis reveals that there
exist gaps in LERC’s ability to handle certain phe-
nomena, such as correctly leveraging the passage.
Future work involves collecting data to addresses
weaknesses of LERC. We also anticipate a con-

tinual cycle of generative RC model and dataset
developments that will enable easier collection of
more diverse and useful candidates. This in turn
will allow better learned metrics, which can be used
to evaluate ever more complex models.

Acknowledgements

We would like to thank AI2 for the funding to col-
lect MOCHA. We would also like to thank mem-
bers of AI2 and UCI NLP for looking over early
drafts of the paper. This paper is based upon work
sponsored by the DARPA MCS program under
Contract No. N660011924033 with the United
States Office Of Naval Research.

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for mt evaluation with improved
correlation with human judgments. In IEEvalua-
tion@ACL.

Lisa Bauer, Yicheng Wang, and Mohit Bansal. 2018.
Commonsense for generative multi-hop question an-
swering tasks. In ACL.

Ondrej Bojar, Yvette Graham, and Amir Kamran. 2017.
Results of the wmt17 metrics shared task. In WMT.

Ondrej Bojar, Yvette Graham, Amir Kamran, and
Miloš Stanojević. 2016. Results of the wmt16 met-
rics shared task. In WMT.

Daniel Matthew Cer, Mona T. Diab, Eneko Agirre,
Iñigo Lopez-Gazpio, and Lucia Specia. 2017.
Semeval-2017 task 1: Semantic textual similarity
multilingual and crosslingual focused evaluation.
ArXiv, abs/1708.00055.

Anthony Chen, Gabriel Stanovsky, Sameer Singh, and
Matt Gardner. 2019. Evaluating question answering
evaluation. In EMNLP Workshop on Machine Read-
ing and Question Answering (MRQA).

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL-
HLT.

Elizabeth Clark, Asli elikyilmaz, and Noah A. Smith.
2019b. Sentence mover’s similarity: Automatic
evaluation for multi-sentence texts. In ACL.

Yin Cui, Guandao Yang, Andreas Veit, Xun Huang,
and Serge J. Belongie. 2018. Learning to evaluate
image captioning. In CVPR.

Pradeep Dasigi, Nelson F. Liu, Ana Marasović,
Noah A. Smith, and Matt Gardner. 2019. Quoref:
A reading comprehension dataset with questions re-
quiring coreferential reasoning. In EMNLP.



6530

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. NAACL-HLT.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In NAACL-
HLT.

Sergey Edunov, Myle Ott, Marc’Aurelio Ranzato, and
Michael Auli. 2019. On the evaluation of machine
translation systems trained with back-translation.
ArXiv, abs/1908.05204.

A. R. Fabbri, Wojciech Kryscinski, B. McCann,
R. Socher, and D. Radev. 2020. Summeval:
Re-evaluating summarization evaluation. ArXiv,
abs/2007.12626.

Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hanna Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Quan Zhang, and Ben
Zhou. 2020. Evaluating nlp models via contrast sets.
ArXiv, abs/2004.02709.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson H S Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.
2017. A deep semantic natural language processing
platform. ArXiv, abs/1803.07640.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. In EMNLP.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos qa: Machine reading
comprehension with contextual commonsense rea-
soning. In EMNLP.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In EMNLP.

Divyansh Kaushik, Eduard H. Hovy, and
Zachary Chase Lipton. 2020. Learning the differ-
ence that makes a difference with counterfactually-
augmented data. In ICLR.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading
comprehension over multiple sentences. In NAACL-
HLT.

Tomás Kociský, Jonathan Schwarz, Phil Blunsom,
Chris Dyer, Karl Moritz Hermann, Gábor Melis, and
Edward Grefenstette. 2017. The narrativeqa reading

comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

K. Krippendorff. 2011. Computing krippendorff’s
alpha-reliability.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard H. Hovy. 2017. Race: Large-scale read-
ing comprehension dataset from examinations. In
EMNLP.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In ACL.

Qingsong Ma, Ondrej Bojar, and Yvette Graham. 2018.
Results of the wmt18 metrics shared task: Both char-
acters and embeddings achieve good performance.
In WMT.

Qingsong Ma, Yvette Graham, Shugen Wang, and Qun
Liu. 2017. Blend: a novel combined mt metric
based on direct assessment - casict-dcu submission
to wmt17 metrics task. In WMT@EMNLP.

Qingsong Ma, Johnny Wei, Ondrej Bojar, and Yvette
Graham. 2019. Results of the wmt19 metrics shared
task: Segment-level and strong mt systems pose big
challenges. In WMT.

Matous Machácek and Ondrej Bojar. 2014. Results of
the wmt14 metrics shared task. In WMT@EMNLP.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gard-
ner, Hannaneh Hajishirzi, and Luke Zettlemoyer.
2019. Compositional questions do not necessitate
multi-hop reasoning. In ACL.

Simon Ostermann, Ashutosh Modi, Michael Roth, Ste-
fan Thater, and Manfred Pinkal. 2018. Mcscript: A
novel dataset for assessing machine comprehension
using script knowledge. In LREC.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Adam Paszke, S. Gross, Francisco Massa, A. Lerer,
J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, Alban Desmaison, An-
dreas Köpf, E. Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, B. Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. 2019.
Pytorch: An imperative style, high-performance
deep learning library. ArXiv, abs/1912.01703.

Maja Popovic. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In WMT@EMNLP.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.



6531

Matthew Richardson, Christopher J. C. Burges, and
Erin Renshaw. 2013. Mctest: A challenge dataset
for the open-domain machine comprehension of text.
In EMNLP.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le
Bras, and Yejin Choi. 2019. Social iqa: Com-
monsense reasoning about social interactions. In
EMNLP.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. Bleurt: Learning robust metrics for text gen-
eration. In ACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. ArXiv, abs/1511.06709.

Hiroki Shimanaka, Tomoyuki Kajiwara, and Mamoru
Komachi. 2018. Ruse: Regressor using sentence
embeddings for automatic machine translation eval-
uation. In WMT@EMNLP.

Miloš Stanojević, Amir Kamran, Philipp Koehn, and
Ondrej Bojar. 2015. Results of the wmt15 metrics
shared task. In WMT@EMNLP.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A ques-
tion answering challenge targeting commonsense
knowledge. In NAACL-HLT.

Alex Wang, Kyunghyun Cho, and Michael Lewis.
2020. Asking and answering questions to evaluate
the factual consistency of summaries. In ACL.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. In ICLR.



6532

Appendix

A Details on Training LERC

Training of LERC is broken into pre-training on
multiple-choice QA datasets followed by fine-
tuning on human judgement scores.

During pre-training, we used batch size of 32
and train for 4 epochs. We tune the learning rate
({1e-5, 2e-5, 3e-5}) over held out questions using
a single runs’ loss. We use accuracy as the criteria
to pick the best pre-trained model.

We then take the best pre-trained model and fine-
tune on human judgement scores in MOCHA. We
again fix the batch size at 32 and train for 3 epochs,
tuning the learning rate ({1e-5, 2e-5, 3e-5}) over
the validation set of MOCHA using the average of
three runs. We use Pearson correlation to pick the
best fine-tuned model. When LERC is trained in
an OOD setting, we do not tune on the held-out
dataset.

B Details on Baselines

We use implementations of BLEU, METEOR, and
ROUGE using Microsoft MS COCO evaluation
scripts 4. We removed question marks, periods,
and exclamation marks from references and candi-
dates when evaluating with BLEU, METEOR, and
ROUGE.

The hash-code for BERTScore is
roberta-large_L17_no-idf_version=
0.3.6(hug_trans=3.0.2).

We fine-tune BERT-base on STS-B as another
baseline. We use a batch size of 32 and train for
4 epochs. We tune the learning rate ({1e-5, 2e-5,
3e-5}) over the validation set of STS-B using the
average of three runs.

C Computational Resources

All experiments on conducted on a NVIDIA Titan
RTX with 24 GB of RAM. Pre-training of LERC
takes about 3.5 hours while fine-tuning (one run)
takes roughly 20 minutes.

D Details on Mechanical Turk

Collecting MOCHA involves three stages: a qual-
ification testing stage, a trial stage, and the full
dataset collection stage.

During qualification testing, workers are given
10 candidates to label, and they must score 80%

4https://github.com/salaniz/pycocoevalcap

Dataset/Generation Source Avg. Dev r

CosmosQA
Backtranslation 0.714
GPT-2 0.636

MCScript
Backtranslation 0.545
GPT-2 0.661
MHPG 0.742

NarrativeQA
Backtranslation 0.707
GPT-2 0.791
MHPG 0.814

SocialIQA
Backtranslation 0.602
GPT-2 0.596

Table 10: Correlation on the validation set (OOD set-
ting) broken down by the source of the generation.

to pass the test. After qualification testing, we
run a small trial. During this trial, we release 200
candidates and gather 5 human judgements per can-
didate to get a sense of annotation agreement and
to see if our instructions and examples need to
be revised. Finally, during the full dataset collec-
tion process we solicit human judgements on all
candidates. Here, each HIT is an aggregate of 10
candidates that all share the same passage to amor-
tize the cost of reading the passage and workers are
paid 40 cents per HIT.5 During dataset collection,
we randomly sample annotations to check for qual-
ity and remove workers that consistently do a poor
job.

Workers are paid for working on any of the three
stages. The total cost of collecting MOCHA is
about $6,000.

E Correlation Results based on
Generation Source

We supplement Table 4 by calculating correlation
results per generation source for the generative
datasets in Table 10. We find that LERC handles
candidates from different generation sources with
roughly the same performance.

5This amount is set by the authors manually working on
this task. We estimate that it takes between a minute and a
half to two and a half minutes to complete a HIT depending
on the dataset.


