
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6470–6484,
November 16–20, 2020. c©2020 Association for Computational Linguistics

6470

STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop
Story Generation

Nader Akoury†∗ Shufan Wang† Josh Whiting‡ Stephen Hood‡
Nanyun Peng§ Mohit Iyyer†

†University of Massachusetts Amherst ‡Storium §University of California Los Angeles
{nsa,shufanwang,miyyer}@cs.umass.edu

{josh,stephen}@storium.com
violetpeng@cs.ucla.edu

Abstract

Systems for story generation are asked to pro-
duce plausible and enjoyable stories given an
input context. This task is underspecified,
as a vast number of diverse stories can orig-
inate from a single input. The large output
space makes it difficult to build and evalu-
ate story generation models, as (1) existing
datasets lack rich enough contexts to mean-
ingfully guide models, and (2) existing eval-
uations (both crowdsourced and automatic)
are unreliable for assessing long-form cre-
ative text. To address these issues, we intro-
duce a dataset and evaluation platform built
from STORIUM, an online collaborative sto-
rytelling community. Our author-generated
dataset contains 6K lengthy stories (125M to-
kens) with fine-grained natural language anno-
tations (e.g., character goals and attributes) in-
terspersed throughout each narrative, forming
a robust source for guiding models. We evalu-
ate language models fine-tuned on our dataset
by integrating them onto STORIUM, where real
authors can query a model for suggested story
continuations and then edit them. Automatic
metrics computed over these edits correlate
well with both user ratings of generated stories
and qualitative feedback from semi-structured
user interviews. We release both the STORIUM
dataset and evaluation platform to spur more
principled research into story generation.

1 Introduction

Fiction writers express their creativity through both
low-level linguistic choices and discourse-level se-
quencing of narrative elements (e.g., plot events
and character development). Unlike more con-
strained text generation tasks, such as translation
or summarization, fiction writing allows for al-
most infinite creative freedom, which budding au-
thors often find cognitively overwhelming (Rose,
1980). Machine-in-the-loop storytelling (Clark

et al., 2018), in which an author obtains automati-
cally generated sentences or paragraphs when stuck
with writer’s block, lowers the barrier to entry for
creative writing (Roemmele and Gordon, 2015).
To spur research in this area, we partner with STO-
RIUM,1 an online collaborative storytelling plat-
form, to introduce a new dataset and evaluation
methodology for story generation.

The open-endedness of story writing does not
just pose a barrier to humans—it also presents
a challenge for building and evaluating compu-
tational models. Prior work relies on datasets
that are either too artificial to generalize to long-
form stories, such as the crowdsourced ROCSto-
ries (Mostafazadeh et al., 2016) corpus, or too
unconstrained, as in the r/writingprompts
dataset (Fan et al., 2018), which pairs medium-
length stories with short prompts. Furthermore,
lack of standardized evaluation makes measuring
progress difficult: most prior work evaluates out-
puts using a combination of simple automatic met-
rics not designed for long-form creative text gener-
ation (e.g., BLEU and ROUGE against a single ref-
erence) and crowdsourced ratings (McIntyre and
Lapata, 2009; Yao et al., 2019; Fan et al., 2019)
that preclude evaluating long-form narratives.

We address these limitations by (1) collecting
a dataset of stories (Section 2) containing fine-
grained structural annotations written in natural
language, and (2) providing a platform for evalu-
ating models in a machine-in-the-loop setting by
allowing real STORIUM authors to interact with the
generated stories (Section 4). Our dataset contains
nearly 6K longform stories (125M tokens) written
by STORIUM authors, each of which is broken into
discourse-level scene entries annotated with narra-
tive elements, such as character goals or abilities.
Conditioning story generation models on this infor-

1https://storium.com

https://storium.com

6471

SCENE INTRO

The women were
called to the flight
line. Lieutenant
Petrova, leader
of the section,
called out the
assignments.

“Makarova and
Dospanova . . .

DISRUPT THE
GERMANS

Bombing a Ger-
man marshaling

yard behind
the Don river

crossing. Search-
lights are already

active. Last to
play MUST play

a Weak card.

ON CHALLENGE SUCCESS

Despite heavy resistance you score
many good hits. Damage is minimal.

ON CHALLENGE FAILURE

Flak! One plane is out of action
for a few days, and one character

(narrator’s choice) is Wounded.

Adira was in the middle of her
first a mission. She had been
given a ’simple’ task to escort an
airship across river , and then she
would take over as pilot while
she made some calls for other
pilots ; disrupting the Germans .
As soon they reached their des-
tination - in this case; it being
Moscow — Adira took off to-
wards the enemy base on the
opposite side was time to shine
. The only thing that mattered
right now is getting the women
through there without any seri-
ous damage ; and without being
spotted.

Adira was in the middle of her
first a mission. She had been
given a ’simple’ task to escort an
airship across river , and then she
would take over as pilot while
she made some calls for other
pilots ; disrupting the Germans .
As soon they reached their des-
tination - in this case; it being
Moscow — Adira took off to-
wards the enemy base on the
opposite side was time to shine
. The only thing that mattered
right now is getting the women
through there without any seri-
ous damage ; and without being
spotted.

DEADLY AIM

You’re a crack
shot, whether

with your Tokarev
pistol or the

bomb release
(and occa-

sional machine
gun) of your

aging biplane.

ADIRA
MAKAROVA

> select model
now using gpt2

gpt2> startup
gpt2> preprocess
gpt2> generate
gpt2> shutdown generated entry

user edits

Figure 1: A high-level outline of our dataset and platform. In this example from a real STORIUM game, the
character ADIRA MAKAROVA uses the strength card DEADLY AIM to DISRUPT THE GERMANS, a challenge card.
Our model conditions on the natural language annotations in the scene intro, challenge card, strength card, and
character, along with the text of the previous scene entry (not shown) to generate a suggested story continuation.
Players may then edit the model output, by addingadding or deletingdeleting text, before publishing the entry. We collect these
edits, using the matchedmatched text as the basis of our USER metric. New models can be added to the platform by simply
implementing four methods: startup, shutdown, preprocess, and generate.

mation thus imposes loose constraints on what the
model should produce, compared to unstructured
datasets such as r/writingprompts, and also
enables modeling of narrative planning processes.

We fine-tune large-scale pretrained language
models on our dataset (Section 3) and integrate
them with the STORIUM platform, where authors
can query a model for the next few sentences in
their story and then edit the resulting text to their
liking. We devise a metric (inspired by ROUGE)
on top of these edits that measures how much of
the generated text is preserved in the post-edited
version, and discover that this metric correlates
with Likert judgments of linguistic properties such
as relevance and coherence. Detailed analyses of
the edits (Section 5), including semi-structured in-
terviews with STORIUM users, suggests that gen-
erating text relevant to the current story context
is the most important open problem in this area.
We publicly release both the STORIUM dataset and
user-facing evaluation platform to facilitate future
research on story generation.2

2 STORIUM Dataset

Our STORIUM dataset derives from an online col-
laborative storytelling community that provides
rich metadata useful for guiding computational sto-

2https://storium.cs.umass.edu

rytelling systems. In this section, we describe how
the structural elements of STORIUM stories fit to-
gether, and verify via an annotation task that this
metadata indeed influences the text of the stories.
Finally, we use neural topic models to highlight
the thematic content and narrative sequencing of
STORIUM.

2.1 STORIUM: Gamified Storytelling
The STORIUM platform enables a small group
of users to collaboratively write a single story
by transforming the writing process into a turn-
based game. In each game, one player acts as
the narrator, while other players take on the role
of individual characters within the story (e.g.,
ADIRA MAKAROVA in Figure 1). Stories unfold
through a series of high-level scenes that consist
of multiple short entries, each of which is written
from the perspective of a character (or the narra-
tor). Scenes commonly revolve around challenges
(e.g., DISRUPT THE GERMANS), that the charac-
ters tackle within the text of their entries; to help ad-
dress these challenges, each character has access to
a set of cards (e.g., DEADLY AIM, a strength card)
that define various properties such as strengths,
weaknesses, items, and goals. The narrator moves
the story forward by introducing new challenges, lo-
cations, and characters, in the form of cards. These
are either created from scratch by the narrator or se-

https://storium.cs.umass.edu

6472

Dataset # Stories # Tokens per Story Prompts Turns Annotations

roleplayerguild 1,439 3,079∗ 7 3 7

PG-19 28,752 68,973 7 7 7

ROCStories 98,156 88 3 7 7

r/writingprompts 303,358 735 3 7 7

STORIUM 5,743 19,278 3† 3 3

Table 1: While STORIUM has fewer stories than other popular story datasets, each story is considerably longer
and contains natural language annotations to guide story generation. ∗We combine character and action sets to
determine average story length. †We count narrator actions introducing challenges and locations as prompts.

lected from a predefined world that contains a com-
mon set of story elements. Collectively, the cards
played form a set of structural natural language
annotations that guide the story being written.

Dataset details: We collect 5,743 publicly avail-
able stories written on STORIUM from January
2015 to August 2019. We reserve 569 stories for
validation and 570 stories for test — carefully en-
suring an 8:1:1 split with respect to both the num-
ber of stories and tokens. Altogether, the stories
are broken down into 25,092 scenes with 448,264
individual scene entries (126,041,738 tokens), con-
ditioned on 232,596 cards, 204,698 of which are
unique.

Stories 5,743
Authors 30,119
Characters 25,955
Scenes 25,092
Scene Entries 448,264
Cards Played 232,596
Average Tokens∗ (per Entry) 247
Average Tokens∗ (per Story) 19,278
Total Tokens∗ (Entries & Cards) 126,041,738

Table 2: An overview of our dataset, which contains
long stories, broken down into scene entries, with struc-
tural annotations in the form of cards played to guide
the narrative. ∗We count tokens as contiguous spans of
either alphanumeric or non-alphanumeric symbols.

Cards influence entry text: STORIUM does not
force players to relate their written entries to se-
lected cards or challenges, instead relying on game
conventions to guide user behavior. To validate
whether the structural metadata influences story
text, we conduct a small-scale annotation of 235
scene entries, where we ask annotators3 to provide

3The annotators were NLP graduate students.

binary judgments for (1) whether the card played
influences the scene entry, and (2) if the scene entry
addresses the current challenge. We find that 77%
of scene entries reference the played cards, and
80% address the current challenge (Table A1).

Related datasets: Prior story generation
papers have frequently focused on the ROC-
Stories (Mostafazadeh et al., 2016) and
r/writingprompts (Fan et al., 2018)
datasets. While STORIUM has comparatively
fewer stories than these datasets, our stories are
over an order of magnitude longer (Table 1).
Rather than containing a single short prompt to
start the story, our stories on average contain
14 narrator prompts per story, with 41 natural
language annotations which describe character
goals, attributes, and key items useful for condi-
tioning story generation models.4 Like STORIUM,
the stories in roleplayerguild (Louis and
Sutton, 2018) are also formed from collaborative
storytelling turns via a role-playing game, though
this dataset lacks any prompts or annotations.
Finally, datasets consisting of novels and other
fiction, like PG-19 (Rae et al., 2020), provide
long-form narratives without explicit structure to
constrain generation.

2.2 Common Themes and Story Arcs
To provide insight into common narrative themes
and substructures within our dataset, we train a
neural topic model on text from entries and chal-
lenges and analyze the resulting topics and their
transitions.

2.2.1 Topic model specification
Our topic model is a simplified version of the
relationship modeling network (RMN) proposed

4While Fan et al. (2019) extract internal structure via SRL,
this is not inherent to the dataset, and can be applied to other
datasets, including our own.

6473

by Iyyer et al. (2016).5 As in the RMN, our model
relies on dictionary learning to compute topics;
however, it models each entry and challenge in-
dependently, instead of considering the temporal
order of scenes through recurrence. We ignore the
temporal component because STORIUM contexts do
not neatly fit into a chronologically-ordered time-
line (e.g., entries within a single scene may not
depend on each other). Building a specialized topic
model for this data is beyond the scope of this work.

Concretely, given an input text (either an entry
or a challenge), we first encode it by computing
an average of pretrained GloVe6 embeddings x.
Next, we compute the dot product between x and
each row of a global dictionary matrix R. Intu-
itively, each row of R is a vector representation
of an individual topic. These row-wise dot prod-
ucts are converted to a probability distribution via
a softmax function and then used to compute a
weighted average r of the dictionary rows, which
is then trained through a contrastive max-margin
loss to reconstruct the input vector z. At test time,
the dictionary rows are interpreted by their nearest
neighbors (using cosine distance) in the GLoVe
word embedding space.7

Worlds Topic words

Fantasy Classic rotunda, courtyard, staircase, foyer
Urban Fantasy analyze, investigate, analyse, uncover
The Mysterious
Island

convoy, hiking, river, reconnaissance

Cyberpunk synchronization, decryption, device, ap-
paratus

Steampunk freighter, crewmembers, cockpit, airship
The Heroes
Return

thine, fealty, uphold, valor

Medical Drama tumor, ligament, laceration, mortem
Los Chicos
Malos

sublight, biosphere, aetheric, gravita-
tional

The University explanation, undergrad, spelling, reason-
ing

The 33 melodramatic, reenactment, film, thriller
Scrapjack brake, soldering, heater, corrosion

Table 3: Topics with the highest relative importance
for a sample of STORIUM worlds, which illustrate the
diversity of the dataset.

5Preliminary experiments with LDA (Blei et al., 2003)
yielded less coherent topics, which is consistent with evalua-
tions in Iyyer et al. (2016).

6glove.840B.300d
7We encourage interested readers to see Iyyer et al. (2016)

for more details. The only difference between our setup and
theirs is that we directly use x to compute the row weights
without any feed-forward or recurrent layers in between.

weapon
combat melee

lunge swerving
uppercut

fealty valor
sword

reconnaissance
convoy patrol

mailing
notify caller

w
e a p o n

m
e

le
e

c o m
b a t

l u
n

g
e

r e c o n n a i s s a n
c

e

l u n g e

weapon
combat melee

fealty valor
sword

lunge swerving
uppercut

reconnaissance
convoy patrol

mailing
notify caller

FANTASY CLASSIC SPACE ADVENTURE

Figure 2: Example story arcs derived from the
adjacency matrix of topic transitions over the text
of entries (e.g., in FANTASY CLASSIC stories, the
weapon, combat, melee topic is often followed by
a transition, as denoted by weapon , to the
fealty, valor, sword topic).

2.2.2 Examining topics and their transitions

To explore the content of the STORIUM dataset, we
train our model with 50 topics (i.e., R has 50 rows)
on the union of entry and challenge text. Table 3
shows the most distinguishing topic (ranked by
relative importance) for a sample of different STO-
RIUM worlds. These topics illustrate the diversity
of our dataset: topics range from science fiction
(Cyberpunk, Steampunk) to detective fiction (Ur-
ban Fantasy) and stories set in hospitals (Medical
Drama) and schools (The University).

Following the methodology of Antoniak et al.
(2019), we also examine common local topic tran-
sitions between entries written by the same char-
acter across different scenes in a story. We com-
pute the transition probability from topicA to topic
B by counting how many times A and B are the
most probable topics for two consecutive entries,
respectively, and normalizing by the total number
of occurrences of topic A. Figure 2 shows a topic
transition diagram originating from a weapons-
related topic. In the Space Adventure world, stories
progress into vehicle and technology-related topics,
while in Fantasy Classic, they tend to transition to
topics about valor instead. That said, both of these
worlds are not completely different, as they share a
transition topic associated with physical action.

3 Generating Scene Entries

We focus our modeling efforts on generating scene
entries, which are the smallest units of each story,
because we want to evaluate the generated text on

6474

+
+
+

Token Embeddings (e)

Position Embeddings (p)

Segment1 Embeddings (s1)

Segment2 Embeddings (s2)

Len >= 50 | Pri = 1 Len >= 50 | Pri = 2 Len >= 30 | Pri = 3 Len >= 20 | Pri = 4 Len >= 100 | Pri = 5 Len >= 250 | Pri = 6

ConstraintSegment Types: intro character challenge card strength card prev entry entry title description

Figure 3: An illustration of our segment embeddings and packing strategy. In addition to token and position
embeddings, common to all Transformer models, we employ compositional segment embeddings for conditioning
on story metadata (e.g., DEADLY AIM is the title of a strength card). Each metadata segment has linear constraints
with associated priorities (e.g., Len >= 30 | Pri = 3) for optimally packing tokens within the available space.

the STORIUM platform within a machine-in-the-
loop framework.8 Our method relies on fine-tuning
a pretrained language model (GPT-2) on the STO-
RIUM dataset using segment embeddings to dif-
ferentiate each type of context. While GPT-2 has
successfully been used as a state-of-the-art model
for story generation (Mao et al., 2019; Guan et al.,
2020), one crucial challenge is the length of the
contexts: each entry in a story can condition on any
narrative element that comes before it (e.g., previ-
ous entries, scenes, challenges). Thus, the number
of context tokens quickly grows larger than what
is feasible to fit in GPU memory. Another chal-
lenge lies in how to properly tune hyperparameters
in a machine-in-the-loop setting, as it is infeasi-
ble to obtain human judgments for a huge number
of configurations. The rest of this section fully
specifies our model, a token-packing strategy to
optimize use of the input context, and preliminary
user-facing experiments that helped us decide on
our final model hyperparameters.

3.1 Model Specification

We fine-tune the GPT-2 medium-sized (355M pa-
rameters) language model (Radford et al., 2019)
for story generation, as it has been shown to
generate coherent long-form prose. Before fine-
tuning, we need to account for the complex-
ity of STORIUM contexts: each scene consists
of multiple entries, each of which may refer-
ence a different number of semi-structured cards
(e.g., both the DEADLY AIM strength card and the
ADIRA MAKAROVA character in Figure 1 contain
a title and description). To handle the composi-

8Our dataset also enables modeling high-level decisions
made by the narrator, such as challenge sequencing; we leave
this for future work.

tional and semi-structured nature of the scenes and
cards, we allow each input token to condition on
an arbitrary number of segment embeddings (Wolf
et al., 2019) (Figure 3). Concretely, we augment
the token vocabulary V of GPT-2 with a segment
vocabulary S for delineating each segment. The
final embedding vector ei at position i is computed
by summing the token embedding vi with the posi-
tional embedding pi and the corresponding set of
n segment embeddings {si1 , . . . , sin}:

ei = pi + vi +
n∑

m=1

sim (1)

During training, a single input instance to our
models contains the text of the current entry, its
associated challenge, card metadata, as well as the
current character’s biography and the scene’s intro-
ductory text (Figure 1). Our final model also in-
cludes the text of the immediately preceding story
entry,9 which improves human and automatic eval-
uation scores (Table 4). At test time, we provide
only the story context and autoregressively sample
a scene entry.

3.1.1 Context packing
The average story in our dataset has over 19K to-
kens broken up into 78 scene entries, which is much
longer than GPT-2’s maximum sequence length
of 1024 tokens. We thus face the challenge of
how best to optimize our usage of the limited in-
put space, which is made more difficult by the
many different types of input context (e.g., entries,
characters, challenges) within STORIUM. Naı̈vely
reserving a fixed number of tokens per context type

9If the preceding entry is not written by the current charac-
ter, we also include the current character’s last entry.

6475

wastes significant space, as the number and length
of metadata instances varies considerably per entry.
For example, some scene entries do not make use
of cards (Table 2), while others reference multiple
cards.

Our solution applies the Cassowary algorithm
(Badros et al., 2001), well-known for arranging UI
elements in Apple’s iOS, to pack the input tokens
more efficiently. Cassowary allows for efficiently
solving linear equality and inequality constraints
incrementally, using a dual simplex based method.
We define a set of linear constraints on the size
of each metadata segment (e.g., include at least
250 tokens from an entry when possible), and Cas-
sowary’s solver produces an optimal arrangement
of context tokens with respect to these constraints
(Figure 3). Compared to naı̈vely packing tokens
into fixed length segments, Cassowary allows us to
vary the minimum and maximum bounds on seg-
ments, as well as collapse missing segments. This
flexibility results in increased human and automatic
evaluation scores (Table 4).

3.2 Hyperparameter Selection

Before launching our full machine-in-the-loop eval-
uation, we conduct preliminary experiments on the
STORIUM platform to validate our design choices.
Since we want real users on STORIUM to enjoy in-
teracting with the generated text, we want to avoid
alienating them with poorly performing models.
We measure the impact of (1) including history in-
formation from the immediately preceding entry
in the story, and (2) using Cassowary to densely
pack the context. In total, we fine-tune four models
on the Cartesian product of these complementary
modeling ideas, keeping all other hyperparameters
constant, and deploy these models to STORIUM.

The results (Table 4) highlight the importance of
both modeling choices: after including more story
history and applying the Cassowary solver, vali-
dation perplexity decreases while STORIUM user
ratings of fluency, coherence, relevance, and lika-
bility all increase. This motivates us to use only
the best-performing model for the full-scale evalua-
tion. Additionally, user feedback from these exper-
iments suggested that we generate shorter entries,
as longer ones frequently devolved into unrelated
and incoherent sentences. Thus, for our final exper-
iments detailed in the next section, we also truncate
model outputs to a maximum of four sentences.

Cas His F C L R Ppl Jdg
3.4 2.9 3.8 2.3 25.1 90

X 3.1 2.7 3.9 2.3 22.4 77
X 3.6 2.8 3.6 2.4 22.9 62
X X 3.7 3.2 4.1 2.7 21.0 85

Table 4: Exploratory experiments indicate optimally
packing tokens using Cassowary (Cas), and including
more history (His) is key to achieving low perplexity
(Ppl), along with high fluency (F), coherence (C), lika-
bility (L), and relevance (R) based on a number of user
judgments (Jdg).

4 A Machine-in-the-Loop Evaluation
Platform

The inadequacies of existing human and automatic
evaluation methods are a major roadblock for story
generation research. Automatic evaluations cor-
relate weakly with human judgments (Sagarkar
et al., 2018), and these judgments are obtained
from crowd workers who are not invested in the
narratives they are assessing. These concerns are
magnified with STORIUM, as the story contexts
are far too long for crowd workers to reliably eval-
uate (Section 5). In this section, we propose an
improved evaluation methodology by directly in-
tegrating our models onto the STORIUM platform.
This allows story authors to query a machine (Clark
et al., 2018) for suggestions during the process of
writing their own stories. We develop a new evalu-
ation metric, User Story Edit Ratings (USER), com-
puted on top of the edits that STORIUM users make
to generated entries. Finally, we provide experi-
mental results that compare two configurations of
our best model from Section 3.2.

4.1 Evaluation Lifecycle
To evaluate generated stories, we develop a dedi-
cated web service for serving model outputs to the
STORIUM platform. STORIUM users simply press a
button on the user interface to obtain a generated
scene entry conditioned on the story context. Users
can then addadd new text while deletingdeleting any of the
generated text that they wish (Figure 1). When
users publish their edited entry, they are also asked
to evaluate the generated text on a 5-point Lik-
ert scale10 with respect to relevance (fit with the
current story), fluency (judgment of grammatical-
ity), coherence (logical ordering of sentences), and
likability (subjective assessment of enjoyability).
This process allows experts (STORIUM authors)

10They also provide optional freeform comments on gener-
ated text; we leave analysis of the comments to future work.

6476

to evaluate generated stories, which is a substan-
tial improvement over prior evaluation efforts. We
make our evaluation platform publicly accessible
for researchers to develop and integrate their own
models. Our framework makes adding a new model
using any Python-based deep learning framework
very easy, requiring implementation of only four
methods: startup, shutdown, preprocess,
and generate.

4.2 A Metric Over User Edits

Intuitively, the amount of generated text that a
user preserves in their final published entry clearly
indicates the usefulness of the generated text.
We quantify this by developing User Story Edit
Ratings (USER), inspired by the longest com-
mon subsequence (LCS) variant of ROUGE (Lin,
2004), applied to user edits. Given a gener-
ated entry X and the final published entry Y ,
we compute USER(X,Y) = |MATCH(X,Y)|

|X| , where
MATCH(X,Y) considers contiguous substrings
with at least one non-stopword as matchesmatches (see Fig-
ure 1 for an example and Appendix C for a more
thorough treatment). We do not use ROUGE-L be-
cause vanilla LCS typically favors subsequences
of unigram matches (often stopwords) over longer
contiguous n-gram matches. In our STORIUM set-
ting, users preserving n-grams or full sentences is a
clear indication that the generated text was useful.

5 Analysis

Compared to existing work on story generation, the
main novelty of our STORIUM evaluation platform
is that it enables authors to interact directly with
model-generated text through their edits. In this
section, we conduct experiments on our platform
and analyze the edits by examining the correlation
of USER to Likert scores. We explore linguistic
properties of text that users preserve and also con-
duct a crowdsourced evaluation on Amazon Me-
chanical Turk that demonstrates its unsuitability for
this task. Finally, we qualitatively describe feed-
back obtained from interviews with ten STORIUM

users who engaged with our models, which pro-
vides a roadmap for future work.

Top-k vs. nucleus sampling: Using our plat-
form (Section 4), we evaluate our best model (Ta-
ble 4) with two different decoding strategies: (1)
top-k sampling (Fan et al., 2018) with k = 40, and
(2) nucleus sampling (Holtzman et al., 2020) with

Lik Flu Coh USER Rating
Rel top-k 0.51 0.28 0.55 0.51 2.55

nucleus 0.53 0.40 0.57 0.39 2.47
Lik top-k — 0.28 0.35 0.34 3.32

nucleus — 0.38 0.55 0.35 3.21
Flu top-k — — 0.54 0.13† 3.96

nucleus — — 0.61 0.23 3.76
Coh top-k — — — 0.25 3.41

nucleus — — — 0.36 2.96
USER top-k — — — — 15.63

nucleus — — — — 9.86

Table 5: Despite its low rating, relevance is clearly im-
portant as indicated by the moderately strong Pearson’s
r correlations (first four columns) with USER and the re-
maining human judgments. All correlations are signifi-
cant (p < 0.01), except those indicated by † (p > 0.05).

p = 0.9.11 The sampling parameters, such as the
k in top-k sampling, can significantly affect out-
put quality of story generation models (See et al.,
2019), so we choose values that worked well in
prior work (Qin et al., 2019).12

Interestingly, while Holtzman et al. (2020) show
that nucleus sampling improves over top-k sam-
pling on measures like repetition, STORIUM users
clearly prefer the top-k variant across all categories
(last column of Table 5). We collect roughly 200
feedback ratings and 175 edits for each model over
a span of three months beginning in late February
2020. We discover that both configurations score
best on fluency and worst on relevance. This is
unsurprising as (1) GPT-2 is known to produce flu-
ent text and (2) the complex and lengthy STORIUM

data is a challenge for limited-context models. Fi-
nally, USER scores are generally low (15.6 for top-k
vs. 9.9 for nucleus sampling), indicating that users
delete most of the current model’s generated text.
This result demonstrates that story generation mod-
els still have a long way to go.13

USER correlates with human judgments: A
natural question is whether our USER metric cor-
relates with judgments of fluency, coherence, rel-
evance, and likability. Table 5 shows that for the
top-k configuration, relevance has a significantly
higher correlation (Pearson’s r) with USER than the
other properties. In other words, users are most

11We use a temperature of 0.9, a repetition penalty (Keskar
et al., 2019) of 1.2, and an analogous length penalty that
dynamically penalizes producing the end of sequence token
inversely proportionally to a desired length ld.

12It is possible that a better set of sampling hyperparameters
exists, which we leave to future work.

13See the supplementary HTML for an export of all results
(including generated text and edits) used for this paper.

6477

Top-k Nucleus
First Run Rating κ Rating κ
Fluency 3.59 0.17 3.47 0.11
Coherence 3.50 0.10 3.44 0.20
Likability 3.27 0.07 3.22 0.11
Relevance 3.32 0.09 3.27 0.13

Top-k Nucleus
Second Run Rating κ Rating κ
Fluency 4.01 0.46 3.77 0.33
Coherence 3.63 0.27 3.38 0.23
Likability 3.28 0.12 3.06 0.16

Table 6: Despite our best efforts, our first crowd
sourced judgments show low agreement (κ) on open-
ended story generation. Our second run, which re-
moves context, thus excluding relevance judgments,
greatly increases agreement for fluency and coherence.

likely to preserve generated text when it is relevant
to the overall story. Fluency correlates only weakly
with USER, which makes sense as most generated
entries are fluent due to GPT-2’s pretraining. Fi-
nally, nucleus sampling exhibits lower correlation
for relevance, but higher correlation for the other
three properties, possibly due to its lower average
scores for these properties (see Appendix C for a
comparison of USER to ROUGE-based metrics).13

Linguistic properties of preserved text: Know-
ing that users delete most of the generated text,
we instead explore the linguistic commonalities of
the preserved text. We run spaCy part-of-speech
tagging and named entity recognition (Honnibal
and Montani, 2017) over the edited entries. Strik-
ingly, 29.5% of generated proper nouns are pre-
served in the edited text, compared to only 13.5%
for all other POS tags. A major confound is that
our model could unfairly receive credit for simply
copying character names from the input context, as
users are likely to write about these characters any-
way. To measure the extent of this effect, we match
all generated named entities that users preserve to
predefined character lists from each story, and dis-
cover that 63% of generated entities already exist
within the story context. The remaining 37% of
entities are often completely new character names.
User interviews also suggest that this ability to gen-
erate new names is a useful feature.

Crowdsourced evaluation is unreliable: Thus
far, we have argued for our evaluation platform by
claiming that crowdsourced methods are unsuitable
for evaluating stories with complex and lengthy
contexts. Here, we measure fluency, coherence,
relevance, and likability of our generated entries

with a crowdsourced Amazon Mechanical Turk
task, to see if the results correspond to STORIUM

user ratings. Designing this crowdsourced task
is difficult, as we cannot show crowd workers the
entire story context due to its length; we thus decide
to show the same inputs that the model receives
(Section 3). We collect ratings of 100 examples per
model, with three judgments per example.14

Table 6 (top) shows that workers have very low
agreement (Fleiss’ κ) for all properties, including
even fluency. An analysis of the median task com-
pletion time15 reveals most workers did not actu-
ally read the context. We run a second experi-
ment, showing only the generated text (no con-
text), and remove the relevance rating. Table 6
(bottom) shows this improves agreement (Table 6),
and that the average fluency scores align closely
with those from STORIUM users. Overall, our strug-
gle to obtain quality judgments from Mechanical
Turk further validates our platform: STORIUM pro-
vides free expert judgments from people invested
in storytelling.

Feedback from user interviews: To better un-
derstand the strengths and weaknesses of our cur-
rent model, we conduct semi-structured interviews
with ten STORIUM users. Most were surprised with
the overall fluency of our models. This partly ex-
plains the low correlation of fluency with USER.
Relevance was mentioned by 9 out of 10 users as
the number one area of improvement for our model,
confirming our experimental results (Table 5). Four
users called out the model’s tendency to fabricate
facts and introduce new characters. Despite these
concerns, three users explicitly stated the model
inspired them to write or found portions of the gen-
erated text useful, though mostly as a source for
character and place names (supporting the linguis-
tic analysis in Section 5). Finally, some users con-
sidered the system a curiosity and decided to write
stories using only generated text (without edits).16

14We limit annotations to crowd workers living in the US
and the UK, with over 1000 completed annotations and a
99% approval. We pay $0.50 per annotation, by assuming 2
minutes per annotation, for an effective hourly rate of $15.

15Mechanical Turk automatically reports a WorkTimeInSec-
onds field for each annotation, which is ten minutes on average
for our task — more than enough time to read and assess the
generated entry and associated context. Sadly, this interval
is misleading. Analyzing the median time between submits,
we see workers accept multiple concurrent tasks, wait a few
minutes, then submit each annotation in quick succession, thus
inflating the WorkTimeInSeconds interval.

16These AI-guided narratives are prevalent enough that we
manually exclude these games from our experiments as they

6478

6 Related Work

Our work builds on prior research in computational
modeling for story generation. Early narrative
prose generation systems (Meehan, 1977; Callaway
and Lester, 2001; Riedl and Young, 2004) relied on
graph-based planning formalisms and custom rules
to structure their narratives, while story graphs have
been used for interactive storytelling (Riedl and
Bulitko, 2013). More recent work uses deep learn-
ing to generate stories by training neural models
with limited context (Peng et al., 2018; Fan et al.,
2018; Goldfarb-Tarrant et al., 2019) and structured
knowledge, either external (Mao et al., 2019; Guan
et al., 2020; Goldfarb-Tarrant et al., 2020) or de-
rived (Yao et al., 2019; Fan et al., 2019). Com-
pared to the datasets studied in those works, our
STORIUM dataset contains much longer stories with
built-in structural annotations written in natural lan-
guage in the form of cards (Table 2).

Our work connects more closely to existing
machine-in-the-loop storytelling work (Roemmele
and Gordon, 2015; Samuel et al., 2016; Clark et al.,
2018), in which systems work in concert with users
to collaboratively author a narrative. Much like the
Creative Help platform of Roemmele and Gordon
(2015), we provide writing assistance by interac-
tively generating continuations of STORIUM stories.
We improve over Roemmele and Gordon (2015) by
evaluating a trained model (instead of a retrieval-
based approach) with a large user population.

Finally, our STORIUM evaluation takes a differ-
ent approach to prior research that measures the
quality of generated stories. Sagarkar et al. (2018)
train an automatic scorer on human annotations of
overall story quality, relevance, and interestingness
based on evaluation criteria from (McIntyre and
Lapata, 2009). See et al. (2019) consider a number
of diversity related measures for automated evalua-
tion of story generation systems by focusing on the
GPT-2 small model, noting that quality assessments
are still best measured through human evaluation.

Limitations

Evaluating on the STORIUM platform enables re-
searchers to receive high-quality judgements on the
outputs of their story generation models. These
judgements are made possible by the significant
time and effort spent by real authors on crafting
their narratives, as their incentives are substan-
tially different than those of crowdsourced workers.
artificially increase the automatic metrics.

The amount of author effort involved in evaluation,
when combined with the relatively small size of
the STORIUM community, can cause evaluation to
take a considerable amount of time (i.e., to collect
hundreds of judgements) as evidenced in our analy-
sis (Section 5). Thus, our platform is not currently
suitable for “instant” evaluation of generated sto-
ries. Furthermore, as the evaluation platform is
specifically deployed on STORIUM, it cannot be
trivially used to evaluate models trained on other
story generation datasets, as users of the website
are mainly invested in writing narratives that follow
the STORIUM format.

7 Conclusion

We introduce the STORIUM dataset and evaluation
platform for machine-in-the-loop story generation,
built from an online collaborative storytelling com-
munity. STORIUM contains 6K long stories anno-
tated with structural metadata useful for condition-
ing language models. Importantly, real STORIUM

authors evaluate model outputs by adding and re-
moving text to create their own stories. We de-
vise a metric on top of their edits that correlates
strongly with judgments of the relevance of the
generated text, which user interviews suggest is
the most important area for improvement moving
forward. Our dataset and evaluation platform will
be made publicly available to spur progress into
story generation.

Author Contributions

Dataset Analysis: Akoury, Wang
Generation Model: Akoury, Wang
Evaluation Platform: Akoury, Whiting, Hood
Research Guidance: Iyyer, Peng

Acknowledgements

We thank the wonderful STORIUM users for ac-
tively using our story generation models and gener-
ously providing their time to be interviewed. We
also thank the amazing UMass NLP community
for thoughtful insights on our paper and helping
to validate whether structural metadata influences
story text on STORIUM. Akoury and Iyyer were
supported during this project by a research gift
from Genpact. Peng was supported in part by the
CwC program under Contract W911NF-15-1-0543
with the US Defense Advanced Research Projects
Agency (DARPA).

6479

References
Maria Antoniak, David Mimno, and Karen Levy. 2019.

Narrative paths and negotiation of power in birth
stories. In Proceedings of the ACM Conference on
Computer-Supported Cooperative Work and Social
Computing.

Greg J. Badros, Alan Borning, and Peter J. Stuckey.
2001. The cassowary linear arithmetic constraint
solving algorithm. ACM Trans. Comput. Hum. In-
teract., 8:267–306.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research.

Charles B. Callaway and James C. Lester. 2001. Narra-
tive prose generation. Artif. Intell., 139:213–252.

Elizabeth Clark, Anne Spencer Ross, Chenhao Tan,
Yangfeng Ji, and Noah A. Smith. 2018. Creative
writing with a machine in the loop: Case studies on
slogans and stories. 23rd International Conference
on Intelligent User Interfaces.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings of
the Association for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the Association for Computational Lin-
guistics.

Markus Freitag, David Grangier, and Isaac Caswell.
2020. Bleu might be guilty but references are not
innocent. ArXiv, abs/2004.06063.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph
Weischedel, and Nanyun Peng. 2020. Content plan-
ning for neural story generation with aristotelian
rescoring. In the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Seraphina Goldfarb-Tarrant, Haining Feng, and
Nanyun Peng. 2019. Plan, write, and revise: an
interactive system for open-domain story generation.
In NAACL-HLT, system demonstration.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
Transactions of the Association for Computational
Linguistics, 8:93–108.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. iclr.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jor
dan L. Boyd-Graber, and Hal Daume III. 2016.
Feuding families and former friends: Unsupervised
learning for dynamic fictional relationships. In
NAACL-HLT.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
Ctrl: A conditional transformer language model for
controllable generation. ArXiv, abs/1909.05858.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In ACL 2004.

Annie Louis and Charles Sutton. 2018. Deep Dun-
geons and Dragons: Learning Character-Action In-
teractions from Role-Playing Game Transcripts. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 708–713, New
Orleans, Louisiana. Association for Computational
Linguistics.

Huanru Henry Mao, Bodhisattwa Prasad Majumder,
Julian McAuley, and Garrison Cottrell. 2019. Im-
proving neural story generation by targeted common
sense grounding. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 5988–5993, Hong Kong, China. As-
sociation for Computational Linguistics.

Neil Duncan McIntyre and Mirella Lapata. 2009.
Learning to tell tales: A data-driven approach to
story generation. In ACL/IJCNLP.

James R. Meehan. 1977. Tale-spin, an interactive pro-
gram that writes stories. In IJCAI.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839–849, San Diego,
California. Association for Computational Linguis-
tics.

Nanyun Peng, Marjan Ghazvininejad, Jonathan May,
and Kevin Knight. 2018. Towards controllable story
generation. In Proceedings of the First Workshop on
Storytelling, pages 43–49, New Orleans, Louisiana.
Association for Computational Linguistics.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra
Bhagavatula, Elizabeth Clark, and Yejin Choi. 2019.
Counterfactual story reasoning and generation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5043–
5053, Hong Kong, China. Association for Computa-
tional Linguistics.

https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.1162/tacl_a_00302
https://doi.org/10.18653/v1/N18-2111
https://doi.org/10.18653/v1/N18-2111
https://doi.org/10.18653/v1/N18-2111
https://doi.org/10.18653/v1/D19-1615
https://doi.org/10.18653/v1/D19-1615
https://doi.org/10.18653/v1/D19-1615
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/W18-1505
https://doi.org/10.18653/v1/W18-1505
https://doi.org/10.18653/v1/D19-1509

6480

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learn-
ing Representations.

Mark O. Riedl and Vadim Bulitko. 2013. Interactive
narrative: An intelligent systems approach. AI Mag-
azine, 34:67–77.

Mark O. Riedl and Robert Michael Young. 2004. An
intent-driven planner for multi-agent story genera-
tion. Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems, 2004. AAMAS 2004., pages 186–193.

Melissa Roemmele and Andrew S Gordon. 2015. Cre-
ative help: a story writing assistant. In International
Conference on Interactive Digital Storytelling.

Mike Rose. 1980. Rigid rules, inflexible plans, and
the stifling of language: A cognitivist analysis of
writer’s block. College Composition and Commu-
nication, 31(4).

Manasvi Sagarkar, John Wieting, Lifu Tu, and Kevin
Gimpel. 2018. Quality signals in generated stories.
In Proceedings of the Seventh Joint Conference on
Lexical and Computational Semantics, pages 192–
202, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Ben Samuel, Michael Mateas, and Noah Wardrip-Fruin.
2016. The design of writing buddy: A mixed-
initiative approach towards computational story col-
laboration. In ICIDS.

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D Manning. 2019. Do
massively pretrained language models make better
storytellers? In Conference on Computational Natu-
ral Language Learning.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. Bleurt: Learning robust metrics for text gen-
eration. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computa-
tional Linguistics.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A trans-
fer learning approach for neural network based con-
versational agents. ArXiv, abs/1901.08149.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Association for the Advancement of Artificial Intelli-
gence.

https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://doi.org/10.18653/v1/S18-2024

6481

Appendix

A Additional Dataset Statistics

As our dataset derives from a collaborative story-
telling game that is highly compositional by nature,
it is difficult to concisely capture the full scope of
the data within the main body. Here we highlight
the full results of our small scale annotation that
indicates cards influence the scene entry text.

Total Annotations 248
Valid Entries† 235
Card Influences Entry 182
Entry Addresses Challenge 189
Card Influence ∩ Challenge Addressed 151

Table A1: We ask annotators to determine how fre-
quently cards influence an entry, and if the entry ad-
dresses the challenge. †Annotators were asked to flag
stories not written in English or otherwise could not be
understood.

Additionally, there are many small details which
are important distinctions in the game, but may not
require separate modeling for generating a scene
entry. For example, there is a distinction between
regular cards, which have a fixed title and descrip-
tion provided by the narrator; versus wild cards,
which allow individual characters to write their
own title and description. For the sake of complete-
ness, we provide Table A2 to help further explore
the depths of this unique dataset. The following his-
tograms1 further break down the data in Table A2,
clearly demonstrating the long tail distributions in-
dicative of user generated stories:

1

4

16

64

256

1024

4096

16384

0 50 100
150

200
250

300

C
ou

nt

Entries per Scene

total=448264
mean=17.86

std=19.37
bin width=10

1 These histograms provide context for the meaning of
Mean and Std Dev for Table A2.

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100
120

140
160

180

C
ou

nt

Cards Created/Edited per Story

total=318692
mean=55.49

std=56.88
bin width=29

32

64

128

256

512

1024

2048

0 20 40 60 80 100
120

140
160

180

C
ou

nt

Total Played Cards per Story

total=232596
mean=40.50

std=70.94
bin width=36

8

16

32

64

128

256

512

1024

2048

0 20 40 60 80 100
120

140
160

180

C
ou

nt

Played Cards Created/Edited per Story

total=204698
mean=35.64

std=67.65
bin width=34

1

4

16

64

256

1024

4096

16384

65536

0 5 10 15 20 25

C
ou

nt

Challenge Cards per Entry

total=61223
mean=0.47

std=1.05
bin width=1

6482

Feature Total Mean1 Std Dev1

Stories 5,743 — —
Completed Stories 586 — —
Users 30,119 — —
Characters Created 27,462 4.78 3.04
Characters Played 25,955 4.52 3.04
Total Played Roles 31,698 — —
Scenes 25,092 4.37 6.96
Scene Entries 448,264 17.86 19.37
Cards Created/Edited 318,692 55.49 56.88
Total Played Cards by Users 232,596 40.50 70.94
Played Cards Created/Edited by Users 204,698 35.64 67.65
Location Cards Played by Narrators 16,887 0.67 0.47
Challenge Cards Played by Narrators 61,223 0.47 1.05
Cards Played by Characters 149,014 0.47 0.63
Wild Cards Played by Characters 31,465 0.10 0.30
Regular Cards Played by Characters 117,549 0.37 0.58
Stories Played Without Cards 736 — —
Tokens in Character Descriptions 7,155,548 260.56 286.78
Tokens in Scene Entries 110,772,426 247.11 307.13
Tokens in Played Location Cards 438,044 0.98 6.14
Tokens in Played Challenge Cards 3,837,860 24.84 15.30
Tokens in Played Regular Cards 3,053,152 25.08 15.78
Tokens in Played Wild Cards 784,708 23.96 13.32
Unique Tokens 424,768 — —

Table A2: A small look at the highly compositional nature of our dataset.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

0 0.5
1 1.5

2 2.5
3

C
ou

nt

Played Cards per Entry

total=149014
mean=0.47

std=0.63
bin width=1

0

50000

100000

150000

200000

250000

300000

0 0.2
0.4

0.6
0.8

1 1.2
1.4

1.6
1.8

2

C
ou

nt

Played Wild Cards per Entry

total=31465
mean=0.10

std=0.30
bin width=1

0

50000

100000

150000

200000

250000

0 0.5
1 1.5

2 2.5
3

C
ou

nt

Played Regular Cards per Entry

total=117549
mean=0.37

std=0.58
bin width=1

1

4

16

64

256

1024

4096

16384

0 1000
2000

3000
4000

5000

C
ou

nt

Tokens per Character Description

total=7155548
mean=260.56

std=286.78
bin width=144

6483

1
4

16
64
256

1024
4096
16384
65536

262144

0 5000
10000

15000

20000

C
ou

nt

Tokens per Scene Entry

total=110772426
mean=247.11

std=307.13
bin width=154

4
16
64
256

1024
4096
16384
65536

262144

0 20 40 60 80 100
120

140

C
ou

nt

Tokens per Played Location Card

total=438044
mean=0.98

std=6.14
bin width=4

1

4

16

64

256

1024

4096

16384

65536

0 50 100
150

200

C
ou

nt

Tokens per Played Challenge Card

total=3837860
mean=24.84

std=15.30
bin width=8

1

4

16

64

256

1024

4096

16384

65536

0 50 100
150

200

C
ou

nt

Tokens per Played Regular Card

total=3053152
mean=25.08

std=15.78
bin width=8

1

4

16

64

256

1024

4096

0 20 40 60 80 100
120

140
160

C
ou

nt

Tokens per Played Wild Card

total=784708
mean=23.96

std=13.32
bin width=7

B Web Service

Our web service is modular and allows easily
adding new models. It consists of a frontend ser-
vice, which acts as a mediator between STORIUM

and each backend service responsible for serving
model outputs. The frontend stores data in a Post-
greSQL database and provides a dashboard for
viewing realtime ratings and evaluation metrics.
It also displays user comments, scene entry diffs
based on user edits, and Pearson’s r correlations
among metrics and user ratings — all sortable per
model. A new model can be served by simply im-
plementing four methods (startup, shutdown,
preprocess, and generate). The backend
automatically installs all Python requirements for
serving a model and is agnostic to the underlying
tensor library used. Additionally, we follow the
latest best practices, including the use of Docker
containers and the Asynchronous Server Gateway
Interface (ASGI)2,the latest Python web standard,
which allows for asynchronous programming us-
ing asyncio.3 We host the web service using an
on-premise server with four 2080Ti GPUs.

C User Story Edit Ratings

Recently, the discriminative power of BLEU has
been called into question when evaluating state-
of-the-art machine translation systems, leading re-
searchers to investigate alternative evaluation met-
rics (Freitag et al., 2020; Sellam et al., 2020). Sim-
ilarly, we question the use of ROUGE metrics for
automatic evaluation of open-ended story genera-
tion. Using our evaluation platform, we show that
USER improves upon ROUGE in the story genera-
tion domain.

2FastAPI (https://fastapi.tiangolo.com)
3https://docs.python.org/3/library/

asyncio.html

https://fastapi.tiangolo.com
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html

6484

Likability Fluency Coherence ROUGE-L ROUGE-W USER

top-k nuc top-k nuc top-k nuc top-k nuc top-k nuc top-k nuc
Relevance 0.51 0.53 0.28 0.40 0.55 0.57 0.52 0.38 0.50 0.36 0.51 0.39
Likability — 0.28 0.38 0.35 0.55 0.29 0.34 0.28 0.31 0.34 0.35
Fluency — — 0.54 0.61 0.11† 0.23 0.10† 0.22 0.13† 0.23
Coherence — — — 0.27 0.38 0.24 0.34 0.25 0.36
ROUGE-L — — — — 0.98 0.98 0.95 0.93
ROUGE-W — — — — — 0.97 0.94

Table A3: USER correlates well with both ROUGE-L and ROUGE-W when removing stopwords.

When evaluating story continuations, we cannot
compare against an a priori gold standard. Rather,
we consider the final published story a user gen-
erates to be the gold standard, and thus evaluate
models by how much text the user retains. Using
ROUGE-L precision, which simply computes the
ratio of the longest common subsequence (LCS)
with the number of tokens in the generated text, we
can measure this quantity.

As highlighted by Lin (2004), ROUGE-L contains
a subtle mismatch with expectations, as the LCS
does not consider locality of matches — assigning
equal weight to subsequences of the same length
even when the distance between matched words
differs. Given a reference sequence X , the follow-
ing two candidate sequences Y1 and Y2 produce the
same ROUGE-L score (an underscore indicates a
subsequence match):

X : [A B C D E F G]

Y1 : [A B C D H I K]

Y2 : [A H B K C I D]

ROUGE-W tries to address this shortcoming by
introducing a weighting which favors subsequences
with less separation. Sadly, for long texts, both
ROUGE-L and ROUGE-W often favors long subse-
quences of stopwords over contiguous substrings,
a sign that a user clearly used part of the output
unchanged. While acceptable for short summaries,
this is much less appropriate for long-form open-
ended text generation. Removing stopwords helps
alleviate the mismatch, so we do so in our com-
parison to ROUGE (Table A4), though the funda-
mental issue still remains. This mismatch calls
into question the ability of ROUGE-L and ROUGE-
W to distinguish among models with strong story
generation capability.

Top-k Nucleus
Score Count Score Count

ROUGE-L 28.61 174 20.66 178
ROUGE-W 20.73 174 13.80 178
USER 15.63 174 9.86 178

Table A4: USER produces lower scores on average than
ROUGE-L or ROUGE-W.

Our new metric, User Story Edit Ratings (USER),
is based on a diff-like approach. We begin by
applying the same text preprocessing as ROUGE.
Afterwhich, we find the longest contiguous sub-
string, then use it as a pivot to divide the remaining
string into two halves (excluding the pivot), and
recursively repeat the process in each half.4 We
then only consider substrings with at least one non-
stopword as matchesmatches (careful scrutiny of Figure 1
reveals an unmatched stopword it). Subsequently,
we compute precision, recall, and F1 identically to
ROUGE.

Table A3 shows USER correlates with user judg-
ments approximately similarly to ROUGE metrics,
while correlating strongly with both metrics. Ad-
ditionally, USER produces lower scores on average
compared to ROUGE (Table A4). Taken in combina-
tion, these insights indicate USER is better capable
of discerning differences among the strong story
generation models of the future, as it provides more
stark evaluations while still correlating well with
human judgments.

4We use SequenceMatcher from Python’s difflib:
https://docs.python.org/3/library/
difflib.html

https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html

