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Abstract

Conventional approaches to event detection
usually require a fixed set of pre-defined event
types. Such a requirement is often challenged
in real-world applications, as new events con-
tinually occur. Due to huge computation cost
and storage budge, it is infeasible to store all
previous data and re-train the model with all
previous data and new data, every time new
events arrive. We formulate such challeng-
ing scenarios as incremental event detection,
which requires a model to learn new classes in-
crementally without performance degradation
on previous classes. However, existing in-
cremental learning methods cannot handle se-
mantic ambiguity and training data imbalance
problems between old and new classes in the
task of incremental event detection. In this pa-
per, we propose a Knowledge Consolidation
Network (KCN) to address the above issues.
Specifically, we devise two components, pro-
totype enhanced retrospection and hierarchi-
cal distillation, to mitigate the adverse effects
of semantic ambiguity and class imbalance, re-
spectively. Experimental results demonstrate
the effectiveness of the proposed method, out-
performing the state-of-the-art model by 19%
and 13.4% of whole F1 score on ACE bench-
mark and TAC KBP benchmark, respectively.

1 Introduction

Event detection (ED) is an important task of in-
formation extraction, which aims to identify event
triggers and classify them into specific types (Ahn,
2006; Chen et al., 2015). For instance, in the sen-
tence “A man died when a tank fired on the ho-
tel”, an ED model should be able to recognize two
events: a Die event triggered by the word “died”
and an Attack event triggered by the word “fired”.

Existing ED methods can only handle a fixed
number of event classes (also called event types)
and perform once-and-for-all training on a fixed
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Figure 1: Incremental event detection: a model con-
tinually learns new event classes, when data for them
becomes available. At any time, the model is able to
perform prediction for all event classes observed so far.

dataset. Although the evaluation of this setting
is straightforward, it clearly limits the usage of
these methods in practical applications, as new
events continually emerge in the real world. A
practical ED system should be able to incremen-
tally learn new classes, instead of requiring a fixed
set of pre-defined event classes. Therefore, we con-
sider a more realistic incremental learning setting
(also called continual learning or lifelong learning)
(Ring, 1994; Thrun, 1998), where a learning sys-
tem learns from class-incremental data streams in
which examples of different event classes arrive at
different times, which can be shown in Figure 1.
In such scenarios, it is often infeasible to combine
the new data with all previous data to re-train the
model, due to various issues such as huge computa-
tion cost, storage budget and data privacy (McMa-
han et al., 2017).

Alternatively, a natural approach to incremental
event detection is to simply finetune a pre-trained
model on new data. However, this approach faces
a serious challenge – catastrophic forgetting (Mc-
Closkey and Cohen, 1989; French, 1999). To be
more specific, a learned system usually suffers
from significant performance drop on old classes
when it adapts to new classes. For example in Fig-
ure 2, after finetuning on the training data of new
class (i.e., Attack), the updated model can recog-
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Figure 2: Catastrophic forgetting in incremental event
detection. Top: An event detection model originally
trained for Die class, successfully recognizes the Die
event, and cannot predict Attack event, due to no train-
ing on Attack class. Bottom: After finetuning on At-
tack class, the updated model can recognize the Attack
event, but fails to recognize the Die event, due to for-
getting previous knowledge.

nize the Attack event, but fails to detect the Die
event, which it was capable of originally.

Great efforts have been devoted to overcoming
the catastrophic forgetting on the image classi-
fication task, which can be mainly divided into
parameter-based methods which try to identify
and preserve significant parameters of the origi-
nal model (i.e., the model learned on old classes)
(Kirkpatrick et al., 2017; Aljundi et al., 2018),
and replay-based methods which reserve a small
amount of data from each old class. When new
classes arrive, the stored data and new data are com-
bined to re-train the model (Rebuffi et al., 2017;
Hou et al., 2018, 2019). Since replay-based meth-
ods are very simple and effective, such methods
have dominated the research.

However, when applying replay-based methods
to incremental event detection, we find two chal-
lenges: 1) Semantic Ambiguity problem and 2)
Class Imbalance problem. Semantic Ambiguity:
Compared with simple image classification task,
event detection has more serious ambiguity prob-
lem (Chen et al., 2018). For example, in the sen-
tence “He left the company”, the word “left” can
not only trigger End-Position event, but also trig-
ger Transport event. By contrast, the example “He
resigned his position as manager” can more accu-
rately express End-Position event and is more rep-
resentative for the End-Position class. The ambigu-
ous examples could confuse the classifier, affecting
the generalization ability (Liu et al., 2014). It in-
dicates that re-training the model with ambiguous

old examples isn’t conducive to retaining previous
knowledge. Therefore, to alleviate semantic ambi-
guity, we need to reserve the most representative
examples for each class. Class Imbalance: Since
only a small number of old data is stored while the
number of new classes data is usually large, there is
a serious training data imbalance between old and
new classes. Under this circumstance, the focus of
the training process is significantly biased towards
new classes (He and Garcia, 2009; Wu et al., 2019),
which severely misleads the classifier. It is a crucial
cause of catastrophic forgetting.

In response to the above problems, we propose
a Knowledge Consolidation Network (KCN) for
preserving previous knowledge. Specifically, to
address the semantic ambiguity issue, we devise
a prototype enhanced retrospection module to re-
serve the most representative examples for each old
class. To reduce the adverse effect of class imbal-
ance, we propose a hierarchical distillation module
which makes the current model mimic the behav-
iors of the original model in feature level and event
class prediction level, respectively. Experimental
results demonstrate that our method outperforms
previous state-of-the-art models. In summary, the
contributions of this paper are listed as follows:

• To our best knowledge, we are the first to in-
troduce the incremental event detection task
and we construct two incremental event de-
tection benchmarks by using two widely used
ED datasets, ACE 2005 and TAC KBP 2017.

• We propose a knowledge consolidation net-
work for incremental event detection task,
which can efficiently alleviate catastrophic for-
getting problem via prototype enhanced retro-
spection and hierarchical distillation.

• Experimental results show that our method
outperforms previous state-of-the-art mod-
els, achieving 19% and 13.4% improvements
of whole F1 score on the ACE benchmark
and TAC KBP benchmark, respectively. The
source code of this paper is available at https:
//github.com/CPF-NLPR/IncrementalED.

2 Problem Definition

Event detection (ED) is a subtask of event extrac-
tion (EE). We first introduce some Automatic Con-
tent Extraction (ACE) terminologies to facilitate
the understanding of ED task: Event trigger refers

https://github.com/CPF-NLPR/IncrementalED
https://github.com/CPF-NLPR/IncrementalED
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Figure 3: Illustration of Knowledge Consolidation Network (KCN). When learning Meet event, the model is first
updated with the combination of training data for Meet event and stored data in memory (i.e., memory after Attack).
Then the model selects the representative examples to reserve. Since the size of memory is limited, the memory
need to remove some reserved exemplars of old classes to allocate space for Meet event. Note that there is only
one memory. For better understanding, we show the memory states after learning Attack and Meet, respectively.

to a word that most clearly expresses the occurrence
of an event. Event arguments are participants of
the event. Event mention refers to a phrase or
sentence within which an event is described.

Given a sentence or document, an ED system
aims to locate event triggers and categorize their
types. For example, in the sentence “A man died in
the hospital”, an ED system is expected to detect a
Die event along with the trigger word “died”. Fol-
lowing previous work (Chen et al., 2015; Nguyen
et al., 2016; Liu et al., 2018a), we formulate ED as a
token-level multi-class classification task. Namely,
given a sentence, we treat every token in it as a
trigger candidate, and we aim to classify each can-
didate into pre-defined event classes.

In real world, new event classes continually oc-
cur. Therefore, a practical ED system should en-
able to incrementally learn new event classes. We
introduce a new problem, incremental event de-
tection. Suppose that there a class-incremental
data stream, denoted as {X (1),X (2), . . . ,X (M)}.
Each X (k)1 contains training/validation/testing
data (X (k)

train,X
(k)
valid,X

(k)
test) and its own event class

set C(k). Any two event class sets are disjoint (i.e.,
C(i)

⋂
C(j) = ∅, i 6= j). At step k, the event de-

tection model optimizes its parameters using the
training data X (k)

train and the updated model should
still perform well on all previous observed classes.
That is to say, during testing stage at step k, we
evaluate the updated model on the testing data of
all observed classes (i.e.,

⋃k
i=1X

(i)
test). Given an

1In general, X (k) can contain one or more new classes.

input from X (j) (j ≤ k), the model ought to give a
prediction from

⋃k
i=1 C(i), instead of C(j).

To alleviate catastrophic forgetting, a bounded
memory is allowed to store a small amount of old
classes data. Therefore, every time new classes
arrive, the event detection model exploits the re-
served old classes data and the training data of new
classes to update parameters.

3 Method

We propose a Knowledge Consolidation Network
(KCN) for incremental event detection, which is
illustrated in Figure 3. The model consists of three
important components: 1) Trigger Extractor, 2)
Prototype Enhanced Retrospection and 3) Hierar-
chical Distillation. When new classes occur, the
proposed KCN model updates the parameters with
the combination of reserved old classes data and
training data of new arriving classes. The prototype
enhanced retrospection retains previous knowledge
via reserving the most representative examples.
The hierarchical distillation transfers the previous
knowledge from the original model to the current
model. We will detail these three components.

3.1 Trigger Extractor

Our trigger extractor is based on the Transformer ar-
chitecture (Vaswani et al., 2017). We use the state-
of-the-art text encoder BERT (Devlin et al., 2019)
to encode the input sentence. BERT is a multi-
layer bidirectional Transformer, pre-trained on a
large-scale unlabeled corpus, which has achieved
the state-of-the-art performance for event detection
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(Wang et al., 2019b; Yang et al., 2019).
When new classes C(k) arrive, the training

data of the new classes is denoted as X (k)
train =

{(Xi, Yi), 1 ≤ i ≤ K}, where K is the number
of training examples, Xi is the sentence and Yi de-
notes the label of each token in the sentence Xi.
The memory reserves the representative examples
for old m classes (i.e., m = |

⋃k−1
i=1 C(i)|), denoted

as P = {P(1), . . . ,P(m)}, where P(i) is the set
of stored examples for i-th class. We combine the
stored old data and training data of new classes data,
denoted as N = P

⋃
X (k)
train, to train the current

model. The target label set contains all observed
event types, denoted as Co =

⋃k
i=1 C(i). The token

[CLS] and [SEP]2 are placed at the start and end of
the sentence, respectively. We first leverage BERT
to obtain the contextual representation for each to-
ken. Then a multi-classifier (i.e., softmax classifier)
is added on BERT to predict event types. As gen-
eral, we adopt cross entropy as the loss function to
train the event detection model:

Lce = − 1

|N |
∑
X∈N

∑
x∈X

y · log(p) (1)

where y is the one-hot ground-truth label for token
x and p is the corresponding class probabilities ob-
tained by softmax. The size of them is the number
of all observed classes, i.e., |Co|.

Since event detection has serious ambiguity prob-
lems and the capacity of memory is bounded, we
need to reserve the most representative examples
for old classes. We devise a prototype enhanced
retrospection to achieve the objective.

3.2 Prototype Enhanced Retrospection

In our model, all classes are treated equally, i.e.,
when m classes have been learned so far and B is
the total number of examples that can be reserved
in a memory, our model will store n = B/m ex-
amples for each class. Since the size of memory is
limited, when new classes arrive, the memory unit
performs two operations: one to select representa-
tive examples to reserve for new classes and one
to remove some stored examples of old classes to
allocate space for new classes.

3.2.1 Selecting Representative Examples
At step k, when the training data of new classes C(k)
is added to the model, we compute the prototype

2[CLS] and [SEP] are special tokens of BERT.

for each class in C(k):

µc =
1

Nc

Nc∑
i=1

zi (2)

where Nc is the number of training samples for
class c ∈ C(k) and zi is representation of sentence
Xi belonging to class c. Expressing an event usu-
ally requires the whole of information of a sentence,
therefore, we use the representation of [CLS] token
as the sentence representation. We refer to µc as
the prototype of class c.

Inspired by the recent works about prototype
learning (Snell et al., 2017; Yang et al., 2018)
which refer to the prototype as the class representa-
tive point in feature space, we devise a prototype-
based selection algorithm. For each class, the algo-
rithm computes the distance between each training
example and the corresponding prototype, and then
produces a sorted list of samples of one class based
on the distance to the prototype of that class. In-
tuitively, the closer the example to the prototype,
the more representative the example is for the class.
Based on the sorted list of examples, the first n
examples of the list are selected as exemplars to
store in a bounded memory.

3.2.2 Removing Reserved Exemplars
Since the storage size of memory is constant, when
new classes arrive, the memory needs to remove
some reserved examples of old classes to allocate
space for the examples from new classes. Sup-
pose the number of old and new classes is m and
t (t = |C(k)|), respectively. The memory needs to
removeB/m−B/(m+t) stored examples of each
old class. We adopt a data-independent removal
strategy. For each old class, we remove examples
that are far from prototype according to the sorted
list of examples. In this way, the most representa-
tive examples of old classes are still reserved.

3.3 Hierarchical Distillation
Although storing a small number of old data is
very useful to improve performance, the number
of training samples between old and new classes is
very imbalanced, which makes the model have a
bias towards the new classes, resulting in severely
forgetting previous knowledge (Wu et al., 2019;
Hou et al., 2019).

Since the original model isn’t trained on the
new classes data, it is less biased towards the new
classes compared with the current model. There-
fore, if the knowledge of the original model is well
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preserved, the adverse effects of the imbalance will
be efficiently mitigated. Knowledge distillation is
an effective way to transfer knowledge from one
network to another (Hinton et al., 2015). Inspired
by it, we propose a hierarchical distillation to learn
the previous knowledge from the original model.
The core idea is as follows: for the same input, if
the current model can extract similar features, and
give similar prediction distributions with the origi-
nal model on previous classes, it can be assumed
that the current model can efficiently preserve the
previous knowledge.

3.3.1 Features-level Distillation

We use the BERT as feature extractor, denoted as
f(·). For the input x, the extracted features of orig-
inal model and current model are f∗(x) and f(x),
respectively. To enforce extracted features not to
bias towards new classes, we propose a features-
level distillation loss function:

Lfd =
1

|N |
∑
X∈N

∑
x∈X

1− 〈f̄∗(x), f̄(x)〉 (3)

where f̄∗(x) and f̄(x) are l2-normalized features
extracted by the original model and current model,
respectively. 〈f̄∗(x), f̄(x)〉 = f̄∗(x)T f̄(x) mea-
sures the cosine similarity between two normalized
feature vectors. The features-level distillation loss
is computed for all samples from the new classes
and reserved exemplars.

If the extracted features of the current model
don’t greatly deviate from the ones of the original
model, the feature extractor can effectively pre-
serve previous knowledge.

3.3.2 Predictions-level Distillation

Besides features-level distillation loss, we also pro-
pose a predictions-level distillation loss, which pre-
serves the previous knowledge of classifier by en-
couraging the current predictions on old classes to
match the soft labels by the original model. At step
k, t (t = |C(k)|) new classes arrive, and the model
has observedm old classes. For token x, the output
logits (i.e., the results before softmax) of the origi-
nal and current model are o∗ = [o∗1, o

∗
2, . . . , o

∗
m]

and o = [o1, o2, . . . , om+1, . . . , om+t], respec-
tively. The predictions-level distillation loss is for-

Algorithm 1 Training Procedures of KCN

Input: training data X (k)
train at step k, the number

of new classes t = |C(k)|
Require: memory capacity B
Require: current model parameters Θ
Require: current reserved exemplar sets P =

(P(1), . . . ,P(m)), m classes occured
1: Form combined training set: X (k)

train

⋃
P

2: Update the model parameters Θ with loss func-
tion L = Lce + αLfd + βLpd

3: Compute the number of exemplars per class:
n← B/(m+ t)

4: for c = 1, . . . ,m do
5: Remove some reserved exemplars for old

class c until the number of exmplars is n
6: end for
7: for c = m+ 1, . . . ,m+ t do
8: Compute the prototype for new class c via

Equation (2)
9: Select the examples to store in a memory

according to the distance to prototype
10: end for

mulated as follows:

Lpd = − 1

|N |
∑
X∈N

∑
x∈X

m∑
i=1

τ∗i log(τi),

τ∗i =
eo

∗
i /T∑m

j=1 e
o∗j/T

, τi =
eoi/T∑m
j=1 e

oj/T

(4)

where T is the temperature scalar, which is usually
set to be greater than 1 (e.g., T = 2 in our experi-
ments) to increase the weights of small values. The
predictions-level distillation loss is also computed
for all samples from the new classes and reserved
exemplars from the old classes.

3.4 Training

Our approach addresses the catastrophic forget-
ting problem by storing the most representative
examples for each class and reducing the impact of
class imbalance. Combining the losses presented
above, we reach a total loss comprised of three
terms, given as:

L = Lce + αLfd + βLpd (5)

where α and β are adjustment coefficients. If α and
β are very large, the model will place more empha-
sis on the old classes, hurting the performance on
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new classes. The coefficients are used to balance
the performance on old classes and new classes.

The overall training procedures is outlined in
Algorithm 1.

4 Experiments

4.1 Incremental Event Detection
Benchmarks

So far, there is no benchmark for evaluating in-
cremental event detection models. Therefore, we
propose the following construction method: for
a given event detection dataset, the classes are ar-
ranged in a fixed order. Each method is then trained
in a class-incremental way on the available train-
ing data. Based on two widely used datasets, ACE
20053 and TAC KBP 20174, we introduce two in-
stantiations of the above construction method. 1)
ACE benchmark: We use the dataset split of ACE
dataset as suggested in (Li et al., 2013; Chen et al.,
2015; Lu et al., 2019; Liu et al., 2019). Since
the ACE dataset has long-tail frequency distribu-
tion, we exploit the data of the top 10 most fre-
quent classes. 2) TAC KBP benchmark: We exploit
the official training and testing data of TAC KBP.
Same as the ACE benchmark, we also use the data
of the top 10 most frequent classes. For both of
two benchmarks, one new class is available for the
model at each time.

4.2 Evaluation Metrics and Implementation
Details

For conventional event detection, Precision (P), Re-
call (R) and F1 score are used as evaluation metrics.
For incremental event detection, every time the
model finishes training on the new classes data, we
report the F1 score on the test data of all observed
classes. For example, after time step k, the result
is denoted as F1k. Therefore, these results can be
plotted as a curve. In addition, if a single number
is preferable, we report the Average F1 which is
the average of these F1 scores (i.e., 1

k

∑k
i=1 F1i),

and Whole F1 which is the F1 score on the whole
testing data of all classes.

Our method uses the HuggingFace’s Transform-
ers library5 to implement BERT base model. The
learning rate is set to 2e-5. The batch size is 16.

3https://catalog.ldc.upenn.edu/
LDC2006T06

4https://tac.nist.gov/2017/KBP/data.
html

5https://github.com/huggingface/
transformers

The adjustment coefficients α and β are both 0.5.
For the two benchmarks, the capacity of memory
is 100 and 500, respectively.

4.3 Baselines

We compare our approach KCN with the following
baselines:
EWC (Kirkpatrick et al., 2017). The method is pro-
posed to keep the network parameters close to the
optimal parameters for the previous classes while
training new classes data. It is the representative
work of parameter-based methods.
EMR (Wang et al., 2019a). The method alleviates
the impact of catastrophic forgetting via randomly
storing some samples of old classes, which is the
representative work of replay-based methods.
LwF (Li and Hoiem, 2017). The method aims to
match the softmax output of the network of previ-
ous models for old classes, which is also a widely
used incremental learning method.
Finetune. A straightforward method which simply
finetunes the pre-trained model on new arriving
data. We exploit the state-of-the-art model (i.e.,
BERT) for finetuning.
UpperBound. A model is trained using all train-
ing samples from all observed classes, which can
provide the upper bound of the benchmark.

4.4 Compared with State-of-the-art Methods

We conduct experiments on ACE benchmark and
KBP benchmark to compare our proposed meth-
ods with the above baselines. The F1 scores over
all observed classes during the whole incremental
learning process are presented in Figure 4. We also
list the results at the last step in Table 1. From the
results, we can observe that:

(1) Our method outperforms all the baselines by
a large margin. For example, compared with the
state-of-the-art model EMR, our method achieves
19% and 13.4% improvements of whole F1 score
on the ACE benchmark and TAC KBP benchmark,
respectively. It indicates that our proposed method
KCN is very effective for the incremental event
detection task.

(2) EMR and LwF can achieve competitive per-
formance at the beginning. However, the gap be-
tween the two baselines and our method KCN be-
comes wider as more new classes arrive. The rea-
son is that data imbalance becomes more serious
as the incremental step increases, since the total
capacity of memory is bounded. It demonstrates

https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://tac.nist.gov/2017/KBP/data.html
https://tac.nist.gov/2017/KBP/data.html
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Figure 4: The performance on (a) ACE benchmark and (b) TAC KBP benchmark. Our approach achieves better
performance than other incremental learning methods.

Method
ACE TAC KBP

Avg Whole Avg Whole

Finetune 19.5 2.7 15.4 2.2

EWC 23.4 3.6 17.7 4.8
LwF 47.7 11.2 33.1 17.4
EMR 55.3 36.1 35.5 21.5

KCN(Ours) 65.9 55.1 44.3 34.9

Table 1: The average F1 (%) on all observed classes
(“Avg” column), and whole F1 (%) on the whole testing
data (“Whole” column) after the last time step.

that data imbalance between old and new classes
are well handled in our approach.

(3) Finetuning always achieves the worst re-
sults on the two benchmarks, confirming that catas-
trophic forgetting is indeed a major problem in
incremental event detection. In addition, the gap
between these incremental learning methods and
the UpperBound model indicates that incremental
event detection is a very challenging task.

4.5 Ablation Experiment

To investigate the effectiveness of the prototype en-
hanced retrospection and hierarchical distillation,
we conduct the ablation studies. The experimen-
tal results are listed in Table 2. Overall, we can
observe that:

(1) Effectiveness of Prototype Enhanced Ret-
rospection. Compared with the model removed
prototype-based selection (PS), i.e., randomly se-
lecting examples, our model KCN improves the
average F1 score from 62.1% to 65.9% on the ACE
benchmark. It indicates the prototype enhanced

Models
ACE TAC KBP

Avg Whole Avg Whole

KCN 65.9 55.1 44.3 34.9
w/o PS 62.1 51.6 41.8 32.2
w/o FD 64.1 53.2 42.4 32.7
w/o PD 59.7 50.6 38.2 27.4
w/o HD 58.2 44.3 36.8 24.0
w/o PS and HD 55.3 36.1 35.5 21.5

Table 2: Ablation studies by removing the main com-
ponents, where “w/o” indicates without. “PS”, “FD”,
“PD” and “HD” refer to “prototype-based selection”,
“features-level distillation”, “predictions-level distilla-
tion” and “hierarchical distillation”, respectively. Actu-
ally, “HD” is the combination of “FD” and “PD”.

retrospection is able to effectively select the most
representative examples for each class.

(2) Effectiveness of Hierarchical Distillation.
We can see that removing any submodule of hierar-
chical distillation (features-level distillation (FD)
or predictions-level distillation (PD)) brings perfor-
mance degradation. If we remove the entire hierar-
chical distillation module (HD), the performance
further declines. It demonstrates the hierarchical
distillation is very effective to alleviate the class
imbalance problem.

(3) Effectiveness of Prototype Enhanced Ret-
rospection and Hierarchical Distillation. When
we remove the prototype-based selection and hier-
archical distillation, the performance drops signif-
icantly. The whole F1 score drops from 34.9% to
21.5% on the TAC KBP benchmark. It indicates
simultaneously exploiting the prototype enhanced
retrospection and hierarchical distillation is also
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KCN(Ours) EMR
Avg Whole Avg Whole

10 64.2 53.7 47.5 34.3
20 65.4 55.3 53.6 36.4
30 66.5 56.8 58.3 45.5
40 67.4 57.7 59.6 48.6
50 68.2 59.1 63.1 51.1
60 69.1 60.8 65.2 53.4

Table 3: The effect of the number of reserved samples.
We compare our method KCN with the replay-based
method EMR on the ACE benchmark.
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Figure 5: Sampling some reserved examples of Die
class for case study to qualitatively illustrate the effec-
tiveness of our method.

very effective.

4.6 Discussion

4.6.1 The effect of the number of reserved
samples

To reserve a few samples has proven much helpful
to maintain the performance on old classes (Rebuffi
et al., 2017; Wang et al., 2019a). Table 3 shows the
comparison of our approach with EMR reserving
different number of samples per class. From the
results, we can observe that:

(1) The more samples reserved, the better per-
formance for both EMR and our approach KCN.
While in each case, the results of our approach
are superior to those of EMR. It demonstrates the
effectiveness of our proposed method.

(2) Even reserved fewer samples, our method
still achieves better performance than EMR, which
indicates that the prototype enhanced retrospection
can select the most representative examples and hi-
erarchical distillation enables to reduce the impact
of class imbalance.

4.6.2 Case Study
We sample some reserved examples of Die event
type of our approach and EMR during training to

conduct a case study for qualitatively analyzing the
effects of our method. It is shown in Figure 5. Al-
though the reserved sentence “A Oh, I ’m sorry to
hear that” of EMR may express the Die event, it is
very obscure and implicit. By contrast, the reserved
examples of our method can more accurately ex-
press the type and are more representative. The
example qualitatively demonstrates our method is
able to select the most representative examples.

5 Related Work

In this section, we briefly review two related topics:
event detection and incremental learning.

5.1 Event Detection

Event detection (ED) is a very important task in
information extraction. The proposed models can
be divided into feature-based methods (Ahn, 2006;
Ji and Grishman, 2008; Liao and Grishman, 2010;
Li et al., 2013; Li and Ji, 2014) and neural network-
based methods (Chen et al., 2015; Nguyen and
Grishman, 2015; Liu et al., 2017, 2018a,b; Lu et al.,
2019; Ding et al., 2019).

In feature-based methods, a diverse set of fea-
tures is exploited to predict event. Ahn (2006) lever-
age lexical features, syntactic features and external
knowledge features to extract the event. Hong et al.
(2011) propose a cross-event and cross-entity in-
ference method to capture more clues. However,
feature-based methods rely heavily on handcrafted
features, limiting the scalability and robustness. In
recent years, neural network-based methods have
dominated the research. Chen et al. (2015) exploit
the convolutional neural network for event extrac-
tion. Nguyen et al. (2016) leverage the recurrent
neural network to model the dependency of triggers
and arguments. Wang et al. (2019b) and Yang et al.
(2019) exploit the BERT for event detection.

Despite the vast progress that event detection
has made in recent years, these existing methods
cannot address incremental event detection task.

5.2 Incremental Learning

Incremental learning has been a long standing prob-
lem in machine learning (Cauwenberghs and Pog-
gio, 2001; Kuzborskij et al., 2013). Existing meth-
ods can be divided into two categories, parameter-
based methods (Kirkpatrick et al., 2017; Aljundi
et al., 2018) and replay-based methods (Rebuffi
et al., 2017; Hou et al., 2019; Wang et al., 2019a).

In parameter-based methods, these methods try
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to identify and preserve significant parameters of
the original model (Kirkpatrick et al., 2017; Zenke
et al., 2017; Aljundi et al., 2018). However, it
is difficult to design a reasonable metric to evalu-
ate all the parameters. In replay-based methods,
these methods preserve the previous knowledge via
storing a small number of old data (Castro et al.,
2018; Wang et al., 2019a; Han et al., 2020). Wang
et al. (2019a) propose an episodic memory replay
(EMR) method which randomly selects examples
to reserve in a memory.

Despite the effectiveness of these methods on
image classification tasks, these methods cannot
handle semantic ambiguity problem and class im-
balance problem in incremental event detection.

6 Conclusion

In this paper, we introduce incremental learning
into event detection and propose a knowledge con-
solidation network to preserve previously learned
knowledge. To alleviate semantic ambiguity, we
devise the prototype enhanced retrospection to re-
serve the most representative examples. Moreover,
to mitigate the adverse effect of class imbalance,
we propose the hierarchical distillation to learn
the previous knowledge from the original model.
Experimental results demonstrate that our model
outperforms previous state-of-the-art methods.
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