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Abstract
Modern text classification models are suscep-
tible to adversarial examples, perturbed ver-
sions of the original text indiscernible by hu-
mans which get misclassified by the model.
Recent works in NLP use rule-based synonym
replacement strategies to generate adversarial
examples. These strategies can lead to out-
of-context and unnaturally complex token re-
placements, which are easily identifiable by
humans. We present BAE, a black box attack
for generating adversarial examples using con-
textual perturbations from a BERT masked lan-
guage model. BAE replaces and inserts to-
kens in the original text by masking a por-
tion of the text and leveraging the BERT-MLM
to generate alternatives for the masked tokens.
Through automatic and human evaluations, we
show that BAE performs a stronger attack, in
addition to generating adversarial examples
with improved grammaticality and semantic
coherence as compared to prior work.

1 Introduction

Recent studies have exposed the vulnerability
of ML models to adversarial attacks, small in-
put perturbations which lead to misclassification
by the model. Adversarial example generation
in NLP (Zhang et al., 2019) is more challeng-
ing than in commonly studied computer vision
tasks (Szegedy et al., 2014; Kurakin et al., 2017;
Papernot et al., 2017) because of (i) the discrete
nature of the input space and (ii) the need to ensure
semantic coherence with the original text. A major
bottleneck in applying gradient based (Goodfellow
et al., 2015) or generator model (Zhao et al., 2018)
based approaches to generate adversarial examples
in NLP is the backward propagation of the pertur-
bations from the continuous embedding space to
the discrete token space.

∗ Equal contribution by authors
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Figure 1: We use BERT-MLM to predict masked to-
kens in the text for generating adversarial examples.
The MASK token replaces a word (BAE-R attack) or
is inserted to the left/right of the word (BAE-I).

Initial works for attacking text models relied on
introducing errors at the character level (Ebrahimi
et al., 2018; Gao et al., 2018) or adding and deleting
words (Li et al., 2016; Liang et al., 2017; Feng et al.,
2018) for creating adversarial examples. These
techniques often result in unnatural looking adver-
sarial examples which lack grammatical correct-
ness, thereby being easily identifiable by humans.

Rule-based synonym replacement strategies
(Alzantot et al., 2018; Ren et al., 2019) have re-
cently lead to more natural looking adversarial ex-
amples. Jin et al. (2019) combine both these works
by proposing TextFooler, a strong black-box attack
baseline for text classification models. However,
the adversarial examples generated by TextFooler
solely account for the token level similarity via
word embeddings, and not the overall sentence se-
mantics. This can lead to out-of-context and unnat-
urally complex replacements (see Table 3), which
are easily human-identifiable. Consider a simple
example: “The restaurant service was poor”. To-
ken level synonym replacement of ‘poor’ may lead
to an inappropriate choice such as ‘broke’, while
a context-aware choice such as ‘terrible’ leads to
better retention of semantics and grammaticality.

Therefore, a token replacement strategy contin-
gent on retaining sentence semantics using a pow-
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erful language model (Devlin et al., 2018; Radford
et al., 2019) can alleviate the errors made by ex-
isting techniques for homonyms (tokens having
multiple meanings). In this paper, we present BAE
(BERT-based Adversarial Examples), a novel tech-
nique using the BERT masked language model
(MLM) for word replacements to better fit the over-
all context of the English language. In addition to
replacing words, we also propose inserting new to-
kens in the sentence to improve the attack strength
of BAE. These perturbations in the input sentence
are achieved by masking a part of the input and
using a LM to fill in the mask (See Figure 1).

Our BAE attack beats the previous baselines by a
large margin on empirical evaluation over multiple
datasets and models. We show that, surprisingly,
just a few replace/insert operations can reduce the
accuracy of even a powerful BERT classifier by
over 80% on some datasets. Moreover, our human
evaluation reveals the improved grammaticality of
the adversarial examples generated by BAE over
the baseline TextFooler, which can be attributed to
the BERT-MLM. To the best of our knowledge, we
are the first to use a LM for generating adversarial
examples. We summarize our contributions as:
• We propose BAE, an adversarial example gen-

eration technique using the BERT-MLM.
• We introduce 4 BAE attack modes by replac-

ing and inserting tokens, all of which are al-
most always stronger than previous baselines
on 7 text classification datasets.
• Through human evaluation, we show that BAE

yields adversarial examples with improved
grammaticality and semantic coherence.

2 Methodology
Problem Definition. We are given a dataset
(S, Y ) = {(S1, y1), . . . (Sm, ym)} and a trained
classification model C : S → Y . We assume the
soft-label black-box setting where the attacker can
only query the classifier for output probabilities on
a given input, and does not have access to the model
parameters, gradients or training data. For an in-
put pair (S=[t1, . . . , tn], y), we want to generate
an adversarial example Sadv such that C(Sadv) 6=y.
Additionally we would like Sadv to be grammati-
cally correct and semantically similar to S.
BAE. For generating an adversarial example Sadv,
we introduce 2 types of token-level perturbations:
(i) Replace a token t ∈ S with another and (ii) In-
sert a new token t′ in S. Some tokens in the input
contribute more towards the final prediction by C

Algorithm 1: BAE-R Pseudocode
Input: Sentence S = [t1, . . . , tn], ground truth label

y, classifier model C
Output: Adversarial Example Sadv

Initialization: Sadv ← S
Compute token importance Ii ∀ ti ∈ S
for i in descending order of Ii do

SM ← Sadv[1:i−1][M ]Sadv[i+1:n]

Predict top-K tokens T for mask M ∈ SM

T← FILTER(T)
L = {} // python-style dict
for t ∈ T do

L[t] = Sadv[1:i−1][t]Sadv[i+1:n]

end
if ∃ t ∈ T s.t C(L[t]) 6= y then

Return: Sadv ← L[t′] where C(L[t′]) 6= y,
L[t′] has maximum similarity with S

else
Sadv ← L[t′] where L[t′] causes maximum
reduction in probability of y in C(L[t′])

end if
end
Return: Sadv ← None

than others. Replacing these tokens or inserting a
new token adjacent to them can thus have a stronger
effect on altering the classifier prediction. This intu-
ition stems from the fact that the replaced/inserted
tokens changes the local context around the origi-
nal token. We estimate token importance Ii of each
ti ∈ S, by deleting ti from S and computing the de-
crease in probability of predicting the correct label
y, similar to Jin et al. (2019); Ren et al. (2019).

The Replace (R) and Insert (I) operations are
performed on a token t by masking it and inserting
a mask token adjacent to it respectively. The pre-
trained BERT-MLM is used to predict the mask
tokens (See Figure 1). BERT-MLM is a powerful
LM trained on a large training corpus (∼ 2 billion
words), and hence the predicted mask tokens fit
well into the grammar and context of the text.

The BERT-MLM, however, does not guarantee
semantic coherence to the original text as demon-
strated by the following simple example. Consider
the sentence: ‘the food was good’. For replacing
the token ‘good’, BERT-MLM may predict the to-
ken ‘bad’, which fits well into the grammar and con-
text of the sentence, but changes the original senti-
ment of the sentence. To achieve a high semantic
similarity with the original text on introducing per-
turbations, we filter the set of top K tokens (K is a
pre-defined constant) predicted by BERT-MLM for
the masked token, using a Universal Sentence En-
coder (USE) based sentence similarity scorer (Cer
et al., 2018). For the R operation, we additionally
filter out predicted tokens that do not form the same
part of speech (POS) as the original token.
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Model Adversarial Datasets

Attack Amazon Yelp IMDB MR

wordLSTM

Original 88.0 85.0 82.0 81.16
TextFooler 31.0 (0.747) 28.0 (0.829) 20.0 (0.828) 25.49 (0.906)

BAE-R 21.0 (0.827) 20.0 (0.885) 22.0 (0.852) 24.17 (0.914)

BAE-I 17.0 (0.924) 22.0 (0.928) 23.0 (0.933) 19.11 (0.966)

BAE-R/I 16.0 (0.902) 19.0 (0.924) 8.0 (0.896) 15.08 (0.949)

BAE-R+I 4.0 (0.848) 9.0 (0.902) 5.0 (0.871) 7.50 (0.935)

wordCNN

Original 82.0 85.0 81.0 76.66
TextFooler 42.0 (0.776) 36.0 (0.827) 31.0 (0.854) 21.18 (0.910)

BAE-R 16.0 (0.821) 23.0 (0.846) 23.0 (0.856) 20.81 (0.920)

BAE-I 18.0 (0.934) 26.0 (0.941) 29.0 (0.924) 19.49 (0.971)

BAE-R/I 13.0 (0.904) 17.0 (0.916) 20.0 (0.892) 15.56 (0.956)

BAE-R+I 2.0 (0.859) 9.0 (0.891) 14.0 (0.861) 7.87 (0.938)

BERT

Original 96.0 95.0 85.0 85.28
TextFooler 30.0 (0.787) 27.0 (0.833) 32.0 (0.877) 30.74 (0.902)

BAE-R 36.0 (0.772) 31.0 (0.856) 46.0 (0.835) 44.05 (0.871)

BAE-I 20.0 (0.922) 25.0 (0.936) 31.0 (0.929) 32.05 (0.958)

BAE-R/I 11.0 (0.899) 16.0 (0.916) 22.0 (0.909) 20.34 (0.941)

BAE-R+I 14.0 (0.830) 12.0 (0.871) 16.0 (0.856) 19.21 (0.917)

Table 1: Automatic evaluation of adversarial attacks on 4 Sentiment Classification tasks. We report the test set
accuracy. The average semantic similarity, between the original and adversarial examples, obtained from USE are
reported in parentheses. Best performance, in terms of maximum drop in test accuracy, is highlighted in boldface.

If multiple tokens can cause C to misclassify S
when they replace the mask, we choose the token
which makes Sadv most similar to the original S
based on the USE score. If no token causes misclas-
sification, then we choose the one that decreases
the prediction probability P (C(Sadv)=y) the most.
We apply these token perturbations iteratively in
decreasing order of token importance, until either
C(Sadv) 6=y (successful attack) or all the tokens of
S have been perturbed (failed attack).

We present 4 attack modes for BAE based on the
R and I operations, where for each token t in S:
• BAE-R: Replace token t (See Algorithm 1)
• BAE-I: Insert a token to the left or right of t
• BAE-R/I: Either replace token t or insert a

token to the left or right of t
• BAE-R+I: First replace token t, then insert a

token to the left or right of t

3 Experiments

Datasets and Models. We evaluate BAE on
different text classification tasks. Amazon, Yelp,
IMDB are sentiment classification datasets used in
recent works (Sarma et al., 2018) and MR (Pang
and Lee, 2005) contains movie reviews based on
sentiment polarity. MPQA (Wiebe and Wilson,
2005) is a dataset for opinion polarity detection,
Subj (Pang and Lee, 2004) for classifying a sen-
tence as subjective or objective and TREC (Li and
Roth, 2002) for question type classification.

We use 3 popular text classification mod-
els: word-LSTM (Hochreiter and Schmidhuber,
1997), word-CNN (Kim, 2014) and a fine-tuned
BERT (Devlin et al., 2018) base-uncased classifier.
We train models on the training data and perform
the adversarial attack on the test data. For complete
model details, refer to Appendix A.

As a baseline, we consider TextFooler (Jin et al.,
2019) which performs synonym replacement using
a fixed word embedding space (Mrkšić et al., 2016).
We only consider the top K=50 synonyms from
the BERT-MLM predictions and set a threshold of
0.8 for the cosine similarity between USE based
embeddings of the adversarial and input text.

Automatic Evaluation Results. We perform
the 4 BAE attacks and summarize the results in
Tables 1 and 2. Across datasets and models, our
BAE attacks are almost always more effective than
the baseline attack, achieving significant drops of
40-80% in test accuracies, with higher average se-
mantic similarities as shown in parentheses.

With just one exception, BAE-R+I is the
strongest attack since it allows both replacement
and insertion at the same token position. We
observe a general trend that the BAE-R and
BAE-I attacks often perform comparably, while
the BAE-R/I and BAE-R+I attacks are much
stronger. We observe that the BERT classifier is
more robust to BAE and TextFooler attacks than
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Model Adversarial Datasets

Attack MPQA Subj TREC

wordLSTM

Original 89.43 91.9 90.2
TextFooler 48.49 (0.745) 58.5 (0.882) 42.4 (0.834)

BAE-R 45.66 (0.748) 50.2 (0.899) 32.4 (0.870)

BAE-I 40.94 (0.871) 49.8 (0.958) 18.0 (0.964)

BAE-R/I 31.60 (0.820) 43.1 (0.946) 20.4 (0.954)

BAE-R+I 25.57 (0.766) 29.0 (0.929) 11.8 (0.874)

wordCNN

Original 89.06 91.3 93.2
TextFooler 48.77 (0.733) 58.9 (0.889) 47.6 (0.812)

BAE-R 44.43 (0.735) 51.0 (0.899) 29.6 (0.843)

BAE-I 44.43 (0.876) 49.8 (0.958) 15.4 (0.953)

BAE-R/I 32.17 (0.818) 41.5 (0.940) 13.0 (0.936)

BAE-R+I 27.83 (0.764) 31.1 (0.922) 8.4 (0.858)

BERT

Original 90.66 97.0 97.6
TextFooler 36.23 (0.761) 69.5 (0.858) 42.8 (0.866)

BAE-R 43.87 (0.764) 77.2 (0.828) 37.2 (0.824)

BAE-I 33.49 (0.862) 74.6 (0.918) 32.2 (0.931)

BAE-R/I 24.53 (0.826) 64.0 (0.903) 23.6 (0.908)

BAE-R+I 24.34 (0.766) 58.5 (0.875) 20.2 (0.825)

Table 2: Automatic evaluation of adversarial attacks on MPQA,
Subj and TREC datasets. Other details follow those from Table 1.
All 4 modes of BAE attacks almost always outperform TextFooler.

(a) Word-LSTM

(b) BERT

Figure 2: Graphs comparing attack effec-
tiveness on the TREC dataset, as a function
of maximum % perturbation to the input.

the word-LSTM and word-CNN possibly due to its
large size and pre-training on a large corpus.

The TextFooler attack is sometimes stronger than
the BAE-R attack for the BERT classifier. We at-
tribute this to the shared parameter space between
the BERT-MLM and the BERT classifier before
fine-tuning. The predicted tokens from BERT-
MLM may not be able to drastically change the
internal representations learned by the BERT clas-
sifier, hindering their ability to adversarially affect
the classifier prediction.

Additionally, we make some interesting observa-
tions pertaining to the average semantic similarity
of the adversarial examples with the original sen-
tences (computed using USE). From Tables 1, 2 we
observe that across different models and datasets,
all BAE attacks have higher average semantic simi-
larity than TextFooler. Notably, the BAE-I attack
achieves the highest semantic similarity among all
the 4 modes. This can be explained by the fact that
all tokens of the original sentence are retained, in
the original order, in the adversarial example gener-
ated by BAE-I. Interestingly, we observe that the
average semantic similarity of the BAE-R+I at-
tack is always higher than the BAE-R attack. This
lends support to the importance of the ‘Insert’ op-
eration in ameliorating the effect of the ‘Replace’
operation. We further investigate this through an
ablation study discussed later.

Effectiveness. We study the effectiveness of BAE
on limiting the number of R/I operations permitted
on the original text. We plot the attack performance
as a function of maximum % perturbation (ratio of
number of word replacements and insertions to the
length of the original text) for the TREC dataset.
From Figure 2, we clearly observe that the BAE
attacks are consistently stronger than TextFooler.
The classifier models are relatively robust to pertur-
bations up to 20%, while the effectiveness saturates
at 40-50%. Surprisingly, a 50% perturbation for the
TREC dataset translates to replacing or inserting
just 3-4 words, due to the short text lengths.
Qualitative Examples. We present adversarial
examples generated by the attacks on sentences
from the IMDB and Yelp datasets in Table 3. All
attack strategies successfully changed the classifica-
tion to negative, however the BAE attacks produce
more natural looking examples than TextFooler.
The tokens predicted by the BERT-MLM fit well in
the sentence context, while TextFooler tends to re-
place words with complex synonyms, which can be
easily detected. Moreover, BAE’s additional degree
of freedom to insert tokens allows for a successful
attack with fewer perturbations.
Human Evaluation. We perform human eval-
uation of our BAE attacks on the BERT classifier.
For 3 datasets, we consider 100 samples from each
test set shuffled randomly with their successful ad-
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Original [Positive Sentiment]: This film offers many delights and surprises.
TextFooler: This flick citations disparate revel and surprises.
BAE-R: This movie offers enough delights and surprises
BAE-I: This lovely film platform offers many pleasant delights and surprises
BAE-R/I: This lovely film serves several pleasure and surprises .
BAE-R+I: This beautiful movie offers many pleasant delights and surprises .

Original [Positive Sentiment]: Our server was great and we had perfect service.
TextFooler: Our server was tremendous and we assumed faultless services.
BAE-R: Our server was decent and we had outstanding service.
BAE-I: Our server was great enough and we had perfect service but.
BAE-R/I: Our server was great enough and we needed perfect service but.
BAE-R+I: Our server was decent company and we had adequate service.

Table 3: Qualitative examples of each attack on the BERT classifier
(Replacements: Red, Inserts: Blue)

Dataset Sentiment Accuracy (%)
Original TF R R+I

Amazon 95.7 79.1 85.2 83.8
IMDB 90.3 83.1 84.3 79.3

MR 93.3 82.0 84.6 82.4

Dataset Naturalness (1-5)
Original TF R R+I

Amazon 4.26 3.17 3.91 3.71
IMDB 4.35 3.41 3.89 3.76

MR 4.19 3.35 3.84 3.74

Table 4: Human evaluation results (TF:
TextFooler and R(R+I): BAE-R(R+I)).

versarial examples from BAE-R, BAE-R+I and
TextFooler. We calculate the sentiment accuracy
by asking 3 annotators to predict the sentiment for
each sentence in this shuffled set. To evaluate the
naturalness of the adversarial examples, we first
present the annotators with 50 other original data
samples to get a sense of the data distribution. We
then ask them to score each sentence (on a Likert
scale of 1-5) in the shuffled set on its grammar
and likelihood of being from the original data. We
average the 3 scores and present them in Table 4.

Both BAE-R and BAE-R+I attacks almost
always outperform TextFooler in both metrics.
BAE-R outperforms BAE-R+I since the latter in-
serts tokens to strengthen the attack, at the expense
of naturalness and sentiment accuracy. Interest-
ingly, the BAE-R+I attacks achieve higher aver-
age semantic similarity scores than BAE-R, as dis-
cussed in Section 3. This exposes the shortcomings
of using USE for evaluating the retention of se-
mantics of adversarial examples, and reiterates the
importance of human-centered evaluation. The gap
between the scores on the original data and the ad-
versarial examples speaks for the limitations of the
attacks, however BAE represents an important step
forward towards improved adversarial examples.

Replace vs. Insert. Our BAE attacks allow inser-
tion operations in addition to replace. We analyze
the benefits of this flexibility of R/I operations in

Dataset Word-LSTM Word-CNN BERT

A B C A B C A B C

MR 15.1 10.1 3.1 12.4 9.6 2.8 24.3 12.9 5.7
Subj 14.4 12.3 5.1 16.2 13.8 7.4 13.9 11.4 7.5

TREC 16.6 1.6 0.2 20.0 5.0 1.4 14.0 8.6 2.4

Table 5: Analyzing relative importance of ‘Replace’
and ‘Insert’ perturbations for BAE. A denotes %
of test instances which are successfully attacked by
BAE-R/I, but not BAE-R, i.e. A : (R/I) ∩ R. Simi-
larly, B : (R/I) ∩ I and C : (R/I) ∩ R ∩ I.

Table 5. From Table 5, the splits A and B are the
% of test points which compulsorily need I and R
operations respectively for a successful attack. We
can observe that the split A is larger than B thereby
indicating the importance of the I operation over R.
Test points in split C require both R and I opera-
tions for a successful attack. Interestingly, split C
is largest for Subj, which is the most robust to at-
tack (Table 2) and hence needs both R/I operations.
Thus, this study gives positive insights towards the
importance of having the flexibility to both replace
and insert words.

We present complete effectiveness graphs and
details of human evaluation in Appendix B and C.
BAE is implemented1 in TextAttack (Morris et al.,
2020), a popular suite of NLP adversarial attacks.

4 Conclusion

In this paper, we have presented a new tech-
nique for generating adversarial examples (BAE)
through contextual perturbations based on the
BERT Masked Language Model. We propose in-
serting and/or replacing tokens from a sentence,
in their order of importance for the text classifi-
cation task, using a BERT-MLM. Automatic and
human evaluation on several datasets demonstrates
the strength and effectiveness of our attack.
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Broader Ethical Impact

Our work addresses the important problem of adver-
sarial vulnerabilities of modern text classification
models. While we acknowledge the possibility of
its misuse to maliciously attack publicly available
text classifiers, we believe our work represents an
important step forward in analyzing the robustness
of NLP models. We hope our work inspires im-
proved defenses against adversarial attacks on text
classification models.

A Experimental Reproducibility

Dataset and Models The dataset statistics are
reported in Table 5 and we give a brief overview of
the dataset and the task for which it is used along
with public links to download the datasets.

• Amazon: Amazon product reviews dataset 2.

• Yelp: A restaurant reviews dataset from Yelp2.

• IMDB: IMDB movie reviews dataset2.

• MR: A movie reviews dataset based on sub-
jective rating and sentiment polarity 3.

• MPQA: An unbalanced dataset for polarity
detection of opinions 4.

• TREC: A dataset for classifying types of ques-
tions with 6 classes 5.

• SUBJ: A dataset for classifying a sentence as
objective or subjective. 2

Dataset # Classes Train Test Avg Length

Amazon 2 900 100 10.29
Yelp 2 900 100 11.66

IMDB 2 900 100 17.56
MR 2 9595 1067 20.04

MPQA 2 9543 1060 3.24
Subj 2 9000 1000 23.46

TREC 6 5951 500 7.57
Table 5: Summary statistics for the datasets

2https://archive.ics.uci.edu/ml/
datasets/Sentiment+Labelled+Sentences

3https://www.cs.cornell.edu/people/
pabo/movie-review-data/

4http://mpqa.cs.pitt.edu/
5http://cogcomp.org/Data/QA/QC/

Training Details On the sentence classification
task, we target three models: word-based convo-
lutional neural network (WordCNN), word-based
LSTM, and the state-of-the-art BERT. We use 100
filters of sizes 3,4,5 for the WordCNN model with
a dropout of 0.3. Similar to (Jin et al., 2019) we
use a 1-layer bi-directional LSTM with 150 hidden
units and a dropout of 0.3. For both models, we
use the 300 dimensional pre-trained counter fitted
word embeddings (Mrkšić et al., 2017). For the
BERT classifier, we used the BERT base uncased
model which has 12-layers, 12 attention heads and
768 hidden dimension size. Across all models and
datasets, we use the standard BERT uncased vocab-
ulary of size 30522. We first train all three models
on the training data split and use early stopping
on the test dataset. For BERT fine-tuning, we use
the standard setting of an Adam classifier having a
learning rate of 2× 10−5 and 2 fine-tuning epochs.

For our BAE attacks, we use a pre-trained BERT
Base-uncased MLM to predict the masked tokens.
We only consider the top K=50 synonyms from
the BERT-MLM predictions and set a threshold of
0.8 for the cosine similarity between USE based
embeddings of the adversarial and input text.

For R operations, we filter out predicted tokens
which form a different POS than the original token
in the sentence. For both R and I operations, we fil-
ter out stop words using NLTK from the set of pre-
dicted tokens. Additionally we filter out antonyms
using synonym embeddings (Mrkšić et al., 2016)
for sentiment analysis tasks.

B Results
Figures 3 - 8 are the complete set of graphs showing
the attack effectiveness for all seven datasets.

C Human Evaluation
We ask the human evaluators to judge the natural-
ness of texts presented to them, i.e. whether they
think they are adversarial examples or not. They
were instructed to do so on the basis of grammar
and how likely they think it is from the original
dataset, and rate each example on the following
Likert scale of 1-5: 1) Sure adversarial sample, 2)
Likely an adversarial example, 3) Neutral, 4) Likely
an original sample, 5) Sure original sample. From
the results of Table 3, it is clear that BAE-R al-
ways beats the sentiment accuracy and naturalness
score of TextFooler. The latter is due to unnaturally
long and complex synonym replacements on using
TextFooler.

http://arxiv.org/abs/1901.06796
http://arxiv.org/abs/1901.06796
https://openreview.net/forum?id=H1BLjgZCb
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://archive.ics.uci.edu/ml/datasets/Sentiment+Labelled+Sentences
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://mpqa.cs.pitt.edu/
http://cogcomp.org/Data/QA/QC/
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(a) Word-LSTM (b) Word-CNN (c) BERT
Figure 3: Amazon

(a) Word-LSTM (b) Word-CNN (c) BERT
Figure 4: Yelp

(a) Word-LSTM (b) Word-CNN (c) BERT
Figure 5: IMDB

(a) Word-LSTM (b) Word-CNN (c) BERT
Figure 6: MR

(a) Word-LSTM (b) Word-CNN (c) BERT
Figure 7: MPQA

(a) Word-LSTM (b) Word-CNN (c) BERT
Figure 8: Subj


