
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 6151–6162,
November 16–20, 2020. c©2020 Association for Computational Linguistics

6151

Structured Pruning of Large Language Models

Ziheng Wang *

ASAPP, Inc.
zihengw@stanford.edu

Jeremy Wohlwend *

ASAPP, Inc.
jwohlwend@csail.mit.edu

Tao Lei *

ASAPP, Inc.
tao@asapp.com

Abstract

Large language models have recently achieved
state of the art performance across a wide va-
riety of natural language tasks. Meanwhile,
the size of these models and their latency have
significantly increased, which makes their us-
age costly, and raises an interesting question:
do language models need to be large? We
study this question through the lens of model
compression. We present a generic, struc-
tured pruning approach by parameterizing
each weight matrix using its low-rank factor-
ization, and adaptively removing rank-1 com-
ponents during training. On language model-
ing tasks, our structured approach outperforms
other unstructured and block-structured prun-
ing baselines at various compression levels,
while achieving significant speedups during
both training and inference. We also demon-
strate that our method can be applied to prun-
ing adaptive word embeddings in large lan-
guage models, and to pruning the BERT model
on several downstream fine-tuning classifica-
tion benchmarks.1

1 Introduction

Recent advances in language modeling have led
to remarkable improvements on a variety of natu-
ral language tasks (Dai and Le, 2015; Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2019; Liu
et al., 2019; Dai et al., 2019; Zhang et al., 2019).
These models, however, have grown increasingly
large, rendering them slow and expensive for real-
world applications. Through the use of model com-
pression, we aim to reduce this overhead, and to
better understand the role of model capacity in
large language models.

A common approach to model compression is
known as weight pruning (Zhu and Gupta, 2017;
Han et al., 2015a; See et al., 2016). Model weights

*Denotes equal contribution.
1Our code is publicly available at https://github.

com/asappresearch/flop.

are progressively removed, resulting in sparse ma-
trices across the network. Earlier work focuses
mostly on unstructured pruning, where weights are
pruned individually (Narang et al., 2017a; Zhu and
Gupta, 2017). While this method is effective, it
results in unstructured sparse matrices that are dif-
ficult to support on common hardware (Han et al.,
2016), making it challenging to obtain training and
inference speedups despite a significant reduction
in model size.

On the other hand, structured pruning imposes
structured sparse patterns by removing groups of
consecutive parameters, such as rows, columns or
k×k sub-blocks of the weight matrix (Narang et al.,
2017b; Wen et al., 2018; Cao et al., 2019). These
methods lead to significant speedup, but tend to
give lower performance than unstructured pruning
given the same parameter budget (Yao et al., 2019).
Another caveat is that some of these methods re-
quire special linear algebra implementations (Gray
et al., 2017; Yao et al., 2019) or hardware (Cao
et al., 2019) in order to accelerate matrix multi-
plication, therefore limiting their application to a
broad set of existing models.

We propose a generic, improved structured prun-
ing approach based on adaptive low-rank factoriza-
tion. As an alternative to unstructured sparse and
block sparse representations, low-rank factoriza-
tion retains the full dense structure of weight matri-
ces, eliminating the need for special linear algebra
primitives and hardware for computation speedup.
Compared to row (and column) based pruning, low-
rank factorization better preserves the linear trans-
formation of the un-compressed matrices. During
training, our method adaptively learns which low-
rank components to remove in order to achieve
a strong performance-compression trade-off. We
show that a simple magnitude based pruning strat-
egy is sufficient to accomplish strong results. In
addition, we further increase performance via an
improved l0 regularization (Louizos et al., 2018)

https://github.com/asappresearch/flop
https://github.com/asappresearch/flop


6152

technique which uses an augmented Lagrangian
method to directly control the final compression
level of the model. Our method, which we refer to
as FLOP (Factorized Low-rank Pruning) applies
to any matrix multiplication.

Pruning large language models introduces
unique challenges with the handling of large input
and output layers. Although our method is generic,
it is particularly well suited to this task. In particu-
lar, we show that FLOP can dynamically learn the
embedding dimensions of different word clusters,
effectively extending the idea of adaptive embed-
dings and softmax (Grave et al., 2017; Baevski
and Auli, 2019). Since these embedding layers
take a significant amount of parameters in the lan-
guage models, learning flexible dimensions instead
of specifying them manually results in a more op-
timal trade-off between parameter reduction and
performance.

We evaluate our method on common language
modeling and language understanding tasks includ-
ing the Wiki-103, Enwiki8 and GLUE benchmarks,
and by testing our method on both recurrent net-
works and Transformer (Vaswani et al., 2017). Our
results demonstrate that factorization based pruning
significantly outperforms block-structured pruning
and even surpasses unstructured pruning, while
using our improved l0 regularization further im-
proves the performance in most cases. When prun-
ing a large word-level language model with adap-
tive embeddings for example, our method achieves
50% compression while losing only 0.8 perplexity.
Moreover, our method is able to achieve over 2x
speed-up during both training and inference with
no additional hardware or software requirements.
Our method will be released as a Pytorch (Paszke
et al., 2017) library.

2 Related Work

The development of model compression techniques
can be categorized into three areas of research:
weight pruning (Han et al., 2015b; Zhu and Gupta,
2017), knowledge distillation (Ba and Caruana,
2014; Hinton et al., 2015; Kim and Rush, 2016),
and quantization (Gong et al., 2014; Zhu et al.,
2017; Shen et al., 2019).

Recent efforts have successfully applied com-
pression on various architectures and NLP appli-
cations, such as pruning multi-head attentions for
machine translation (Voita et al., 2019), learning
adaptive embeddings and softmax layers for lan-

guage models (Grave et al., 2017; Baevski and Auli,
2019; Li et al., 2018; Variani et al., 2019), and com-
pressing BERT models via distillation (Chia et al.,
2019; Jiao et al., 2019; Sanh et al., 2019; Sun et al.,
2019; Tsai et al., 2019; Turc et al., 2019). Only one
of the compression techniques such as distillation
has been used in these works for simplicity. How-
ever, these techniques can be combined to achieve
greater compression (Han et al., 2015a; Shangguan
et al., 2019). Our pruning method is compatible
with quantization and distillation, as it can be ap-
plied to compress any matrix multiplication in a
network.

Previous work has considered different weight
pruning approaches such as unstructured pruning
based on magnitude (Narang et al., 2017a; Frankle
and Carbin, 2019), dropout (Gale et al., 2019; Fan
et al., 2020; Molchanov et al., 2017), and structured
pruning (Wen et al., 2018; Louizos et al., 2017).
Model weights are often removed via threshold-
ing and l1 regularization during the pruning pro-
cess (Narang et al., 2017b; Liu et al., 2018). Our
method differs from previous work by using low-
rank parameterization for compression. Further-
more, we extend l0 regularization using an aug-
mented Lagrangian optimization method to control
the final model size.

3 Background

We formalize the task of model pruning as an end-
to-end learning problem with l0 regularization, fol-
lowing the prior work of Louizos et al. (2018).

Consider a given neural network model f(·;θ)
parameterized by θ = {θj}nj=1, where each θj rep-
resents an individual parameter weight or a block
of weights (e.g. a column of a weight matrix) and
n denotes the number of blocks. A pruning strategy
of the model can be parameterized by introducing
additional binary variables z = {zj}nj=1 such that
zj ∈ {0, 1} and

θ̃ = θ � z ∀j θ̃j = θj zj .

Here θ̃ = {θ̃j} denotes the set of model parameters
after pruning and its l0 norm, ‖θ̃‖0 =

∑n
j=1 zj ,

measures the effective size of the pruned model.
The choice of binary variables z can be regulated

by some prior distribution and optimized given the
training data. That is, let qj(z) be the density func-
tion of the learnable prior of zj . The optimization
objective during training can be formulated as min-



6153

imizing the expected training loss

Ez

[
1

D

D∑
i=1

L
(
xi,yi; θ̃

)
+ λ‖θ̃‖0

]
, (1)

where {xi,yi}Di=1 are training examples, L is the
training loss function and λ > 0 is a constant hyper-
parameter for l0 norm regularization encouraging
the model to be sparse. Note that in practice opti-
mizing this objective is intractable due to the dis-
crete nature of zj and an exponential number of 2n

choices.
The key to the method of Louizos et al. (2018),

called the re-parameterization trick, enables z to
be differentiable and jointly trained with the model
parameter θ. Specifically, the random variables
z are relaxed as continuous variables distributed
within the interval [0, 1]. In addition, instead of
learning the probability density function qj(z), the
re-parameterization trick proposes to learn the in-
verse of the cumulative density function (CDF).
Note that ifG() is the inverse of CDF for a variable
z, then z can be easily sampled by first sampling
u ∼ U(0, 1) and computing z = G(u). Assuming
the inverse CDF function is parameterized by some
learnable parameters α = {αj}nj=1 and the func-
tion G(·;α) is differentiable, we obtain an overall
end-to-end learning objective,

min
θ,α

Eu∼U(0,1)

[
1

D

D∑
i=1

L(xi,yi; θ̃) + λ‖θ̃‖0

]
,

zj = G(uj ;αj), ∀j = 1 · · ·n (2)

where u = {u1, · · · , un} denotes the iid samples
from the uniform distribution. Since z is now the
output of the parameterized function G(·;α) and
is used as an intermediate representation for the
neural network (with θ̃ = θ � z), gradient based
optimization methods can perform gradient updates
for θ and α.

Following previous work, we choose the Hard
Concrete distribution for the random variables
z = {zj}. The inverse of CDF G(·;α) of this
distribution is defined as follows

u ∼ U(0, 1)

s = sigmoid(logu− log(1− u) + α)

s̄ = s× (r − l) + l

z = min(1,max(0, s̄))

where l < 0 and r > 1 are two constants used
to ‘stretch‘ the sigmoid outputs s into the interval

(l, r), and the final outputs z are rectified into [0, 1].
The stretch-and-rectify process has the effect of
assigning a significant portion of probability mass
on the integer values {0, 1}, which makes it a good
relaxation of the binary (Bernoulli) distribution.
During training, we sample u and compute z and
the loss L() for each training batch. The expected
l0 norm regularization can be separately computed
via a closed form

E
[
‖θ̃‖0

]
=

n∑
j=1

E [zj > 0]

=

n∑
j=1

sigmoid
(
αj − log

−l
r

)
(3)

which is differentiable as well.

4 Method

In this section, we introduce FLOP , an improved
structured pruning method. FLOP proposes a differ-
ent parameterization of the weight matrices using
low-rank factorization. In addition, we introduce
a revised optimization objective that allows for an
explicit control of the compression size.

4.1 Structured Pruning using Factorization
In weight pruning, a key choice is how we define
parameter blocks θ1, · · · , θn to achieve the most
effective pruning results. One obvious method is to
prune each individual parameter weight, which of-
ten retains strong performance but poses challenges
to achieve a computation speedup given unstruc-
tured sparse matrices.

Structured pruning chooses to remove groups of
consecutive parameters as a remedy. For example,
consider a fully connected layer which performs a
multiplication Wx for an input feature x ∈ Rd and
weight matrix W ∈ Rd′×d. One popular method,
sometimes referred to as neuron or input feature
pruning, consists of adding the sparsity variables as
a sparse diagonal matrix G = diag(z1, · · · , zd) to
the multiplication, i.e., WGx. This effectively re-
moves the subset of the columns in W with zk = 0,
where k is the column index. In practice, this
method produces significant speedups at both train-
ing and inference time (by selecting a small subset
of columns and performing matrix multiplications
given much smaller matrices). However, it is re-
ported to achieve lower performance compared to
unstructured pruning (Yao et al., 2019) due to more
restrictive sparse patterns.



6154

We propose to use low-rank factorization as a
less restrictive, yet powerful representation and
obtain parameter reduction by pruning rank-1 com-
ponents. That is, we reparameterize and factorize
the matrix W into the product of two smaller ma-
trices W = PQ, where P ∈ Rd′×r, Q ∈ Rr×d
and r ≤ min{d, d′} is the number of columns of
P (equivalently the number of rows of Q). Let pk
and qk be the k-th column of P and k-th row of Q
respectively. Since W is now the sum of r rank-1
components pk qk, we can achieve structured prun-
ing by introducing a pruning variable zk for each
component

W = PGQ =
r∑

k=1

zk × (pk × qk)

where G = diag(z1, · · · , zr) is again a diagonal
matrix of pruning variables. Intuitively, learning
the factorization has the potential of keeping the
most effective rank-1 components, and thereby bet-
ter preserve the model performance.1

After training, only columns and rows corre-
sponding to non-zero diagonal values need to be
stored, resulting in much smaller (but still dense)
matrices. The nonzero values of G can be absorbed
into either P or Q. The computation boils down
to simple matrix multiplications at inference time,
maximizing efficiency on common hardware. Un-
like unstructured pruning, we need not store the
indices of the sparse weights, resulting in greater
memory savings.

4.2 Pruning Adaptive Embedding and
Softmax Layer

The input embedding and softmax output layer can
take the vast majority of parameters in a language
model when the vocabulary size is large. Previ-
ous work have considered various techniques that
are specifically tailored to compress the embed-
ding and softmax layer. For instance, the adaptive
embedding and softmax methods of Grave et al.
(2017); Baevski and Auli (2019) have been shown
to achieve impressive results in preserving perplex-
ity while significantly reducing the total number of
embedding parameters.

We describe how FLOP fits naturally with these
adaptive methods, giving them more potential. The
core idea behind the adaptive methods is to apply

1It is also easy to see that input feature pruning is a special
case of low-rank pruning: By fixing P = W and Q = I,
PGQ = WGI = WG.

different embedding dimensions and projections to
different word clusters. Consider the recent method
of Baevski and Auli (2019) without loss of gener-
ality. Let i ∈ {1, · · · , C} denotes the indice of
the i-th word cluster (sorted based on word fre-
quency). Two parameter matrices Ei ∈ Rni×di

and Oi ∈ Rdi×d are introduced for the i-th cluster,
where ni is the number of words in the cluster, d
is the original embedding dimension and di is the
reduced word dimension for this cluster. In other
words, each word embedding in this cluster has
dimension di but are projected back into dimension
d using a projection Oi (and vise versa). This is in
indeed a low-rank factorization

Ẽi = EiOi ∈ Rni×d

for an underlying embedding matrix Ẽi. While
the reduced dimensions {di}Ci=1 usually have to
be manually specified, our method automatically
learns separate diagonal pruning mask Gi for each
cluster, i.e. Ẽi = EiGiOi. During training and
pruning, it adaptively learns to adjust the parame-
ter budget of each word cluster based on what is
needed to achieve good performance. Unsurpris-
ingly, our method prunes most of the dimensions
for rare words, which is consistent with the empiri-
cal choice made in prior work.

4.3 Augmented Lagrangian Method

Our method can be implemented with a magni-
tude based pruning strategy, or directly trained
with the training objective (2) which uses an l0
regularization λ‖θ̃‖0 to promote weight pruning.
One limitation of this regularization however is the
lack of effective control on the size of the pruned
model. For instance, we observe that training with
the same λ could converge to very different model
sizes when using slightly different learning rates
or pruning schedules. This can be problematic be-
cause a desired model size or parameter budget is
often needed in many real-world applications.

We make use of an Augmented Lagrangian
method to overcome this training limitation. La-
grangian relaxation methods have been explored in
many NLP problems (Bastings et al., 2019; Mar-
tins et al., 2011; Flanigan et al., 2014; Rush et al.,
2010). We use the following Lagrangian variant for
our task – Let t be the target model size and s(α)
be the expected model size determined by the Hard
Concrete parameter α. Note s(α) can be computed
based on Eq (3) by multiplying E [zj > 0] with the



6155

size of the j-th parameter block. Our Augmented
Lagrangian method imposes an equality constraint
s(α) = t by introducing a violation penalty,

g(λ,α) = λ1 · (s(α)− t) + λ2 · (s(α)− t)2

where λ1, λ2 ∈ R are two Lagrangian multipli-
ers that will be jointly updated during training.
The overall training optimization is an adversar-
ial game,

max
λ1,λ2

min
θ,α

Eu

[
1

D

D∑
i=1

L(xi,yi; θ̃)

]
+ g(λ,α).

The updates of λ1 and λ2 would always increase
the training loss unless the equality constraint is
met, which gives us the desired model size.

We gradually increase the target size t at a linear
rate during the process of pruning training. That is,
given the desired size tmax, we set the sparsity at
k-th pruning iteration as

tk = min(1,
k

m
) · tmax

where m is a hyperparameter specifying the num-
ber of annealing steps.

We perform joint gradient updates for the model
parameters θ, α as well as the Lagrangian multipli-
ers λ1, λ2. For each training batch, we sample the
pruning mask z = {z1, · · · , zn} and share it across
the training examples within the batch. Since the
pruning mask is shared, we can select parameters
that are only active for the current batch and com-
pute smaller matrix multiplications in forward and
backward passes. This results in training speedup
when z becomes sparse.

4.4 Inference
During training, the prune mask is a random vari-
able drawn from the Hard Concrete distribution. At
inference time, however, we must use a determinis-
tic, fixed mask z for each weight matrix to obtain
the compressed factorization matrices P and Q (by
keeping i-th low-rank component if zi > 0). We
do so by computing the expected value of each zi
in z using Eq.(3) described in Section 3, and then
keeping the top values of {z1, · · · , zn} and clip-
ping the rest to zero, as to match the l0 norm (i.e.
the compression level).

5 Experimental Setup

Tasks We evaluate the performance of our
method on language modeling and BERT fine-

tuning. Specifically, we consider the following
task setup.

1. Recurrent word-level language models on
the Wiki-103 dataset. We adopt SRU (Lei
et al., 2018) as the recurrent architecture and
tied adaptive embedding and softmax lay-
ers (Baevski and Auli, 2019). Our base model
consists of 12 recurrent layers, 100M parame-
ters in total. About 50% of the parameters are
used for the adaptive layers.

2. Recurrent character-level language models on
the Enwik8 dataset. We use the same SRU
architecture. The base model uses 6 recurrent
layers and 35M parameters in total.

3. Transformer-XL model on the Enwik8 dataset.
We use the 12-layer base model from Dai
et al. (2019) containing 41M parameters. We
introduce pruning for the matrices in the self-
attention layers as well as those in the feed-
forward layers. For factorization based prun-
ing, we choose the starting rank r for each
matrix such that the number of parameters
remain the same as the unfactorized model2.

4. BERT fine-tuning on several classification
benchmarks benchmark (Socher et al., 2013;
Dolan and Brockett, 2005; Cer et al., 2017;
Wang et al., 2019). In this experiment, we use
the pre-trained RoBERTa base model by Liu
et al. (2019).

We extend the implementation of Transformer,
SRU and the adaptive embedding / softmax layers
to support factorization based pruning (and other
baselines).

Baselines We compare with the following un-
structured, structured and/or factorization based
pruning baselines.

• FAC which trains low-rank factorized models
from scratch by reducing all dimensions with
the same ratio to get the desired compression.

• NP-l0 (Louizos et al., 2018) which adopts l0
regularization and performs neuron pruning
(i.e. removing input features and columns of
weight matrices). No factorization is used
for this baseline. We add the Augmented
Lagrangian optimization similar to FLOP to
achieve the exact desired compression.

2In effect, we set r = d1d2/(d1 + d2), where d1, d2 are
the dimensions of the original weight matrix.



6156

• AGP (Zhu and Gupta, 2017) which gradu-
ally prunes individual parameters based on the
weight magnitude. AGP is one of the state-of-
the-art unstructured pruning methods. We use
the implementation provided in the Nervana
Distiller library (Zmora et al., 2019).

• FLOP-AGP is a variant of our full method
that prunes low-rank components, but uses
magnitude-based gradual pruning on the diag-
onal mask G instead. We also tune l1 regu-
larization on the masks to encourage sparsity,
similar to Narang et al. (2017b).

These baselines serve as competitive pruning al-
ternatives, and also provide data points for us to
isolate the effectiveness of sub-components of our
method, such as low-rank factorization and l0 prun-
ing. All methods use the same training config-
urations such as learning rate and dropout. We
tune hyper-parameters related to pruning such as
compression scheduling and the learning rate of
Lagrangian variables for each method. More train-
ing and implementation details are provided in the
appendix.

6 Results

Word-level Language Model Table 1 presents
the results of FLOP as well as the baseline methods.
The SRU base model (unpruned) achieves a test
perplexity of 24.5, being a strong starting point and
competitive with top-performing models such as
Transformer (Dai et al., 2019).

The pruning results conform to our expectations
that pruning a large model is consistently better
than training a small model from scratch, and us-
ing low-rank based pruning yields better perfor-
mance than removing matrix columns and input
features. FLOP exceeds the performance of FAC,
NP-l0 and AGP baselines at all compression levels
tested. The performance of FLOP-AGP, especially
in comparison with its unstructured counterpart
AGP, highlights the effectiveness of factorization
based pruning. Moreover, we achieve a test per-
plexity (PPL) of 25.3 with FLOP-l0 method, a loss
of 0.8 perplexity score, while removing 50% of the
model parameters. This result is impressive since
our base model adopts the adaptive word embed-
ding and softmax layers, which already reduce the
model size significantly.

Figure 1 illustrates how our method adaptively
controls the size of different model components.

Method Size Compress PPL
Trans. (Dai et al.) 151M - 24.1
SRU (base) 100M - 24.5
FAC 50M 50% 28.2
AGP 50M 50% 25.7
NP-l0 51M 50% 26.7
FLOP -AGP 51M 50% 25.6
FLOP -l0 50M 50% 25.3
FAC 30M 70% 31.0
AGP 30M 70% 28.4
NP-l0 31M 70% 31.3
FLOP -AGP 31M 70% 28.1
FLOP -l0 30M 70% 27.7
FAC 21M 80% 35.2
AGP 20M 80% 32.6
NP-l0 18M 80% 39.1
FLOP -AGP 21M 80% 31.3
FLOP -l0 21M 80% 31.9

Table 1: Comparison of FLOP and all baselines on the
Wiki-103 dataset. We report test perplexity (PPL) at
three different compression levels. All methods use
adaptive embedding and softmax layers.Table 1

80% 70% 50% 50% 70% 80%

1024,166,256,167,6
4,18

 [655, 120, 51, 42, 
28, 0]

[416, 92, 50, 26, 6, 
0]

775 508

0 0 0

29410590 12565008 8048320

All Emb. 29410590 12565008 8048320

Emb. (most frequent) 14337120 9337200 6120384 1190 775 508 2048

Emb. (less frequent) 9326304 2050464 1675648 423 93 76 512

Emb. (least frequent) 5747166 1177344 252288 82 28 6 128

49875000 29844000 20466000 9378000 20031000 100520000

RNN 20447000 17278992 12417680 4861312 3168008 50999936

All Emb. 29428000 12565008 8048320 4516688 16862992 49520064

Emb. (most frequent) 14337120 9337200 6120384 3216816 4999920

Emb. (less frequent) 9326304 2050464 1675648 374816 7275840

Emb. (least frequent) 5747166 1177344 252288 925056 4569822

80% 70% 50% 80% 70% 50%

RNN 12.41768 4.861312 3.168008 12417680 4861312 3168008 100520000

All Emb. 8.04832 4.516688 16.862992 8048320 4516688 16862992 50999936

First 20k 6.120384 3.216816 4.99992 6120384 3216816 4999920 49520064

20k - 60k 1.675648 0.374816 7.27584 1675648 374816 7275840

60k - Rest 0.252288 0.925056 4.569822 252288 925056 4569822

50 70 80

100520000 49875000 29844000 20466000

50999936 20447000 11674000 10068000

49520064 29428000 18170000 10398000

24674304 14337120 13445568 7915536

11288576 9326304 2028416 881920

13557184 5747166 2691072 1597824

50645000 70676000 80054000

RNN 30552936 39325936 40931936 30.552936 8.773 1.606

All Emb. 20092064 31350064 39122064 20.092064 11.258 7.772

First 20k 10337184 11228736 16758768 10.337184 0.891552 5.530032

20k - 60k 1962272 9260160 10406656 1.962272 7.297888 1.146496

60k - Rest 7810018 10866112 11959360 7.810018 3.056094 1.093248

RNN

All Emb.

First 20k

20k - 60k

60k - 267k

0m 9m 18m 26m 35m

80% 70% 50%

RNN

All Emb.

First 20k

20k - 60k

60k - Rest

0 13 25 38 50

70% 80%

1

Figure 1: Number of parameters used in the RNN and
adaptive embeddings at different compression levels.
We also show the number of parameters used for the
most, second most and least frequent words.

We show the overall size of recurrent encoder and
adaptive embedding layers at the compression lev-
els tested, and break down the use of parameters
within three word clusters based on their frequency.
FLOP learns to prune the dimension more aggres-
sively for less-frequent words. This result show-
cases the benefit of adaptively reducing word di-
mensions.

Char-level Language Model Table 3 shows the
results of pruning character-level language models.
Our base model achieves a test bits-per-character
score (BPC) of 1.24, which is comparable with
previous reported results of RNN-based models.

As shown in Table 3, we again see the benefit



6157

Parameters Compression SST2 MRPC STS-B QNLI Average
125M 0% 92.43 90.9 90.22 89.77 90.83
80M 35% 92.09 88.61 88.18 89.05 89.48

Table 2: Compression on downstream fine-tuning

Method Size Comp. BPC
LSTM (Wu et al.) 17M - 1.44
QRNN (Merity et al.) 26M - 1.33
SRU (base) 35M - 1.24
FAC 11M 70% 1.33
AGP 11M 70% 1.27
NP-l0 11M 70% 1.31
FLOP -AGP 11M 70% 1.27
FLOP -l0 11M 70% 1.25
FAC 8M 80% 1.38
AGP 8M 80% 1.29
NP-l0 8M 80% 1.34
FLOP -AGP 8M 80% 1.29
FLOP -l0 8M 80% 1.27
FAC 4M 90% 1.47
AGP 4M 90% 1.35
NP-l0 4M 90% 1.43
FLOP -AGP 4M 90% 1.34
FLOP -l0 4M 90% 1.33

Table 3: Comparison of FLOP and all baselines on the
Enwiki8 dataset. We report bits-per-character (BPC)
on the test set. We also include previous reported re-
sults of recurrent language models on this dataset as
additional data points.

Method Size Compress BPC
Trans-XL (base) 41M - 1.08
FAC 8M 80% 1.20
AGP 8M 80% 1.14
FLOP -AGP 8M 80% 1.17
FLOP -l0 8M 80% 1.13
FLOP -AGP 4M 90% 1.25
FLOP -l0 4M 90% 1.17

Table 4: Results of pruning Transformer-XL models
on the Enwiki8 dataset. We report bits-per-character
(BPC) on the test set.

of low-rank pruning, matching or improving on
unstructured pruning. Furthermore, FLOP -l0 ob-
tains the best performance across all pruning levels.
Notably, we achieve a perplexity of 1.25 at 70%
compression, nearly matching the un-compressed
model at 1.24.

Table 4 presents the results of pruning 12-layer

Transformer-XL models on the Enwik8 dataset. We
compare FAC, unstructured AGP, FLOP-AGP and
FLOP-l0 at 80% compression level, and also report
the result of FLOP variants at 90% compression.
FLOP-l0 outperforms other methods in compari-
son. In addition, it is able to achieve 1.17 BPC
using 4M parameters, showcasing the effectiveness
of our method when applied to another neural ar-
chitecture.

BERT on Classification Tasks Finally, we
demonstrate that our method can also be applied to
language model fine-tuning on downstream tasks.
We use the RoBERTa base model in this exper-
iment. Since the model was pretrained without
matrix factorization, we first compute the singular
value decomposition of each matrix and then in-
troduce the pruning mask in between the resulting
factored matrices. Note that this procedure tem-
porarily increases the total number of parameters.
We compare here the final number of parameters to
the initial number pre-factorization.

Our results are shown in in Table 2. We are able
to conserve nearly 99% of the performance while
reducing the number of parameters by 35%. Our
target compression level is limited by the fact that
the embedding layers consist of a significant por-
tion of the remaining parameters. As demonstrated
in the previous experiment on Wiki-103, we believe
that higher levels of compression could be obtained
by factorizing the embedding layer, similar to Lan
et al. (2020).

7 Analysis

In this section, we perform an analysis of several
aspects of our method.

Factorization One of the key hypotheses out-
lined in this paper is that pruning input dimen-
sions (equivalently rows or columns of weight ma-
trices) is a more restrictive form of pruning com-
pared to our factorization based strategy. However,
one could also argue that the factorization method
works better simply because the hidden size can
be initially set much larger than an unfactorized
model, not because of pruning itself. For instance,



6158

Variants Size 0% 70% 80% 85% 90%

NP-l0
37M 1.30 1.31 (-0.8%) 1.34 (-3.2%) 1.37 (-5.4%) 1.43 (-10.0%)
66M 1.25 1.28 (-2.4%) 1.31 (-4.8%) 1.32 (-5.6%) 1.37 (-9.6%)

FLOP -l0 35M 1.24 1.25 (-0.8%) 1.27 (-2.4%) 1.29 (-4.0%) 1.33 (-7.3%)

Table 5: Further comparison between factorization-based pruning FLOP and input feature pruning NP-l0 (Louizos
et al., 2018) using 6-layer SRU models and the Enwiki8 dataset. We show BPC at different compression levels and
the loss of performance relative to the un-compressed model. Factorization results in less decrease in relative and
absolute performance.

Figure 2: Histograms of HardConcrete parameters during training. We show the changes of histograms for the first
SRU layer (left figure) and the last layer (right figure). We compute the histogram every 3,000 training steps.

the SRU model used by the unfactorized NP-l0
baseline has hidden size 1536, while with factoriza-
tion other baselines with a similar parameter budget
use a hidden size of 3056. To avoid potential un-
fair comparison, we also train a large model with
hidden size 2048 containing 90% more parameters,
and apply the NP-l0 baseline. This larger model ob-
tains 1.25 BPC which is on par with the factorized
base model used in previous experiments.

Table 5 compares the pruning performance of
FLOP and NP-l0 at four compression levels. We
show the test BPC and the loss of performance rel-
ative to the model without pruning. These results
further substantiate our hypothesis – factorization
based pruning is able to retain relative model per-
formance much more effectively than input feature
pruning.

Speed analysis Thanks to its structured nature,
FLOP can achieve significant computation speedup.
As shown in Table 6, we achieve an inference
speedup ranging from 1.5x to 2.2x for the compres-
sion levels tested, using CPUs. Similar speedups
of up to 2.4x are also observed using GPUs during
training. On the contrary, the computations of un-
structured sparse matrices are harder to optimize.
For models obtained using unstructured AGP, we
experimented with the sparse matrix multiplication
routine provided in Pytorch (Paszke et al., 2017)
and a recent linear algebra compiler (Kjolstad et al.,
2017), but were unable to achieve a speedup.

Size Compress Time (s) Speedup
35M 0% 0.39 1.0x
8M 80% 0.21 1.9x
4M 90% 0.18 2.2x
41M 0% 1.33 1.0x
8M 80% 0.87 1.5x
4M 90% 0.82 1.6x

Table 6: Inference timing measurements of character-
level language model using SRU (top block) and
Transformer-XL (bottom block).

Learning dynamics Figure 2 demonstrates the
training dynamics of the HardConcrete distribution.
We plot the histogram of HardConcrete parameters
α after every few thousands of training iterations.
A negative value of α indicates that the associated
parameter is likely to be pruned while a positive
value indicates the opposite. The magnitude of the
value reflects the certainty of the pruning decision.
As illustrated by the figure, the distribution of α
becomes bi-modal after initial exploration. Cer-
tain parameters within each layer are completely
pruned while others are kept with (almost) absolute
certainty. In addition, the dynamics vary across
different layers. For instance, for SRU the first re-
current layer gets pruned more aggressively than
the last layer.



6159

8 Conclusion

In this work, we present a generic structured prun-
ing method based on adaptive low-rank factoriza-
tion. We systematically evaluate the performance
of this method on large language models. We show
that our method can provide significant speedups
and compression rates on large models while losing
minimal performance compared to other methods,
including unstructured magnitude pruning. This
work contributes to reducing the growing overhead
of large language models, and shines a light on the
role of model capacity in language modeling.

Acknowledgement

We would like to thank ASAPP Inc. for making this
work possible. We would also like to thank Hugh
Perkins, Sam Bowman, Nicholas Matthews, Josh
Shapiro and the other members of the Language
Technology and Research teams who helped review
this work and contributed their thoughts through-
out the project. We would also like to thank the
EMNLP reviewers and area chair for their helpful
comments.

References
Jimmy Ba and Rich Caruana. 2014. Do deep nets really

need to be deep? In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 27, pages 2654–2662. Curran Associates,
Inc.

Alexei Baevski and Michael Auli. 2019. Adaptive in-
put representations for neural language modeling. In
International Conference on Learning Representa-
tions.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.
Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2963–2977, Florence, Italy. Associa-
tion for Computational Linguistics.

Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao,
Lanshun Nie, Dechen Zhan, Yunxin Liu, Ming Wu,
and Lintao Zhang. 2019. Efficient and effective
sparse lstm on fpga with bank-balanced sparsity.
In Proceedings of the 2019 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Ar-
rays, FPGA ’19, page 63–72, New York, NY, USA.
Association for Computing Machinery.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and

crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Yew Ken Chia, Sam Witteveen, and Martin Andrews.
2019. Transformer to cnn: Label-scarce distilla-
tion for efficient text classification. arXiv preprint
arXiv:1909.03508.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems
28, pages 3079–3087. Curran Associates, Inc.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on
Learning Representations.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the Abstract Mean-
ing Representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1426–
1436, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Jonathan Frankle and Michael Carbin. 2019. The lot-
tery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In International Conference on Learn-
ing Representations.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir
Bourdev. 2014. Compressing deep convolutional
networks using vector quantization. arXiv preprint
arXiv:1412.6115.

http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.1145/3289602.3293898
https://doi.org/10.1145/3289602.3293898
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://arxiv.org/abs/1909.03508
https://arxiv.org/abs/1909.03508
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf
http://papers.nips.cc/paper/5949-semi-supervised-sequence-learning.pdf
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://doi.org/10.3115/v1/P14-1134
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1902.09574
https://arxiv.org/abs/1412.6115
https://arxiv.org/abs/1412.6115


6160

Edouard Grave, Armand Joulin, Moustapha Cissé,
Hervé Jégou, et al. 2017. Efficient softmax approxi-
mation for gpus. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1302–1310. JMLR. org.

Scott Gray, Alec Radford, and Diederik P Kingma.
2017. Gpu kernels for block-sparse weights. arXiv
preprint arXiv:1711.09224.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Arda-
van Pedram, Mark A Horowitz, and William J Dally.
2016. Eie: efficient inference engine on compressed
deep neural network. In 2016 ACM/IEEE 43rd An-
nual International Symposium on Computer Archi-
tecture (ISCA), pages 243–254. IEEE.

Song Han, Huizi Mao, and William J Dally. 2015a.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Song Han, Jeff Pool, John Tran, and William Dally.
2015b. Learning both weights and connections
for efficient neural network. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 1135–1143. Curran Asso-
ciates, Inc.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David
Lugato, and Saman Amarasinghe. 2017. The ten-
sor algebra compiler. Proc. ACM Program. Lang.,
1(OOPSLA).

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav
Artzi. 2018. Simple recurrent units for highly par-
allelizable recurrence. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4470–4481, Brussels, Bel-
gium. Association for Computational Linguistics.

Zhongliang Li, Raymond Kulhanek, Shaojun Wang,
Yunxin Zhao, and Shuang Wu. 2018. Slim embed-
ding layers for recurrent neural language models. In

Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Liyuan Liu, Xiang Ren, Jingbo Shang, Xiaotao Gu,
Jian Peng, and Jiawei Han. 2018. Efficient contextu-
alized representation: Language model pruning for
sequence labeling. In EMNLP, pages 1215–1225.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christos Louizos, Karen Ullrich, and Max Welling.
2017. Bayesian compression for deep learning. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems
30, pages 3288–3298. Curran Associates, Inc.

Christos Louizos, Max Welling, and Diederik P.
Kingma. 2018. Learning sparse neural networks
through l0regularization. In International Confer-
ence on Learning Representations.

André F. T. Martins, Mario A. T. Figueiredo, Pedro
M. Q. Aguiar, Noah A. Smith, and Eric P. Xing.
2011. An augmented lagrangian approach to con-
strained map inference. In ICML, pages 169–176.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. An analysis of neural language mod-
eling at multiple scales. CoRR, abs/1803.08240.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry P.
Vetrov. 2017. Variational dropout sparsifies deep
neural networks. In ICML, pages 2498–2507.

Sharan Narang, Erich Elsen, Gregory Diamos, and
Shubho Sengupta. 2017a. Exploring sparsity
in recurrent neural networks. arXiv preprint
arXiv:1704.05119.

Sharan Narang, Eric Undersander, and Gregory Di-
amos. 2017b. Block-sparse recurrent neural net-
works. arXiv preprint arXiv:1711.02782.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

http://proceedings.mlr.press/v70/grave17a.html
http://proceedings.mlr.press/v70/grave17a.html
https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://arxiv.org/abs/1602.01528
https://arxiv.org/abs/1602.01528
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1909.10351
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.1145/3133901
https://doi.org/10.1145/3133901
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/D18-1477
https://doi.org/10.18653/v1/D18-1477
https://arxiv.org/abs/1711.09873
https://arxiv.org/abs/1711.09873
https://aclanthology.info/papers/D18-1153/d18-1153
https://aclanthology.info/papers/D18-1153/d18-1153
https://aclanthology.info/papers/D18-1153/d18-1153
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://icml.cc/2011/papers/150_icmlpaper.pdf
https://icml.cc/2011/papers/150_icmlpaper.pdf
https://arxiv.org/abs/1803.08240
https://arxiv.org/abs/1803.08240
http://proceedings.mlr.press/v70/molchanov17a.html
http://proceedings.mlr.press/v70/molchanov17a.html
https://arxiv.org/abs/1704.05119
https://arxiv.org/abs/1704.05119
https://arxiv.org/abs/1711.02782
https://arxiv.org/abs/1711.02782
https://openreview.net/pdf/25b8eee6c373d48b84e5e9c6e10e7cbbbce4ac73.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf


6161

Alexander M. Rush, David Sontag, Michael Collins,
and Tommi Jaakkola. 2010. On dual decomposition
and linear programming relaxations for natural lan-
guage processing. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1–11, Cambridge, MA. Associa-
tion for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Abigail See, Minh-Thang Luong, and Christopher D.
Manning. 2016. Compression of neural machine
translation models via pruning. In Proceedings
of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 291–301, Berlin,
Germany. Association for Computational Linguis-
tics.

Yuan Shangguan, Jian Li, Liang Qiao, Raziel Alvarez,
and Ian McGraw. 2019. Optimizing speech recogni-
tion for the edge. arXiv preprint arXiv:1909.12408.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and
Kurt Keutzer. 2019. Q-bert: Hessian based ultra
low precision quantization of bert. arXiv preprint
arXiv:1909.05840.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP). Asso-
ciation for Computational Linguistics.

Henry Tsai, Jason Riesa, Melvin Johnson, Naveen Ari-
vazhagan, Xin Li, and Amelia Archer. 2019. Small
and practical BERT models for sequence labeling.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP). Associa-
tion for Computational Linguistics.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. arXiv preprint arXiv:1908.08962.

Ehsan Variani, Ananda Theertha Suresh, and Mitchel
Weintraub. 2019. West: Word encoded sequence

transducers. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7340–7344. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Inter-
national Conference on Learning Representations.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Minjia
Zhang, Wenhan Wang, Fang Liu, Bin Hu, Yiran
Chen, and Hai Li. 2018. Learning intrinsic sparse
structures within long short-term memory. In Inter-
national Conference on Learning Representations.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Ben-
gio, and Ruslan R Salakhutdinov. 2016. On multi-
plicative integration with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems.

Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang,
and Lanshun Nie. 2019. Balanced sparsity for ef-
ficient dnn inference on gpu. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 5676–5683.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: En-
hanced language representation with informative en-
tities. arXiv preprint arXiv:1905.07129.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J.
Dally. 2017. Trained ternary quantization. In 5th
International Conference on Learning Representa-
tions ICLR.

Michael Zhu and Suyog Gupta. 2017. To prune, or not
to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878.

Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar,
and Gal Novik. 2019. Neural network distiller: A
python package for dnn compression research.

https://www.aclweb.org/anthology/D10-1001
https://www.aclweb.org/anthology/D10-1001
https://www.aclweb.org/anthology/D10-1001
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.18653/v1/K16-1029
https://doi.org/10.18653/v1/K16-1029
https://arxiv.org/abs/1909.12408
https://arxiv.org/abs/1909.12408
https://arxiv.org/abs/1909.05840
https://arxiv.org/abs/1909.05840
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D19-1441.pdf
https://www.aclweb.org/anthology/D19-1441.pdf
https://www.aclweb.org/anthology/D19-1374.pdf
https://www.aclweb.org/anthology/D19-1374.pdf
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1811.08417
https://arxiv.org/abs/1811.08417
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rk6cfpRjZ
https://openreview.net/forum?id=rk6cfpRjZ
https://papers.nips.cc/paper/6215-on-multiplicative-integration-with-recurrent-neural-networks
https://papers.nips.cc/paper/6215-on-multiplicative-integration-with-recurrent-neural-networks
https://arxiv.org/abs/1811.00206
https://arxiv.org/abs/1811.00206
https://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1905.07129
https://arxiv.org/abs/1612.01064
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1910.12232
https://arxiv.org/abs/1910.12232


6162

A Appendix

A.1 Optimization details
In our implementation, FLOP trains the factorized
model for a number of warmup epochs and then
starts pruning. Other pruning baselines use the
same warmup training process, except that FAC
baseline directly trains smaller factorized model
from scratch. Recall our augmented Lagrangian
training objective during pruning is,

max
λ1,λ2

min
θ,α

Eu

[
1

D

D∑
i=1

L(xi,yi; θ̃)

]
+ g(λ,α),

g(λ,α) = λ1 · (s(α)− t) + λ2 · (s(α)− t)2.

We gradually increase the target size t at a linear
rate. That is, given the desired size tmax, we set the
sparsity at k-th pruning iteration as

tk = min(1,
k

m
) · tmax

where m is a hyperparameter specifying the num-
ber of annealing steps.

The Lagrangian multipliers are initialized to zero
at the start of training. We perform joint gradient
updates for the parameters and Lagrangian multi-
pliers at every iteration, but use and tune a differ-
ent learning rate for Lagrangian multipliers. For
each training batch, we sample the pruning mask
z = {z1, · · · , zn} and share it across the training
examples within the batch. Since the pruning mask
is shared, we can select parameters that are only
active for the current batch and compute smaller
matrix multiplications in forward and backward
passes. This can result in training speedup when z
becomes sparse.

A.2 Experimental Details
Our experiments are performed using the stan-
dard train/dev/test splits of Wiki-103, Enwik8 and
GLUE benchmarks. We describe training config-
urations in the following paragraphs. Detailed ex-
perimental setup can be found at https://github.
com/asappresearch/flop.

SRU Following the practice of Lei et al. (2018),
for the Enwik8 dataset we train a 6-layer SRU
model using a batch size of 64 and an unroll length
of 256. We use a hidden size of 3056 and set the
initial factorization dimension r of the parameter
matrices to 512. That is, we replace each weight
matrix W in SRU using an explicit factorization

PQ with an inner dimension of 512. We train the
model without pruning for 30 warmup epochs, and
start pruning for a maximum of 100 epochs.

For the Wiki-103 dataset, our 12-layer SRU base
model uses a hidden dimension of 2048 and a fac-
torization dimension of 512 for weight matrices
in SRU. Following Baevski and Auli (2019), the
adaptive embedding layer uses 1024, 256 and 64
dimensions respectively for the 20K most frequent
words, 40K less frequent words and the rest least
frequent words. We train 50 warm-up epochs and
start the pruning process for an addition of 100
epochs. We use a batch size of 64 or 96 and an
unroll length of 256.

For all SRU runs, we use inverse-square-root
learning rate scheduling (Vaswani et al., 2017) and
a learning rate of l0√

d
where d is the hidden size

and l0 is the initial factor. We set l0 ∈ {2, 3} for
model parameters. For AGP methods, we tune the
start and end epoch of the compression scheduler.
For l0 regularization, we tune the learning rate l0 ∈
{3, · · · , 6} for Lagrangian multipliers.

Transformer-XL Following Dai et al. (2019),
we train Transformer-XL base model using cosine
learning rate scheduling. For the 12-layer base
model, we train a maximum of 200k iterations,
a batch size of 48 and an initial learning rate of
0.0003 and use 8 GPUs in parallel. For pruning
runs, we train up to 300k iterations using a learning
rate of 0.00025, a batch size of 32 and 4 GPUs
in parallel for each run. We use the same inverse-
square-root learning rate scheduling for Lagrangian
multipliers and set l0 ∈ {0.5, 1.0, 1.5}.

https://github.com/asappresearch/flop
https://github.com/asappresearch/flop

