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Abstract

We present a simple document alignment
method that incorporates sentence order in-
formation in both candidate generation and
candidate re-scoring. Our method results
in 61% relative reduction in error compared
to the best previously published result on
the WMT16 document alignment shared task.
Our method improves downstream MT perfor-
mance on web-scraped Sinhala–English docu-
ments from ParaCrawl, outperforming the doc-
ument alignment method used in the most re-
cent ParaCrawl release. It also outperforms
a comparable corpora method which uses the
same multilingual embeddings, demonstrating
that exploiting sentence order is beneficial
even if the end goal is sentence-level bitext.

1 Introduction

Document alignment is the task of finding parallel
document pairs (i.e., documents that are transla-
tions of each other) in a large collection of doc-
uments, often crawled from the web. Aligned
documents have historically been used to produce
sentence-level machine translation (MT) data, but
there is growing evidence that MT systems should
be trained and evaluated using document-level con-
text (Gong et al., 2011; Läubli et al., 2018; Voita
et al., 2019; Junczys-Dowmunt, 2019).

We exploit the simple idea that two parallel docu-
ments should each contain approximately the same
information, in approximately the same order. This
idea can be traced back at least to the late 1990s,
when STRAND (Resnik, 1998) measured how well
linearized HTML tags from two documents could
be aligned in order to judge whether two web pages
were likely parallel. However, more recent work
has primarily used unordered representations for
documents, including bags of words or n-gram fea-
tures and averages of sentence embeddings.

Our method consists of two main parts: First, we
propose a simple method for candidate generation
which embeds documents into a joint semantic em-
bedding space (Berry and Young, 1995; Germann,
2016), in a way that preserves some order infor-
mation in each document. This enables candidate
generation via fast approximate nearest neighbor
search. Second, we propose re-scoring those candi-
date pairs by performing sentence alignment and
then scoring that alignment based on (1) the seman-
tic similarity of the resulting aligned sentence pairs;
(2) whether the sentence pairs are in the correct
languages; and (3) the number of inserted/deleted
sentences. Our re-scoring approach seeks to filter
out documents pairs that contain similar informa-
tion, but where the order of that information is not
consistent between the two documents.

Our method results in a 61% relative reduction
in the false positive rate on the WMT16 document
alignment shared task versus the best previously
reported method. Applied to web-scraped Sinhala–
English data from ParaCrawl (Ban et al., 2020),
it improves MT performance by 1.2 BLEU over
the document alignment method used in the latest
ParaCrawl release (Buck and Koehn, 2016b), when
both are used with the Vecalign sentence alignment
toolkit (Thompson and Koehn, 2019).

2 Method

We follow a 2-stage approach to consider the
DS ×DT possible alignments between DS source
documents and DT target documents:1

1. Candidate Generation: We first find a fixed
number, K, of target documents as potential
matches for each source document.

2. Candidate Re-scoring: We re-score the
DS × K document pairs from part 1 using
a more accurate but slower scoring method.

1We define the source/target such that DS > DT .
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Both our candidate generation method and can-
didate re-scoring method explicitly account for the
content of a document as well as the order of that
content within the document.

2.1 Candidate Generation
We propose concatenating several sub-vectors—
each emphasizing a different section of the
document—to form a multilingual document vec-
tor. Each sub-vector is the sum of the sentence
embeddings for the entire document, after embed-
dings are weighted to emphasize a given region of
the document and to de-emphasize boilerplate text
(e.g., from navigational buttons, pull-down menus,
or headers).

Let Sn for n ∈ {0, ..., N−1} be theN sentences
in a given document. We compute sub-vectors
Vj to emphasize uniformly spaced positions j ∈
{0, ..., J−1} in the document:

Vj =
N−1∑
n=0

emb(Sn) Hj(n) B(Sn) (1)

where emb(Sn) is the multilingual embedding of
sentence Sn (see §2.1.1), Hj(n) is a windowing
function to emphasise the jth region the document
(see §2.1.2), and B(Sn) down-weights boilerplate
sentences (see §2.1.3).

The final document vector V is a concatenation
of normalized position-weighted sub-vectors Vj .
Candidate document pairs are found by searching
for pairs using cosine distance and approximate
nearest neighbor search. We compare all docu-
ments from a given webdomain.2

2.1.1 Sentence Embeddings
Function emb(Sn) maps sentence Sn into a multi-
lingual vector space. In this work we use LASER
embeddings (Artetxe and Schwenk, 2019b), as the
authors provide a pretrained model that works in 93
languages.3 LASER embeddings require a signifi-
cant amount of storage space, so for all experiments
in this work so we project them from their native
size of 1024 down to 128 dimensions using Prin-
cipal Component Analysis (PCA), as we find this
results in a good performance/space trade-off (see
Appendix A).

2.1.2 Windowing Function
Hj(n) is a windowing function to emphasize the
jth region of a document. If we were to use a sim-

2A webdomain is a top-level website (e.g., acted.org).
3github.com/facebookresearch/LASER

ple rectangular window, then our method would be
equivalent to splitting the document into sections
and computing the average sentence embedding
for each section. However, we instead use many
smoothed overlapping windows in an effort to en-
code more fine-grained position information into
the final vector document vector, while also mak-
ing the document alignment process more robust
to offsets between parallel sentences, such as in
a document pair with a boilerplate header or ad-
vertisement present in one document but not the
other.

For our windowing function Hj(n) we select
a modified PERT distribution (Vose, 2000) with
support over [0, J ] and mode

(
j+0.5
J

)
N . Modified

PERT is based on the PERT (Malcolm et al., 1959;
Clark, 1962) distribution, but adds a parameter γ
to control peakedness of the distribution. PERT
is a re-parameterization of the Beta distribution
that is defined by the minimum, most likely and
maximum values a variable can take.

We select J=16 and γ=20 to produce win-
dows that look reasonable to the authors (see Ap-
pendix B). We do not sweep J or γ, as we are
concerned about overfitting given our small devel-
opment set (see Table 1).

2.1.3 Boilerplate Down-weighting
Many ‘sentences’ in web-crawled data are not true
sentences, but boilerplate text such as text of navi-
gational buttons, headers, or pull-down menus. We
explore three methods for down-weighting such
boilerplate text:

1. Scaling by the inverse of the log of number
of the documents containing a given sentence,
inspired by IDF (Sparck Jones, 1988; Buck
and Koehn, 2016b)

2. A more aggressive variant of IDF which scales
sentences by the inverse of the (linear, as op-
posed to log) number of documents containing
a given sentence, which we denote ‘LIDF’

3. Scaling each sentence by its length, in charac-
ters, as boilerplate lines are often very short
(Kohlschütter et al., 2010).

We find that all three boilerplate methods im-
prove candidate generation performance, but select
LIDF as it resulted in the best recall performance
on our development set in preliminary experiments.

2.2 Candidate Re-scoring
To re-score a document pair proposed by candidate
generation, we perform sentence alignment and

www.acted.org
https://github.com/facebookresearch/LASER
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score the quality of the resulting sentence align-
ment in order to judge whether the proposed doc-
ument pair appears to be a good translation pair.
Our goal is to filter out documents pairs that may
contain similar information, but where the order of
that information is not consistent between the two
documents, indicating they are not parallel.

Our proposed document pair scoring function is:

S(E,F ) =

1

|a(E,F )|
∑

e,f∈a(E,F )

sim(e, f)p(LE |e)p(LF |f) (2)

where a(E,F ) is the sentence alignment (see
§2.2.1) of documents E and F ; sim(e, f) is the
cosine similarity between sentences e and f ; and
p(Le|e), p(Lf |f) are the probabilities that sen-
tences e, f are in the correct languages LE , LF

(see §2.2.2). To penalize unaligned sentences,
a(E,F ) includes insertions/deletions but we de-
fine sim(e, f) to be zero in such cases.

2.2.1 Sentence Alignment
To perform sentence alignment, we use Vecalign
(Thompson and Koehn, 2019).4 Vecalign uses mul-
tilingual sentence embeddings to judge sentence
similarity, in conjunction with a dynamic program-
ming approximation based on fast dynamic time
warping (Salvador and Chan, 2007) to approximate
a search over the full space of possible sentence
alignments in linear time complexity with respect
to document length. We follow Thompson and
Koehn (2019) and again use LASER embeddings,
except we project all embeddings down to size 128.

2.2.2 Language ID
One artifact of using multilingual sentence embed-
dings is that they give perfect alignment scores to
exact, un-translated sentence copies. Since auto-
matic language identification (LID) of web data
is often erroneous and not well defined,5 this can
result in un-translated, (near) duplicate documents
being found as document pairs. We propose to use
all sentences (regardless of language) in sentence
alignment, as we hypothesize that copies provide
a strong signal for sentence alignment. However,
when scoring the alignment we introduce sentence-
level LID probabilities to penalize sentence pairs
that are not in the correct languages.

4github.com/thompsonb/vecalign
5We observe numerous mixed-language documents (e.g.,

main body in one language and the boilerplate in another).

WMT16 ParaCrawl
train test test

English Docs. 349k 682k 9.68M
French Docs. 225k 522k -
Sinhala Docs. - - 1.49M
Webdomains 49 203 1721
Gold Pairs 1624 2402 0

Table 1: Counts for WMT16 and ParaCrawl data used
in this work.

3 Experiments and Results

We evaluate our document alignment method in
both high- and low-resource settings. Note that
our method is not trained on any parallel docu-
ments, and is designed to be as language agnos-
tic as possible. However, it relies on LASER em-
beddings, which are trained on bitext. Thus we
expect performance to be at least partially a func-
tion of the quantity of data that LASER is trained
on.6 For high-resource, we use the publicly avail-
able French–English data released for the WMT
2016 shared task on document alignment (Buck
and Koehn, 2016a) and evaluate document recall
following the shared task. The shared task provides
a strong set of baselines, as 13 different teams con-
tributed at least one submission. For low-resource,
we experiment with Sinhala–English documents
extracted from ParaCrawl. In this setting we do
not have gold document alignments, so we instead
evaluate the quality of MT systems trained on the
data extracted via document alignment.

We develop and set all parameters using the train-
ing data from WMT16 (‘WMT16-train’) and then
test on the WMT16 test data (‘WMT16-test’) and
the Sinhala–English ParaCrawl data. Basic statis-
tics for each dataset are shown in Table 1.

3.1 Candidate Generation
We find that encoding order in document vectors
substantially reduces the number of candidates, K,
that must be searched to find the correct document:
see Figure 1. The improvement is largest when a
small number of candidates are considered—the
proposed method approximately halves the num-

6For the two languages considered here, LASER was
trained on much more French–English data (8.8M) than
Sinhala–English data (796k) (Artetxe and Schwenk, 2019b).
This comparison is likely complicated by data quality (which
we generally expect to be higher in higher-resources lan-
guages) and benefits of training in related languages.

https://github.com/thompsonb/vecalign
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Figure 1: Fraction of the time that a correct document
(or near duplicate of it) is found in the top K candidates,
as a function of K, found by searching document vec-
tors made from average sentence vectors (‘Avg’), aver-
age sentence vectors with boilerplate down-weighting
(‘Avg+BD’), and the proposed method incorporating
document order. Results shown on WMT16-test.

ber of false positives between K=1 and K=10
compared to the stronger of the two baselines.

3.2 Document Alignment Recall

Within each webdomain, we embed documents as
described in §2.1. For each French document, we
find the top K=32 candidate translations via ap-
proximate nearest neighbor search using FAISS
(Johnson et al., 2017). We then re-score each can-
didate pair with Equation 2. Language ID proba-
bilities are estimated using fastText (Joulin et al.,
2016).7 We extract the highest scoring document
pairs via the greedy search method described in
Buck and Koehn (2016b).8

We evaluate document pairs following Buck and
Koehn (2016a).9 The proposed method has a re-
call of 98.5%, compared to the previous best of
96.2% (see Table 2); this corresponds to a 61%
relative reduction in false positive rate. We also try
our candidate generation method without rescor-
ing (i.e., K=1) and find that it outperforms prior
work, but is not as strong as our candidate gen-
eration method in conjunction with our candidate
re-scoring method. For a description of the con-
trastive methods, see Buck and Koehn (2016a).

7dl.fbaipublicfiles.com/fasttext/supervised-
models/lid.176.bin

8Buck and Koehn (2016b) found that in practice the greedy
search outperformed the theoretically optimal Kuhn–Munkres
algorithm (Munkres, 1957).

9We use their “soft” recall, which gives credit to docu-
ment pairs for which the English or French document (but not
both) differed from a gold document pair by less than 5%, as
measured by text edit distance.

Method Recall

Azpeitia and Etchegoyhen (2016) 93.1%
Germann (2016) 95.0%
Gomes and Pereira Lopes (2016) 95.9%
Dara and Lin (2016) 96.0%
Buck and Koehn (2016b) 96.2%

This Work: Without Re-Scoring 97.1%
This Work: With Re-Scoring 98.5%

Table 2: Document recall on WMT16-test, compared
to previous best reported results. The proposed method
outperforms prior work, even before re-scoring.

3.3 Impact on Downstream MT

We perform document alignment on Sinhala–
English documents web-scraped by ParaCrawl. We
apply the same method as in French–English, us-
ing the same parameters. We compare to document
alignment via Buck and Koehn (2016b), followed
by sentence alignment using both Vecalign and
Hunalign (Varga et al., 2007), as the latter was used
for the most recent ParaCrawl release.

Our document alignment method and Vecalign
both use LASER embeddings. The use of LASER
embeddings has been proposed for finding parallel
sentences in comparable corpora (i.e., without do-
ing document alignment), using a margin-based cri-
terion (Artetxe and Schwenk, 2019a). Since both
methods use the same multilingual embeddings
(LASER), this allows us to determine whether us-
ing document-level information (i.e., performing
document alignment and then sentence alignment)
provides better data than simply treating the data
as comparable corpora and searching for sentence
pairs. We refer to this method ‘LASER-cc.’ For
a fair comparison with our document alignment
method, we search for sentence pairs within each
webdomain.

For each method of finding parallel sentences,
evaluation is the same: Since the true amount of
parallel data is unknown, we rank the data from
highest to lowest quality following Chaudhary et al.
(2019) and train systems on a number of different
data amounts, as measured by the number of En-
glish words. We train NMT systems following the
WMT19 sentence filtering shared task (Koehn et al.,
2019). Following Thompson and Koehn (2019), we
train 5 systems per setting and report both mean
and standard deviation BLEU scores. We report
BLEU scores using sacreBLEU (Post, 2018).

https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin
https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin
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Method BLEU

Buck + Hunalign 8.74 +/- 0.20
Buck + Vecalign 10.46 +/- 0.13
LASER-cc 10.40 +/- 0.15

This Work + Vecalign 11.62 +/- 0.09

Table 3: Downstream BLEU (+/- standard deviation
for 5 runs) for the three document alignment + sen-
tence alignment methods compared in this work, plus
the comparable corpora method LASER-cc. ‘Buck’ de-
notes Buck and Koehn (2016b). BLEU shown for best
filtering threshold for each method; see Appendix C for
the results over the entire range of threshold values.

Results at the best threshold for each method are
shown in Table 3, and results for the full sweep
over all thresholds are provided in Appendix C.
The proposed method improves downstream MT
performance by 1.2 BLEU over Buck and Koehn
(2016b), when both are used in conjunction with
Vecalign, and 2.9 BLEU over Buck and Koehn
(2016b) with Hunalign (used in the most recent
Paracrawl release).

The proposed method also outperforms the
LASER-cc baseline by 1.2 BLEU. As LASER-cc
and the proposed method use the exact same sen-
tence embeddings, this result shows that incorpo-
rating sentence order not only produces documents
that can be used for document-level MT training,
but also results in higher quality sentence pairs.

4 Related Work

There is a large amount of prior work in docu-
ment alignment. One of the simplest methods
is URL similarity (Resnik, 1998; Chen and Nie,
2000), although this has been shown to be brittle
(Tiedemann, 2011). HTML structure (Resnik and
Smith, 2003; Shi et al., 2006) or metadata such
as publication date (Munteanu and Marcu, 2005)
is often similar between parallel websites. How-
ever, most more recent work has focused on con-
tent similarity via bag-of-words or bag-of-ngrams,
using bilingual lexicon (Ma and Liberman, 1999;
Fung and Cheung, 2004; Ion et al., 2011; Esplà-
Gomis et al., 2016; Etchegoyhen and Azpeitia,
2016; Azpeitia and Etchegoyhen, 2019), machine
translation (Uszkoreit et al., 2010), or phrase tables
(Gomes and Pereira Lopes, 2016).

Some work has considered high-level order as a
filtering step after using a unordered representation
to generate candidates: Ma and Liberman (1999)

and Le et al. (2016) discard n-gram pairs outside a
fixed window, while Uszkoreit et al. (2010) filters
out documents that have high edit distance between
sequences of corresponding n-gram pairs. Utiyama
and Isahara (2003) and Zhang et al. (2006) use sen-
tence similarity and/or number of aligned sentences
after performing sentence alignment to score candi-
date documents. Guo et al. (2018) score document
pairs using the sentence-level nearest neighbor as
well as the absolute difference in sentence position
between sentence pairs. In contrast to these meth-
ods, our work considers high-level order in both
candidate generation and re-scoring.

Guo et al. (2019) demonstrated neural document
embeddings are effective representations for docu-
ment alignment. They trained on millions of docu-
ment pairs in each specific language pair of interest;
in contrast, this work is much simpler and does not
require document-level training data.

5 Conclusion

We present a simple but effective method for docu-
ment alignment. Our method uses multilingual
sentence embeddings and explicitly models the
order of sentences in documents, in both candi-
date generation and candidate re-scoring. Our
method outperforms all published results on the
dataset released for the WMT16 shared task on
document alignment. It also increases downstream
MT performance in a low-resource setting over
prior work, including a margin-based compara-
ble corpora method (Artetxe and Schwenk, 2019a).
We use the same embeddings as the comparable
corpora method, thus the improvement over that
method demonstrates the importance of including
sentence order in document alignment, even when
document-level alignments are not required.
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A Vecalign Speed/Space/Accuracy Trade-off

We experiment with projecting the 1028-dimension LASER embeddings into a lower dimensional space
using PCA prior to use in Vecalign. We evaluate sentence alignment accuracy following Thompson
and Koehn (2019), on the German–French test set released with Bleualign (Sennrich and Volk, 2010),
consisting of manually aligned yearbook articles published in both German and French by the Swiss
Alpine Club from the Text+Berg corpus (Volk et al., 2010). Accuracy and alignment time for a range of
embedding sizes are shown in Figure 2. Timing is measured on a laptop with a 1.80GHz i7-8550 CPU.
We see strong performance (F1 > 0.85) for embeddings down to size 32, in conjunction with up to a
70% reduction in runtime and 97% reduction in disk space required to store the embeddings. However,
we select a slightly larger dimension of 128 for use in this work. This projection has minimal impact on
sentence alignment accuracy, which we expect to have a direct impact on candidate re-scoring performance.
We do not explore the relationship between projected size and candidate generation performance in this
work.
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Figure 2: F1 (solid blue line) vs time to align (dashed red line) the German–French test set after projecting LASER
embeddings to various dimensions using PCA.
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B Modified PERT Window Illustration

Figure 3 shows the 16 modified PERT windows used in this work, for an example document. We select
J=16 and γ=20 to produce windows that look reasonable to the authors, but do not explore sweeping
either parameter due to concerns about overfitting on the development set.
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Figure 3: The 16 modified PERT windows used in this work, for an example document containing 60 sentences.
Each window emphasizes a different region of the document, but the regions have substantial overlap in an effort
to make the final document vector robust to alignment noise, such as offsets caused by a boilerplate header or
advertisement present in one document but not the other.
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C Downstream MT Performance for All Thresholds

Since the underlying amount of aligned Sinhala–English documents from ParaCrawl is unknown, in order
to evaluate downstream MT performance we rank the sentence pairs produced by each method from
highest to lowest quality following (Chaudhary et al., 2019) and train each system on many different
thresholds. The thresholds for each method are selected to produce different amounts of data, which we
measure in English words. Results are shown in Figure 4.
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Figure 4: BLEU scores (mean +/- standard deviation for 5 training runs) for systems trained on parallel sentences
extracted via several methods, over a range of different filtering thresholds. ‘Buck’ denotes Buck and Koehn
(2016b). LASER-cc denotes the comparable corpora method of Artetxe and Schwenk (2019a).


