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Abstract

The complete sharing of parameters for mul-
tilingual translation (1-1) has been the main-
stream approach in current research. However,
degraded performance due to the capacity bot-
tleneck and low maintainability hinders its ex-
tensive adoption in industries. In this study, we
revisit the multilingual neural machine trans-
lation model that only share modules among
the same languages (M2) as a practical al-
ternative to 1-1 to satisfy industrial require-
ments. Through comprehensive experiments,
we identify the benefits of multi-way training
and demonstrate that the M2 can enjoy these
benefits without suffering from the capacity
bottleneck. Furthermore, the interlingual space
of the M2 allows convenient modification of
the model. By leveraging trained modules, we
find that incrementally added modules exhibit
better performance than singly trained models.
The zero-shot performance of the added mod-
ules is even comparable to supervised models.
Our findings suggest that the M2 can be a com-
petent candidate for multilingual translation in
industries.

1 Introduction

With the current increase in the demand for neural
machine translation (NMT), serving an increasing
number of languages poses a practical problem
for the industry. A naive approach for multilingual
NMT is to have multiple single-directional models,
which is unsustainable owing to the quadratic in-
crease of models as more languages are introduced.
A more practical approach is to limit the number
of models by sharing the components among the
models (Dong et al., 2015; Firat et al., 2016a; Ha
et al.; Johnson et al., 2017). In addition to reducing
the number of parameters, sharing the components
is also regarded as an effective method to enhance
the performance. A fully shared model (henceforth

1-1), which only uses one encoder and one decoder
to translate all directions (Ha et al.; Johnson et al.,
2017), has been the most popular method because
of its compactness.

However, introduction of a significant number of
tasks into a 1-1 model is known to cause capacity
bottleneck. Aharoni et al. (2019) suggested that,
given a fixed model capacity, a 1-1 model is bound
to the tradeoff between the number of languages
and translation accuracy. Zhang et al. (2020) explic-
itly identified the capacity bottleneck problem of
the 1-1 model by showing a clear decrease in per-
formance when translation directions are doubled.
Moreover, data unbalance complicates the problem.
Arivazhagan et al. (2019b) presented the transfer
and interference dilemma among low and high re-
source languages in an unbalanced environment.

The capacity bottleneck observed in the 1-1
model is particularly undesirable for the industry.
Unlimited scaling of the model size (Zhang et al.,
2020) is impossible in practice, where inference
cost and latency are crucial. With limited capacity,
gain from multilingual translation training (hence-
forth multi-way training) without being subject to
the losses of the capacity bottleneck is difficult
to achieve. Furthermore, modification of the 1-1
model such as simple addition of a language is
troublesome because the entire model must be re-
trained from the beginning as a single module, thus
requiring a considerable amount of time and effort.
This low maintainability makes 1-1 less attractable
for industrial use. Still, the benefit from multi-way
training is difficult to miss.

These problems lead us to revisit the multilin-
gual neural machine translation model that share
parameters among the same languages (Firat et al.,
2016a). We named this architecture as the modu-
larized multilingual NMT model (henthforth M2)
since the model share language-specific modules
(encoders or decoders) instead of the whole model.
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Figure 1: Model overview of three different types of multilingual NMT models for three languages: En, Es, Ko.
Left is a collection of single models for 6 translation directions. Middle is the 1-1 model that share the whole
parameters of the model for 6 directions. Right is the M2 model that only share language-specific modules.

Figure 1 illustrates the architectural overview of
multilingual translation using single models, the
1-1 and the M2. Although the M2 has not been
given substantial attention owing to the linear in-
crease in its parameters as the number of languages
increases, it is relatively free from the capacity bot-
tleneck problem while maintaining a reasonable
inference cost. In this study, we explore the possi-
bility of M2 as an alternative to the 1-1 model in
industrial settings.

To resolve the capacity bottleneck problem while
enjoying the benefits, we identify the effects of
multi-way training in a carefully controlled envi-
ronment. We find that the data-diversification and
regularization of multi-way training enable the M2
to outperform both single and 1-1 models with less
suffering from capacity bottlenecks. Additionally,
the M2 demonstrates a comparable performance
increase to 1-1 for low resource pairs in an unbal-
anced environment.

Combined with its modularizable architecture,
interlingual space learned by the M2 allows conve-
nient and effective modification of the model. The
simple addition of language-specific modules to
the M2 outperformed an individually trained model.
The zero-shot learning of the incremented language
module outperforms English pivoted translation
and is even comparable to a supervised model. Fi-
nally, we show that the language invariance of such
space improves with more languages.

In summary, our contribution is threefold. 1) We
conceptually specify the effects of multi-way train-
ing and verified them with comprehensive experi-
ments. 2) We show that the M2 can leverage those
effects as the 1-1 without the constraint of the ca-
pacity bottleneck. 3) Finally, we find that multi-way
training of the M2 forms interlingual space which
allows simple yet effective extension of languages.

2 Related works

2.1 Neural machine translation
The most popular framework for NMT is the
encoder-decoder model (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2014; Luong et al.,
2015; Vaswani et al., 2017). Adopting attention
module greatly improved the performance of
encoder-decoder model by using context vector in-
stead of fixed length vector (Bahdanau et al., 2014;
Luong et al., 2015). By exploiting multiple atten-
tive heads, the Transformer model has become the
de-facto standard model in NMT (Vaswani et al.,
2017; Ott et al., 2018; So et al., 2019).

2.2 Multilingual neural machine translation
Dabre et al. (2019) categorized the architectures of
multilingual NMTs according to their degrees of
parameter sharing. We briefly introduce the models
under their criteria.

Early multilingual NMT models minimally
shared the parameters by sharing language-specific
encoder (Dong et al., 2015; Lee et al., 2017) or de-
coder (Zoph and Knight, 2016). Firat et al. (2016a)
extended this to sharing both language-specific en-
coders and decoders with a shared attention mod-
ule.

The 1-1 model, fully shared, uses only one en-
coder and decoder to translate all directions (Ha
et al.; Johnson et al., 2017). The target language is
indicated by prepending a reserved target language
token to the source text. Being compact, the 1-1
model has become the mainstream of multilingual
NMT research (Ha et al.; Johnson et al., 2017; Aha-
roni et al., 2019; Arivazhagan et al., 2019b; Wang
et al., 2019; Liu et al., 2020), However, subsequent
studies tried to solve the capacity bottleneck prob-
lem of the 1-1 through knowledge compression
(Tan et al., 2019b), language clustering (Tan et al.,
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2019a) or increased capacity (Zhang et al., 2020).
Partially shared models are extensively studied

to compromise the capacity bottleneck and model
size (Blackwood et al., 2018; Sachan and Neubig,
2018; Platanios et al., 2018; Zaremoodi et al., 2018;
Bapna and Firat, 2019). Despite their popularity,
we do not compare them in this work because par-
tially sharing is essentially relaxing the capacity
constraint of fully sharing. Also, Sachan and Neu-
big (2018) reported that the performance of par-
tially shared models is language-specific, which is
not the focus of our study. Instead, we focus on the
general trade off of parameter sharing.

2.3 Interlingual representation

Building interlingual1 representation is another in-
terest in multilingual language modeling (Schwenk
and Douze, 2017). Interlingual space is the ground
for zero-shot translation (Johnson et al., 2017; Ari-
vazhagan et al., 2019a; Al-Shedivat and Parikh,
2019) and incremental training (Escolano et al.,
2019). Several explicit methods were suggested
to build interlingual space including shared atten-
tion (Firat et al., 2016a), neural interlingua module
(Lu et al., 2018), attention bridge (Vázquez et al.,
2019), auxiliary loss (Arivazhagan et al., 2019a)
and shared encoder (Sen et al., 2019).

We further extend the study of Firat et al. (2016a)
which inspired our M2. Firat et al. (2016a) only
shared English encoder and decoder as they used
English-centered data (parallel corpus that include
English). Instead we show that sharing modules
of all languages using diverse directions of data
further increases the performance and is the key
to build interlingual representation without any ex-
plicit regularization.

Our motivation to rediscover the M2 is concur-
rently shared with Escolano et al. (2020). Escolano
et al. (2020) empirically show that M2 is capable of
quickly deploying new languages with incremen-
tally added modules, and found it outperforms 1-1.
We also experiment on incremental learning and
get a similar conclusion, and further interpret the
results as an indication that M2 effectively forms
an interlingual space. Regarding comparison of M2
and 1-1 in general, we deliver an in-depth under-
standing of a less-studied model M2 focusing on

1We prefer the term ‘interlingual’ to ‘language-agnostic’
because we expect it to be better if the space is shared while
maintaining the language-specific features instead of removing
them.

how to maximize its utility in industry. Experiments
on incremental learning are to check whether M2
is a maintainable alternative to 1-1 (which requires
expensive re-training from scratch).

3 Effects of multi-way training

Because of its complexity, the effects of multi-way
training are yet to be identified. Various factors
may affect the performance of multilingual transla-
tion: model size compared to the amount of data,
the number of training directions, the degree of
data imbalance among different directions, and the
portion of multi-parallel data. In this section, we
discuss the possible effects on performance result-
ing from these factors.

Capacity bottleneck A capacity bottleneck is
the most plausible cause of performance degrada-
tion in multi-way training. For a fixed size model,
the capacity bottleneck is more prominent with
the increase in training directions (especially tar-
get languages) and the amount of data (Johnson
et al., 2017; Aharoni et al., 2019; Arivazhagan et al.,
2019b; Zhang et al., 2020).

Cross-language effect Cross-language effect oc-
curs when multiple languages are shared in a mod-
ule. Low resource languages reportedly benefit
from multi-way training when trained along with
high resource pairs (Zoph et al., 2016; Nguyen and
Chiang, 2017; Neubig and Hu, 2018). The inter-
action among languages in a module can either
be positive (transfer) or negative (interference) on
the performance according to their similarity in
linguistic patterns.

Data-diversification Data-diversification is as-
sociated with the portion of multi-parallel among
multi-way data. If either the source-side or the
target-side language is shared across two direc-
tions and data of the directions is not multi-parallel,
the shared module learns more diverse samples
of the language. For example, if an English en-
coder is shared between En-De and En-Fr direc-
tions (and English sentences of two are not com-
pletely shared), the encoder learns more diverse
English sentences from both pairs. Few studies dis-
tinguished this effect (Firat et al., 2016a,b). We
refer to the improvement resulting from this factor
as the data-diversification effect.

Regularization Learning to encode or decode
the same language in various directions may result
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in better representation learning and less overfit-
ting in a single direction. This effect has already
been observed by Firat et al. (2016a) as the benefit
of generalization and suggested by Aharoni et al.
(2019) to benefit many-to-many models compared
to many-to-one models.

4 Comparison of single models, 1-1 and
M2

We compared the models with the same inference
capacity in a series of conditions. Note that most
of the multilingual NMT research was conducted
in a joint one-to-many and many-to-one environ-
ment (JM2M): collected data are English-centered.
Despite its simplicity, observations under such set-
ting may be unreliable to speak for many-to-many
(M2M) environment, which is also clearly in de-
mand in the industry. Therefore, we set M2M train-
ing as the default.

We also distinguish between two different
dataset compositions: the sharing case where all
language pairs share the same sentence set, and
the non-sharing case where there is no overlap be-
tween different pairs. To illustrate, a multiparallel
set ‘En - Es - Ko’ can be shared for all possible
three pairs (En - Es, En - Ko, Es - Ko) or used only
once for one pair. Considering that multiparallel
data is rare in practice, we compared the models in
a strictly non-sharing environment.

4.1 Settings
Dataset We collected multi-parallel data from
Europarl (Koehn, 2005) and selected four lan-
guages: German, English, Finnish, and French. To
construct a completely balanced environment, we
created 500K, 10K, and 10K (train, valid, and test)
non-sharing pairs for every twelve possible direc-
tions from 1.56M multi-parallel data. For the unbal-
anced environment, we synthetically reduced the
amount of data for some pairs to match a specific
ratio of the data amounts for low, medium, and high
resource pairs. For further details on data division,
see appendix A.

Model For the 1-1 model, we used the model of
Aharoni et al. (2019) which is transformer imple-
mentation of Johnson et al. (2017). For the M2, we
modified Firat et al. (2016a) to not share the at-
tention module. Language-specific embeddings are
shared between the encoder and decoder. We im-
plemented all models using transformer (Vaswani
et al., 2017). We used the transformer with a hidden

Pairs Single 1-1 M2
De-En 33.00 31.04 (-1.96) 33.51 (0.51)
De-Fi 15.20 13.08 (-2.12) 15.93 (0.73)
De-Fr 28.47 25.73 (-2.74) 29.08 (0.61)
En-De 25.87 23.83 (-2.04) 26.46 (0.59)
En-Fi 19.57 16.94 (-2.63) 20.03 (0.46)
En-Fr 35.74 32.99 (-2.75) 36.09 (0.35)
Fi-De 18.97 16.75 (-2.22) 19.51 (0.54)
Fi-En 29.26 27.32 (-1.94) 30.24 (0.98)
Fi-Fr 25.21 22.24 (-2.97) 25.94 (0.73)
Fr-De 22.23 20.09 (-2.14) 22.64 (0.41)
Fr-En 35.49 33.81 (-1.68) 36.18 (0.69)
Fr-Fi 15.42 13.6 (-1.82) 16.15 (0.73)
Avg 25.37 23.12 (-2.25) 25.98 (0.61)

Table 1: SacreBLEU test scores of single models, 1-
1, and M2 trained using a completely balanced, non-
sharing dataset. Values in parentheses indicate the per-
formance difference from single models.

dimension of 256 and a feed-forward dimension of
1024 for our base model. The rest of the configura-
tion follows the base model employed by Vaswani
et al. (2017) except for the attention dropout and ac-
tivation dropout of 0.1. The 1-1 model uses a joint
vocabulary with 32K tokens, whereas the M2 uses
a language-specific vocabulary with 16K tokens
each, all processed using the BPE (Kudo, 2018) of
the sentencepiece package2 (Kudo and Richard-
son, 2018).

Training We used the fairseq framework 3 (Ott
et al., 2019) to train and test all models. We set
the batch size so that every encoder/decoder mod-
ule learned at a maximum of 6144 tokens/GPU.
All models were trained using 4 NVIDIA Tesla
V100 GPUs. We followed the default parameters
of the Adam optimizer (Kingma and Ba, 2014). For
the learning rate schedule, we used 2K warm-up
steps until 1e-3, after which we used the inverse
square root learning rate schedule (Vaswani et al.,
2017). The best model was selected using the best
validation loss within the same maximum number
of epochs. All the performance was measured in
sacreBLEU4 (Post, 2018) using a beam size of 4
and a length penalty of 0.6. Appendix B provides
more details of training.
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ID Data sharing Model size Training pairs Single 1-1 M2
1 Non-sharing Base M2M(12) 25.37 23.12 (-2.25) 25.98 (0.61)
2 Sharing Base M2M(12) 25.34 23.27 (-2.07) 25.65 (0.31)
3 Non-sharing Large M2M(12) 25.43 26.90 (1.47) 27.17 (1.74)
4∗ Non-sharing Base JM2M(6) - 27.50 (-2.32) 29.70 (-0.12)
5∗ Non-sharing Base M2M(12) 29.82 27.66 (-2.16) 30.42 (0.6)

Table 2: Averaged SacreBLEU test scores of single models, 1-1, and M2 trained using a balanced dataset of differ-
ent configurations. M2M indicates the training of full many-to-many directions among languages (12 directions),
whereas JM2M represents the training of directions that only include English on one side(6 directions). ∗ indicates
that the score is averaged only on English-centric.

4.2 Balanced environment

We first compared the performance of multi-way
directions in a balanced and non-sharing environ-
ment, which is the most strictly controlled.

The results are shown in Table 1. The 1-1 model
performed worse than both the single models and
the M2 in every direction, clearly indicating a ca-
pacity bottleneck. In contrast, the M2 consistently
outperformed not only the 1-1 model but also
the single models in all directions. As the M2
cannot benefit from cross-language effect due to
the lack of a shared module between any languages,
we hypothesize that the following two effects are
in charge: data-diversification and regularization.
We verify this hypothesis using ablation studies.

Note that the 1-1 model’s variation of degra-
dation is higher with target languages than with
source languages, even though all the directions
are trained using the same amount. The translation
to English (-1.96, -1.94, and -1.68) consistently
degraded the least, whereas that to French (-2.74,
-2.75, and -2.97) degraded the most, given the same
source languages. This finding is consistent with
previous observations that the capacity bottleneck
is more prominent in the decoders (Johnson et al.,
2017; Arivazhagan et al., 2019b).

Ablation We compare models in a series of con-
ditions (see IDs in Table 2). 1© We denote the
summarized performance demonstrated in Table
1 for reference. 2© To establish whether data-
diversification was responsible for the performance
improvement of the M2, we experimented using
fully shared data. 3© To observe the behavior under
alleviated capacity constraints, we experimented
using bigger models. We used a transformer with
a hidden dimension of 512 and a feed-forward di-

2https://github.com/google/sentencepiece
3https://github.com/pytorch/fairseq

mension of 2048 for our large model. The training
settings are the same except for a larger batch size
(x4). 4© Finally, we compared the models trained
using the JM2M (6 directions instead of 12) to
observe the behavior of the models with fewer di-
rections. 5©We averaged scores of English-centric
directions in 1© to compare with 4©. Appendix C
presents the individual score for each direction.

Table 2 shows the results of each environment.
When we completely shared the data( 2©), the per-
formance gain of the M2 versus that of the single
models (0.31) decreased. Given that 2© eliminates
the chance of data-diversification, the degraded per-
formance (0.3) can be attributed to it. However, the
fact that the M2 still outperforms the single models
(0.31) implies that the M2 can still benefit from the
regularization effect of multi-way training. The mi-
nor increase in performance of 1-1 (0.18) seems to
imply that data-diversification can be detrimental
under the severe capacity bottleneck.

3© shows the performance of a larger model
trained using the same data. Single models barely
improved with the use of larger models, indicat-
ing the absence of a capacity bottleneck. On the
contrary, the 1-1 model and the M2 both showed
an increase in performance. The 1-1 model ex-
hibits a gain from multi-way training only with
enough capacity (1.47). This indicates that the ben-
efit of multi-way training can only be achieved
with enough capacity for the 1-1 model. Although
the M2 is less affected by capacity bottleneck, the
larger capacity is also beneficial for the M2 (1.74)
to fully leverage the benefits of multi-way training.

To compare the models trained with JM2M ( 4©),
5© shows the score averaged only over directions

from and to English 1©. The JM2M scheme is likely
to have mixed results: there is less pressure from the
capacity bottleneck due to fewer training directions.
However, possible gains from data-diversification



5910

Resource Pairs 1:1:1 1:2:4 1:5:25
1-1 M2 1-1 M2 1-1 M2

High
En-Fi 16.94 (-2.63) 20.03 (0.46) 18.01 (-1.4) 19.92 (0.51) 18.66 (-0.75) 19.82 (0.41)
Fi-En 27.32 (-1.94) 30.24 (0.98) 28.04 (-1.21) 30.06 (0.81) 28.51 (-0.74) 29.9 (0.65)
Avg 22.13 (-2.28) 25.14 (0.72) 23.02 (-1.3) 24.99 (0.66) 23.58 (-0.74) 24.86 (0.53)

Medium

En-Fr 32.99 (-2.75) 36.09 (0.35) 32.73 (-1.24) 35.26 (1.29) 31.61 (1.14) 33.66 (3.19)
Fr-En 33.81 (-1.68) 36.18 (0.69) 33.73 (-0.23) 35.39 (1.43) 33.1 (2.5) 33.9 (3.3)
Fi-Fr 22.24 (-2.97) 25.94 (0.73) 23.35 (-0.11) 25.27 (1.81) 22.6 (3.37) 24.08 (4.85)
Fr-Fi 13.6 (-1.82) 16.15 (0.73) 14.49 (0.47) 15.58 (1.56) 14.43 (3.78) 14.19 (3.54)
Avg 25.66 (-2.31) 28.59 (0.62) 26.08 (-0.28) 27.88 (1.52) 25.44 (2.7) 26.46 (3.72)

Low

De-En 31.04 (-1.96) 33.51 (0.51) 30.31 (1.68) 32.29 (3.66) 28.45 (17.02) 27.88 (16.45)
En-De 23.83 (-2.04) 26.46 (0.59) 22.69 (0.9) 24.78 (2.99) 18.61 (11.66) 19.91 (12.96)
De-Fi 13.08 (-2.12) 15.93 (0.73) 13.72 (2.56) 14.89 (3.73) 12.76 (10.58) 11.62 (9.44)
Fi-De 16.75 (-2.22) 19.51 (0.54) 16.8 (2.06) 18.3 (3.56) 14.01 (10.99) 14.25 (11.23)
De-Fr 25.73 (-2.74) 29.08 (0.61) 25.8 (1.45) 27.6 (3.25) 23.37 (15.76) 23.5 (15.89)
Fr-De 20.09 (-2.14) 22.64 (0.41) 19.76 (1.35) 21.45 (3.04) 16.18 (10.76) 16.58 (11.16)
Avg 21.75 (-2.2) 24.52 (0.57) 21.51 (1.67) 23.22 (3.37) 18.9 (12.8) 18.96 (12.85)

Total Avg 23.12 (-2.25) 25.98 (0.61) 23.29 (0.52) 25.07 (2.3) 21.86 (7.17) 22.44 (7.76)

Table 3: Test SacreBLEU test scores of single models, 1-1 model, and M2 trained using an unbalanced, com-
pletely non-sharing dataset. 1:1:1, 1:2:4, and 1:5:25 represent the ratios of the low, medium, and high resource
pairs, respectively. Values in parentheses indicate the performance difference from single models in respective
environments.

or regularization are also smaller. Both the 1-1
model and the M2 perform better when trained
using M2M ( 5©) than when trained using JM2M
( 4©). However, the performance difference is more
significant in the M2 (0.72) than in the 1-1 model
(0.16). We assume that while both models bene-
fit from data-diversification and regularization ac-
companied by training using more directions, the
capacity bottleneck in 1-1 counterweighs those pos-
itive effects.

4.3 Unbalanced environment

We also compared the models with unbalanced
training data, which is a natural condition in prac-
tice. To synthetically create an unbalanced environ-
ment, we first divided the pairs into low (De-En, De-
Fi, De-Fr), medium (En-Fr, Fi-Fr), and high (En-
Fr) resource pairs. Next, we reduced the amount of
data for low and medium pairs, setting the ratio of
low:medium:high = 1:2:4, and 1:5:25, respectively.
The detailed division of the dataset can be found
in appendix A. Note that the models learns with
fewer data in the unbalanced environment. We first
trained the models without up-sampling.

Table 3 shows the scores of the 1-1 model and
the M2 in each setting (1:1:1, 1:2:4, 1:5:25). Both
models show similar trends with unbalanced data.
Compared to the balanced environment, medium
and low resource pairs tend to benefit from multi-
way training, with gains more prominent for lower
resource pairs as the data get more unbalanced
(12.8 by the 1-1 model and 12.85 by the M2). In-

M US High Medium Low

1-1 × 23.58 (-0.74) 25.44 (2.7) 18.9 (12.8)
◦ 20.5 (-3.83) 24.31 (1.57) 19.78 (13.68)

M2 × 24.86 (0.53) 26.46 (3.72) 18.96 (12.85)
◦ 19.64 (-4.69) 23.49 (0.75) 16.88 (10.78)

Table 4: Averaged test SacreBLEU scores of 1-1 and
M2 trained with 1:5:25 dataset with and without up-
sampling.

terestingly, the M2 exhibits a similar level of im-
provement to that of the 1-1 model in low and
medium resource pairs. Considering the M2 is
not subject to the cross-language transfer, the per-
formance increase in lower resource pairs may be
better explained by data-diversification and regu-
larization. This indicates that the cross-language
effect of the 1-1 model may be more subtle than
expected.

On the other hand, M2 barely showed the per-
formance degradation in high resource pairs. This
implies that the performance boost of low resource
pairs and the drop of high resource pairs may not be
necessarily trade-off without a capacity bottleneck.

Ablation The sampling method in an unbalanced
setting is known to affect the performance (Ari-
vazhagan et al., 2019b). We compared two models
in the most unbalanced environment (1:5:25) with
and without up-sampling.

Table 4 shows the results. As previously re-
ported, we confirm that up-sampling makes the
results extreme in the 1-1 model: low resource
pairs improve more (from 12.8 to 13.68), whereas
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high resource pairs degrade more (from -0.74 to
-3.83). On the other hand, up-sampling in the M2
harmed performance in all the low, medium, and
high resource pairs. The difference in converge
rates among modules may be the cause; models
overfit in low-resource pairs, and underfit in high-
resource pairs. This is supported by the changes in
the M2’s performance with more training epochs
(Appendix C).
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Figure 2: Interlingual space formed by the multi-way
training of the M2 (En, Es and Ko). While freezing the
M2, incrementally training a new language (Ja) with a
single parallel corpus (En - Ja) adapt new modules to
the interlingual space.

5 Interlingual space of the M2

Creating interlingual space has been an active re-
search area (Lu et al., 2018; Sen et al., 2019;
Arivazhagan et al., 2019a; Escolano et al., 2019;
Vázquez et al., 2019) because it is critical to scal-
ing out languages, such as incremental learning.
Because input of M2 does not contain any informa-
tion regarding the target language, encoders need
to encode it so that any decoder can translate. At
the same time, decoders of the M2 should be able
to generate from output of any M2 encoder. For
this reason, we assume that the output space of M2
encoders is interlingual.

Figure 2 illustrates the interlingual space of a
M2. Multi-way training of 3 languages (En, Es and
Ko) forms the interlingual space which is shared
by 6 modules. This space is preserved as long as
the weights of the M2 are frozen. Training a new
module (Ja) with a single parallel corpus (En - Ja)
using one of the frozen modules (En) adapt the
module to the interlingual space. We speculate that
the new module (Ja) would be compatible with the
other modules (Es and Ko) if the interlingual space

ID Model En-Fr Fr-En
1 M2(4) + En-Fr 34.70 34.90
2 M2(4) + En-Fr with init 34.88 34.94
3 M2(4) + En,De-Fr 35.40 35.57
4 M2(4) + En,De,Es-Fr 35.41 35.70
5 M2(4) + En,De,Es,Nl-Fr 35.47 35.92
6∗ Single 34.48 34.11
7∗ M2(5) 36.24 36.35

Table 5: SacreBLEU test scores of a single model and
incremented modules of the M2. Values in parenthe-
ses indicate the number of languages involved in the
M2 (4: De, En, Es, Nl; 5: 4 + Fr). + indicates incre-
mental training with the former model frozen. with init
indicates that the incremented module is initialized us-
ing the weight of the English module. ∗ represents the
model is trained from scratch and not incrementally.

is formed well.
We verify this using incremental zero-shot learn-

ing. Additionally, we measure how the language
invariance of the space changes as the number of
languages involved in the M2 varies. Since main-
tainability is one of the critical needs in practice,
high performance on incremental learning would
be a desirable trait in industrial settings.

5.1 Setting

To increase the number of languages, we modi-
fied the multi-parallel corpus of Europarl differ-
ently. We selected six languages (German, English,
Spanish, Finnish, French, and Dutch) and divided
a 1.25M multi-parallel corpus into 250K for each
direction without sharing. Other details are mostly
the same as in former experiments. The detailed
division of the dataset and training details can be
found in appendix A and B.

5.2 Incremental training

We added French to an M2 model trained using all
directions among four languages (German, English,
Spanish, and Dutch). An additional French encoder
and decoder were trained using English-French
pairs while the parameters of English modules re-
mained frozen ( 1©). We also tested two methods to
help incremental training as follows. 1) Initialize
the new module using one of the modules trained
using other languages. In the experiment, we used
the weights copied from the English module as the
initialization for French ( 2©). Note that the English
and French module does not share any informa-
tion, such as embedding. 2) Train the module with
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Model De-Fr Fr-De Es-Fr Fr-Es Nl-Fr Fr-Nl
Pivot 25.42 19.53 30.37 30.87 23.52 22.06

1 26.37 19.08 31.91 32.22 24.31 22.15
2 26.79 19.90 32.17 32.68 24.64 22.63
3 - - 32.91 33.34 25.65 23.44
4 - - - - 25.82 23.55
6∗ 26.91 20.86 32.90 33.70 24.81 22.97
7∗ 28.86 22.70 34.62 35.22 26.58 24.98

Table 6: SacreBLEU zero-shot test scores of the English-pivoted single models and incremented modules from
Table 5. ∗ means that the model is trained using the supervision of 250 thousand pairs.

auxiliary directions. We incrementally added auxil-
iary directions of De-Fr ( 3©), Es-Fr ( 4©), and Nl-Fr
( 5©). We compared the models with a singly trained
model ( 6©), and the M2 models trained using five
languages from scratch ( 7©). 7©worked as an upper
bound for the incremental training.

Table 5 shows the performance of En-Fr and Fr-
En with incremental training. The incrementally
trained model without any additional method
( 1©) outperformed a single model ( 6©) even
though half of the model was frozen. This not
only indicates that the language-agnostic space is
well-formed but also shows that incremented direc-
tion can benefit from a well-trained frozen module.

We also found that our two methods are effective
in incremental training. Even though French does
not share any information with the trained English
module, initializing the French module with the
weights learned by the English module benefits the
performance marginally. Incrementally training the
new module using multiple directions helps as the
number of directions increases. Note that the two
methods can be applied orthogonally. Although
none of the incrementally trained models outper-
form the M2 model trained from scratch, this still
shows that simple incremental training for the M2
can be a good alternative for expensive training
from scratch.

We examined whether an incremented module
in one direction can generalize to the other direc-
tions. We compared the zero-shot performance of
the models in Table 5 with the English-pivoted
translation performance using two single models.
We also denoted the supervised performance of sin-
gle models, and jointly trained the M2 for reference
(250K for each direction).

5.3 Incremental zero-shot learning

Table 6 shows the zero-shot performance of in-
crementally trained modules. Amazingly, most of
the incremented modules demonstrated better
performance than the English-pivoted transla-
tion. The only exception was in the Fr-De direc-
tion of the naively incremented module ( 1©), which
seemed to be marginal (-0.45). Our methods for in-
cremental training were also effective for zero-shot
performance. The results were even comparable
to the single supervised models trained with 250K
parallel corpus. This shows that multi-way training
creates shared (interlingual) space instead of pair
specific space.

5.4 The language invariance of the
interlingual space

The interlingual space established by the M2 was
confounding, considering no additional regulariza-
tions or methods were adopted. We measured the
language invariance of the interlingual space while
the varying the number of languages of the M2
model. We trained a series of M2 models that in-
cluded 3 - 6 languages (6, 12, 20, and 30 directions)
and found that the use of more languages to train
the M2 also improved its performance in all di-
rections (appendix D). We investigated with two
metrics to measure the language invariance of in-
terlingual space.

Cosine Similarity We measured the representa-
tion similarity of parallel sentences from a parallel
corpus. To obtain the fixed-size representation, we
average pooled the output of encoders through the
time steps. We averaged the cosine similarity of
10K pairs from the test set.

Mono-direction translation When training the
M2, mono-direction (where source and target lan-
guages are the same) is not trained because mod-
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Model Cosine Similarity BLEU Score
En-De En-Nl De-Nl Avg En-En

M2(3) 0.7228 0.7062 0.7043 0.7111 75.55
M2(4) 0.7682 0.7425 0.7635 0.7581 82.55
M2(5) 0.7832 0.7603 0.7827 0.7754 83.13
M2(6) 0.8169 0.7905 0.8189 0.8088 82.80

Table 7: Cosine text similarity score of encoder outputs and SacreBLEU score of mono-direction translation(En-
En). Values in parentheses indicate the number of languages involved in the M2 (3: De, En, Nl; 4: 3 + Es; 5: 4 +
Nl; 6: 5 + Fi).

ules tend to learn to simply copy the input, which
hinders translation training (Firat et al., 2016a).
Meanwhile, interlingual output representation of
the encoders should be able to be translated by
any decoder, including the decoder of the source
language. Therefore, the translation score of mono-
direction translation shows how well the informa-
tion of the source sentence is preserved.

Table 7 shows the cosine similarity and mono-
direction translation scores of the M2. As the M2
trains using more languages, the cosine similarity
of all three pairs increases, which implies higher
language invariance in interlingual space. However,
the gain from marginal languages decreases as the
number of languages increases. Mono-direction
translation scores mostly align with the number of
languages except for the M2(6), which degraded
a little from M2(5). As a result, we reasonably
conclude that the language invariance of the inter-
lingual space improves with more languages.

6 Conclusion

In this study, we re-evaluate the M2 model and
suggest it as an appropriate choice for multilingual
translation in industries. By extensively comparing
the single models, 1-1 model, and M2 in varying
conditions, we find that the M2 can benefit from
multi-way training through data-diversification and
regularization while suffering less from capacity
bottlenecks. Additionally, we demonstrate that the
M2 can also benefit low resource pairs in an unbal-
anced environment as a 1-1 model without being
subject to cross-language effect. Next, we suggest
that the M2 model is easily maintainable because
of its interlingual space. The interlingual space not
only enables incremental training in a simple man-
ner, but also accompanies competitive incremental
zero-shot performance. Furthermore, we validate
that the language invariance of the space enhances
as the number of languages in the M2 increases. We

hope that this study sheds light on the relatively dis-
regarded M2 model and provide a benchmark for
selecting a model among varying levels of shared
components.
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A Dataset

A.1 Division of multi-parallel dataset

In order to create completely non-sharing dataset
and make the best use of multi-parallel corpus,
we divide the 1.5K multi-parallel corpus into 3
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De En Es Fi Fr Nl
De - 1 2 3 4 5
En - - 3 4 5 2
Es - - - 5 1 4
Fi - - - - 2 1
Fr - - - - - 3
Nl - - - - - -

Table 9: Division of multi-parallel parts for each pair in
section 5

Resource Pairs 1:1:1 1:2:4 1:5:25
High En-Fi 500K 500K 500K

Medium
En-Fr 500K 250K 100K
Fi-Fr 500K 250K 100K

Low
De-En 500K 125K 20K
De-Fi 500K 125K 20K
De-Fr 500K 125K 20K

Table 10: The amount of data for each pair in section 4

parts(500K) for section 4 and 5 parts(250K) for
section 5. And then, we assigned the parts to pairs
so that no two directions of the same side share
the same part. The assignment for section 4 and
5 are stated in table 8 and 9 respectively. Valida-
tion and test are divided with the same manner.
For complete-sharing dataset, training data for all
pairs only created from part 1. However, valida-
tion and test set remain the same with completely
non-sharing dataset.

A.2 Amount of data for each pairs
In order to create unbalanced environment in sec-
tion 4, we limited the amount of data for some
directions. Table 10 shows the amount of the data
for each pair in balanced, and unbalanced envi-
ronments in section 4. For section 5, the amounts
of all directions are the same with 250K. All the
validation and test set are the same with 10K.

Though our dataset can easily be reconstructed
from the open dataset (Europarl) with described
process, we also made our dataset available
online4 for convenience of readers. We only
uploaded the dataset of the balanced environ-
ment since unbalanced environment can be made
from them trivially. The dataset is binarized
with fairseq-preprocess command of fairseq
framework.

4https://drive.google.com/file/d/
1CmSzFI6h2cGYJshUWEPkF7Hx4UcL3DVl

B Training detail

B.1 Batch size
We selected the batch size of 6144 max tokens with
the best validation loss of a single model (En-De)
among {1536, 3072, 6144, 12288, 24576} max to-
kens per GPU (4 GPUs). While the total number of
parameters and the training directions is different
among single model, 1-1 and M2, we set the batch
size for each direction so that each module learns
with the same batch size (6144 tokens). Specifically,
one step of a single model includes a single direc-
tion, while that of 1-1(4) and M2(4) includes 12
directions. However, training directions per module
between 1-1(4) and M2(4) is different with 12 and
3 directions. Therefore, the batch size per direction
of 1-1 is 512 (1/12 of 6144) and that of M2 is 1536
(1/4 of 6144). Since we accumulate the gradients
of all directions, all the compared modules learn
with the same batch size of data.

B.2 Sampling
To train balanced data, we used round robin
scheduling of all directions. We compared two
sampling methods in ablation of unbalanced en-
vironment: up-sampling and proportional sam-
pling. Round robin scheduling is equivalent to up-
sampling low-resource data in unbalanced envi-
ronment. For efficient proportional sampling, we
sampled several small batches of pairs proportional
to the amount of total pairs. We accumulated gradi-
ents of several batches to make expected batch-size
of each module to meet the total batch size.

B.3 Early stopping
Since fixing the maximum tokens of a batch per
module results in different step size among mod-
els, we stopped the training of models based on
the maximum number of epochs. All the best mod-
els were chosen based on the best validation loss
(averaged) within 100 epochs.

C Detailed scores of ablations

This section provides detailed scores of the ablation
part of the section 4 and 5.

Table 11 shows detailed scores under complete
sharing ( 2© of table 2) and increased capacity ( 3©
of table 2). Table 12 shows detailed scores under
JM2M( 4© of table 2) and M2M( 5© of table 2) train-
ing.

Table 13 shows detailed scores of the models un-
der proportional sampling and up-sampling in table
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Pairs Sharing Large
Single 1-1 M2 Single 1-1 M2

De-En 32.86 30.61 (-2.25) 33.14 (0.28) 32.84 34.5 (1.66) 34.59 (1.75)
De-Fi 15.04 13.67 (-1.37) 15.45 (0.41) 15.21 16.96 (1.75) 17.15 (1.94
De-Fr 28.27 26.39 (-1.88) 28.93 (0.66) 28.52 29.84 (1.32) 30.24 (1.72)
En-De 25.98 23.57 (-2.41) 26.15 (0.17) 25.97 27.23 (1.26) 27.57 (1.6)
En-Fi 19.52 17.19 (-2.33) 19.63 (0.11) 19.49 21.26 (1.77) 21.39 (1.9)
En-Fr 35.51 32.48 (-3.03) 35.65 (0.14) 35.65 36.39 (0.74) 37.14 (1.49)
Fi-De 18.63 17.33 (-1.3) 19.38 (0.75) 19.07 20.55 (1.48) 20.88 (1.81)
Fi-En 29.25 27.09 (-2.16) 29.89 (0.64) 29.39 31.35 (1.96) 31.57 (2.18)
Fi-Fr 25.53 23.18 (-2.35) 25.78 (0.25) 25.45 26.84 (1.39) 27.39 (1.94)
Fr-De 22.18 20.58 (-1.6) 22.35 (0.17) 22.28 23.73 (1.45) 23.85 (1.57)
Fr-En 35.58 33.2 (-2.38) 35.63 (0.05) 35.78 36.89 (1.11) 37.12 (1.34)
Fr-Fi 15.70 13.99 (-1.71) 15.85 (0.15) 15.55 17.28 (1.73) 17.17 (1.62)
Avg 25.34 23.27 (-2.06) 25.65 (0.32) 25.43 26.9 (1.47) 27.17 (1.74)

Table 11: Detailed scores of 2© and 3© in table 2

Pairs Single JM2M M2M
1-1 M2 1-1 M2

De-En 33.00 30.93 (-2.07) 32.55 (-0.45) 31.04 (-1.96) 33.51 (0.51)
Fi-En 29.26 27.18 (-2.08) 29.08 (-0.18) 27.32 (-1.94) 30.24 (0.98)
Fr-En 35.49 33.84 (-1.65) 35.6 (0.11) 33.81 (-1.68) 36.18 (0.69)
En-De 25.87 23.6 (-2.27) 25.9 (0.03) 23.83 (-2.04) 26.46 (0.59)
En-Fi 19.57 16.6 (-2.97) 19.32 (-0.25) 16.94 (-2.63) 20.03 (0.46)
En-Fr 35.74 32.86 (-2.88) 35.77 (0.03) 32.99 (-2.75) 36.09 (0.35)
Avg 29.82 27.5 (-2.32) 29.7 (-0.12) 27.66 (-2.17) 30.42 (0.6)

Table 12: Detailed scores of 4© and 5© in table 2

Resource Pairs Proportional sampling Up-sampling
1-1 M2 1-1 M2 M2(+10)

High
En-Fi 18.66 (-0.75) 19.82 (0.41) 15.7 (-3.71) 14.76 (-4.65) 16.86 (-2.55)
Fi-En 28.51 (-0.74) 29.9 (0.65) 25.3 (-3.95) 24.52 (-4.73) 26.81 (-2.44)
Avg 23.58 (-0.74) 24.86 (0.53) 20.5 (-3.83) 19.64 (-4.69) 21.84 (-2.5)

Medium

En-Fr 31.61 (1.14) 33.66 (3.19) 31.27 (0.8) 30.79 (0.32) 32.72 (2.25)
Fr-En 33.1 (2.5) 33.9 (3.3) 31.75 (1.15) 30.98 (0.38) 32.39 (1.79)
Fi-Fr 22.6 (3.37) 24.08 (4.85) 21.54 (2.31) 20.64 (1.41) 22.43 (3.2)
Fr-Fi 14.43 (3.78) 14.19 (3.54) 12.67 (2.02) 11.54 (0.89) 12.86 (2.21)
Avg 25.44 (2.7) 26.46 (3.72) 24.31 (1.57) 23.49 (0.75) 25.1 (2.36)

Low

Ee-En 28.45 (17.02) 27.88 (16.45) 28.31 (16.88) 24.5 (13.07) 24.24 (12.81)
En-De 18.61 (11.66) 19.91 (12.96) 21.03 (14.08) 18.61 (11.66) 18.32 (11.37)
Ee-Fi 12.76 (10.58) 11.62 (9.44) 11.8 (9.62) 9.21 (7.03) 9.31 (7.13)
Fi-De 14.01 (10.99) 14.25 (11.23) 15.06 (12.04) 12.6 (9.58) 12.27 (9.25)
De-Fr 23.37 (15.76) 23.5 (15.89) 24.34 (16.73) 20.81 (13.2) 20.27 (12.66)
Fr-De 16.18 (10.76) 16.58 (11.16) 18.12 (12.7) 15.56 (10.14) 14.94 (9.52)
Avg 18.9 (12.8) 18.96 (12.85) 19.78 (13.68) 16.88 (10.78) 16.56 (10.46)

Total Avg 21.86 (7.17) 22.44 (7.76) 21.41 (6.72) 19.54 (4.86) 20.28 (5.6)

Table 13: Detailed scores of models of table 4. M2(+10) indicates the selected best model trained with addtional
10 epochs.



5918

Pair M2(3) M2(4) M2(5) M2(6)
De-En 32.33 32.96 33.20 33.53
En-De 25.52 25.75 26.16 26.15
De-Nl 25.10 25.49 25.34 25.60
Nl-De 21.32 21.56 21.55 21.71
En-Nl 27.17 27.39 27.65 27.77
Nl-En 29.53 29.94 30.27 30.43
Avg 26.83 27.18 27.36 27.53

Table 14: Detailed scores of the models in 7

4. M2(+10) indictes the scores of the M2 trained
10 epochs after the best validation loss. M2(+10)
shows the increased performance in medium and
high resource pairs and degradation in low resource
pairs. This indicates that up-sampling causes the
difference in converge rates among pairs of differ-
ent resources for M2.

D Detailed scores of M2 with varying
languages

Table 14 shows detailed scores of M2 trained with
varying number of languages. This shows that M2
trained with more languages shows better perfor-
mance.


